JPH0547086B2 - - Google Patents

Info

Publication number
JPH0547086B2
JPH0547086B2 JP10963985A JP10963985A JPH0547086B2 JP H0547086 B2 JPH0547086 B2 JP H0547086B2 JP 10963985 A JP10963985 A JP 10963985A JP 10963985 A JP10963985 A JP 10963985A JP H0547086 B2 JPH0547086 B2 JP H0547086B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
phase
chiral smectic
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10963985A
Other languages
Japanese (ja)
Other versions
JPS61267736A (en
Inventor
Akira Tsuboyama
Kazuharu Katagiri
Junichiro Kanbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10963985A priority Critical patent/JPS61267736A/en
Priority to US06/862,978 priority patent/US4775225A/en
Publication of JPS61267736A publication Critical patent/JPS61267736A/en
Publication of JPH0547086B2 publication Critical patent/JPH0547086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、液晶表示素子や液晶−光シヤツタア
レイ等に適用する液晶素子に関し、詳しくは液晶
分子の初期配向状態を改善することにより、表示
ならびに駆動特性を改善した液晶素子に関する。 〔従来の技術〕 従来の液晶素子としては、例えばエム.シヤツ
ト(M.Schadt)とダブリユー.ヘルフリツヒ
(W.Helfrich)著“アプライド・フイジツクス.
レターズ”(“Applied Physics Letters”)第18
巻、第4号(1971年2月15日発行)、第127頁〜
128頁の“ボルテージ・デイペンダント・オプテ
イカル・アクテイビテイー・オブ・ア・ツイステ
ツド・ネマチツク・リキツド・クリスタル”
(“Voltage Dependent Optical Activity of a
Twisted Nematic Liquid Crystal”)に示さ
れたツイステツド・ネマチツク(twisted
nematic)液晶を用いたものが知られている。こ
のTN液晶は、画素密度を高くしたマトリクス電
極構造を用いた時分割駆動の時、クロストークを
発生する問題点があるため、画素数が制限されて
いた。 又、各画素に薄膜トランジスタによるスイツチ
ング素子を接続し、各画素毎をスイツチングする
方式の表示素子が知られているが、基板上に薄膜
トランジスタを形成する工程が極めて煩雑な上、
大面積の表示素子を作成することが難かしい問題
点がある。 このような従来型の液晶素子の欠点を改善する
ものとして、双安定性を有する液晶素子の使用が
クラーク(Clafk)およびラガウエル
(Lagerwall)により提案されている(特開昭56
−107216号公報、米国特許第4367924号明細書
等)。双安定性を有する液晶としては、一般に、
カイラルスメクテイツクC相(SmC*)又はH相
(SmH*)を有する強誘電性液晶が用いられる。
この液晶の膜厚は強誘電性液晶の螺旋構造が解除
されるのに充分小さく保たれ、このため電界に対
して第1の光学的安定状態と第2の光学安定状態
からなる双安定状態をもつことになる。このた
め、前述のTN型の液晶で用いられた光学変調素
子とは異なり、例えば一方の電界ベクトルに対し
て第1の光学的安定状態に液晶が配向し、他方の
電界ベクトルに対しては第2の光学的安定状態に
液晶が配向される。 〔発明が解決しようとする問題点〕 前述の双安定性を有する液晶を用いた光学変調
素子が所定の駆動特性を発揮するためには、一対
の平行基板間に配置される液晶が、2つの安定配
向状態間での変換が効果的に起るような分子配列
状態にあることが必要である。 しかしながら、前述した様な螺旋構造が解除さ
れて双安定性が付与されたカイラルスメクチツク
液晶素子は、その素子を作成する上で極めて難か
しい問題が存在している。すなわち、本発明者ら
の研究から、前述したカイラルスメクチツク液晶
の双安定性を堅固なものとするために、液晶の膜
厚(1対の基板間の間隔に対応している)を薄く
する必要があるが、この膜厚を薄くすればする
程、配向欠陥の発生率が増大していく傾向になる
ことが判明した。しかも、前述の配向欠陥の発生
は、液晶の膜厚を素子の面全体に亘つて均一な膜
厚とするために配置した間隔制御部材(スペー
サ)の存在が原因となつていることが判明した。 従つて、本発明の目的は上述した事情に鑑み高
速応答性、高密度画素と大面積を有する表示素子
あるいは高速度のシヤツタースピードを有する光
学シヤツター等として強誘電性液晶などの液晶、
特に双安定性を有する強誘電性液晶を使用した光
学変調素子においては、従来問題であつたモノド
メイン形成性ないしは、初期配向性を改善するこ
とによりその特性を充分に発揮させ得る液晶素子
を提供することにある。 〔問題点を解決するための手段、作用〕 本発明は、フオトリソ工程を用いることによつ
て形成したスペーサとなる微細な突起体を有し、
且つ一方向に一軸性配向処理を施した第1の基板
と、該第1の基板に対向する第2の基板とを有
し、該第1の基板と第2の基板との間に降温下で
コレステリツク相、スメクチツクA相及びカイラ
ルスメクチツクC相の順で相転移させて形成した
カイラルスメクチツク液晶を配置してなる液晶素
子であつて、前記突起体が第1に前記一軸性配向
処理方向の垂直方向において50μm以下の径の円
柱形状を備えてなるか、又は第2に前記一軸性配
向処理方向の垂直方向において20μm以下の幅を
もつ四角柱形状を備えてなるか又は第3に前記一
軸性配向処理方向の垂直方向において50μm以下
の幅をもつ六角柱形状を備えてなる液晶素子に特
徴がある。 〔実施例〕 以下、必要に応じて図面を参照しつつ、本発明
を更に詳細に説明する。 第1図は、強誘電性液晶の動作説明のために、
セルの例を模式的に描いたものである。21a
と、21bは、In2O3,SnO2あるいはITO(イン
ジウム−テイン オキサイド)等の薄膜からなる
透明電極で被覆された基板(ガラス板)であり、
その間に液晶分子層22がガラス面に垂直になる
よう配向したSmC*相又はSmH*相の液晶が封入
されている。太線で示した線23が液晶分子を表
わしており、この液晶分子23はその分子に直交
した方向に双極子モーメント(P⊥)24を有し
ている。基板21aと21b上の電極間に一定の
閾値以上の電圧を印加すると、液晶分子23のら
せん構造がほどけ、双極子モーメント(P⊥)2
4がすべて電界方向に向くよう、液晶分子23は
配向方向を変えることができる。液晶分子23
は、細長い形状を有しており、その長軸方向と短
軸方向で屈折率異方性を示し、従つて例えばガラ
ス面の上下に互いにクロスニコルの偏光子を置け
ば、電圧印加極性によつて光学特性が変わる液晶
光学変調素子となることは、容易に理解される。 本発明の液晶素子で用いられる液晶セルは、そ
の厚さを充分に薄く(例えば10μ以下)すること
ができる。このように液晶層が薄くなるにしたが
い、第2図に示すように電界を印加していない状
態でも、充分に間隔が小さくされた基板間の壁面
効果により液晶分子のらせん構造がほどけ、非ら
せん構造を採ることができる。その双極子モーメ
ントPaまたはPbは上向き34a又は下向き34
bのどちらかの状態をとる。このようなセルに、
第2図に示す如く一定の閾値以上の極性の異る電
界Ea又はEbを電圧印加手段31aと31bによ
り付与すると、双極子モーメントは、電界Ea又
はEbの電界ベクトルに対応して上向き34a又
は下向き34bと向きを変え、それに応じて液晶
分子は、第1の安定状態33aかあるいは第2の
安定状態33bの何れか1方に配向する。 このような強誘電性を光学変調素子として用い
ることの利点は、先にも述べたが2つある。その
第1は、応答速度が極めて速いことであり、第2
は液晶分子の配向が双安定性を有することであ
る。第第2の点を、例えば第2図によつて更に説
明すると、電界Eaを印加すると液晶分子は第1
の安定状態33aに配向するが、この状態は電界
を切つても安定である。又、逆向きの電界Ebを
印加すると、液晶分子は第2の安定状態33bに
配向してその分子の向きを変えるが、やはり電界
を切つてもこの状態に留つている。又、与える電
界Eaが一定の閾値を越えない限り、それぞれの
配向状態にやはり維持されている。このような応
答速度の速さと、双安定性が有効に実現されるに
はセルとしては出来るだけ薄い方が好ましい。 第3図は、本発明の液晶素子を具体的に示した
もので、第3図Aはその断面図で、第3図Bはそ
の平面図である。 第3図に示す液晶素子300は、基板301
(好ましくは、可撓性ガラス、可撓性プラスチツ
ク)と基板302(好ましくは、ガラスプレー
ト)とを有しており、基板301にはストライプ
状の透明電極303と、その上に絶縁性物質で形
成した配向制御膜304が塗設されている。又、
基板302には透明電極303と直交するストラ
イプ形状の透明電極305と、その上に絶縁性物
質で形成したスペーサ307と312方向に一軸
性配向処理(ラビング処理など)を施した配向制
御膜306が塗設されている。 本発明で用いるスペーサ307は、配向制御膜
306を形成した基板302の上にポリビニルア
ルコール、ポリイミド、ポリアミドイミド、ポリ
エステルイミド、ポリパラキシレリン、ポリエス
テル、ポリカーボネート、ポリビニルアセター
ル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミ
ド、ポリスチレン、セルロース樹脂、メラミン樹
脂、ユリヤ樹脂、アクリル樹脂などの樹脂類によ
つて形成した絶縁被膜あるいはSiO,SiO2
TiO2などの無機系絶縁被膜を設けた後、通常の
フオトリソ工程を採用して所定の形状にエツチン
グすることによつて得られる。この際、スペーサ
307となる絶縁被膜の乾燥膜厚がスペーサの高
さに相当する様になる。 本発明では、前述の一軸性配向処理方向312
の垂直方向に沿つたスペーサ307の辺aの長さ
を0μm〜20μmとし、特に好ましくはスペーサ3
07における一軸性配向処理方向312と平行方
向の成分の長さbを300μm以下とした時には配向
欠陥の発生を皆無とすることができる。この点に
関しては、下述で更に詳細に説明する。 本発明の好ましい具体例ではスペーサ307
は、液晶素子300の平面1mm2当り0.1個〜100個
の割合で設けられていると、配向欠陥の発生を有
効に防止することができる。特に、液晶素子30
0の平面1mm2当り0.5個〜50個の割合でスペーサ
307が設けられていると、基板301と302
の間隔を充分に小さくした時(0.5μm〜5μm)の
液晶膜厚で付与される双安定性モノドメインには
配向欠隔の発生を皆無とすることができる。 又、本発明で用いるスペーサ307の形状とし
ては、前述の四角柱体の他に第4図〜第6図に示
す円柱体、惰円柱体及び六角柱体を用いることが
できる。第4図〜第6図中のa及びb並びに31
2は、第3図のa及びb並びに312と同一のも
のを意味している。 特に、第4図及び第5図のaは、それぞれ一軸
性配向処理方向312に対する円柱体及び惰円柱
体の接点を意味している。又、第5図のcは惰円
柱体の短軸を表わしており、一軸性配向処理方向
312に対して直交している。第6図に示す六角
柱体は幅dと長さbで形成され、幅dの方向は一
軸性配向処理方向312に対して直交している。 前述のスペーサ307は、第4図に示す円柱体
の場合で長さbの5〜50倍のピツチ、好ましくは
10〜20倍のピツチで設けられ、その基板面内の直
径に相当する長さbを50μm以下とすることが好
ましい。第5図に示す惰円柱体の場合で長さcの
5〜50倍のピツチ、好ましくは10〜20倍のピツチ
で設けられ、ラビング方向と平行の成分に相当す
る長軸bを300μm以下とすることが好ましい。又
第6図に示す六角柱体の場合で長さdの5〜50倍
のピツチ、好ましくは10〜20倍のピツチで設けら
れ、ラビング方向と平行の成分に相当する長さb
を300μm以下とすることが好ましい。 又、第3図に示す液晶、特に強誘電性カイラル
スメクチツク液晶308は、基板301と302
の周辺に設けたシール材309(例えば、エポキ
シ系接着剤)によつてシーリングされる。 本発明の液晶素子300は、クロスニコルの偏
光子310と311がそれぞれ基板301と30
2の両側に配置している。 又、本発明の液晶素子300で用いる配向制御
膜304と306は、例えば一酸化ケイ素、二酸
化ケイ素、酸化アルミニウム、ジルコニア、フツ
化マグネシウム、酸化セリウム、フツ化セリウ
ム、シリコン窒化物シリコン炭化物、ホウ素窒化
物、などの化合物を用いて例えば蒸着により被膜
形成して得ることができる。またそれ以外にも、
例えばポリビニルアルコール、ポリイミド、ポリ
アミドイミド、ポリエステルイミド、ポリパラキ
シレリン、ポリエステル、ポリカーボネート、ポ
リビニルアセタール、ポリ塩化ビニル、ポリ酢酸
ビニル、ポリアミド、ポリスチレン、セルロース
樹脂、メラミン樹脂、ユリヤ樹脂やアクリル樹脂
などの樹脂類の塗膜として形成することもでき
る。配向制御膜304と306の膜厚は、材料の
もつ電荷注入防止能力と、液晶層の厚さにも依存
するが、通常50Å〜5μ、好適には、500Å〜5000
Åの範囲で設定される。 この配向制御膜304と306は、一軸性液晶
(強誘電性カイラルスメクチツク液晶相より高温
側で現出するスメクチツクA相、ネマチツク相な
ど)の分子方向を一方向に配向させる効果をもつ
ことができる。具体的な一軸性配向処理法として
は、基板の平面を一方向にラビングする方法ある
いは斜め蒸着法を用いることができる(図中、3
12はラビング方向)。 本発明の液晶素子300で用いる強誘電性カイ
ラルスメクチツク液晶308としては、クーリン
グ(徐冷;0.5℃/時間〜5℃/時間)下で等方
相(Iso)→コレステリツク相(Ch)→スメクチ
ツクA相(SmA)→カイラルスメクチツク相に
相転移を生じるものや等方相→SmA→カイラル
スメクチツク相に相転移を生じるものが好まし
い。 以下、本発明を実施例に従つて説明する。 実施例 1〜23 ITOのストライプ状パターン電極を設けたガラ
ス基板の上にポリイミド形成液(ピロメリツト酸
二無水物と4,4′−ジアミノジフエニルエーテル
との脱水縮合によつて得たポリアミド酸のN−メ
チルピロリドン溶液)を加熱硬化後の膜厚が1500
Åとなる様に塗布した後、加熱硬化してポリイミ
ド酸を形成した。このポリイミド膜を設けたガラ
ス基板を2枚用意した。この2枚のガラス基板の
うち、1枚のガラス板に別のポリイミド形成液
(日立化成工業(株)の「PIQ」)を、硬化後の膜厚が
1μmとなる様に塗布した。 次いで、ポジ型レジスト溶液(Shipey社製の
“AZ1350”)をスピナー塗布し、プリベークした。
このレジスト層上に、マクスピツチ3mmのマスク
を用いて露光した。この際に用いたマスクの形状
は、正方形又は長方形状とし、第3図中のaとb
に相当する長さを第1表に示す値のものとした。
次いで、テトラメチルアンモニウムハイドロオキ
サイド含有の現像液“MF312”で現像すること
により、露光部分のレジスト膜とその下層のポリ
イミド膜のエツチングを行ないスルーホールを形
成させ、水洗、乾燥を行なつた後、メチルエチル
ケトンを用いて未露光部のレジスト膜を除去し
た。しかる後、200℃で60分間、350℃で30分間の
加熱により硬化を行ない、ポリイミドイソインド
ロキナゾリンジオンのスペーサを形成した。 次いで、四角柱体(スペーサ)の辺bの方向と
垂直方向に沿つて、布により、ラビング処理を行
なつた後、水とアセトンにより順次洗浄し、乾燥
させた。 次に、前述のポリイミド膜を設けたもう1方の
ガラス基板(予め、ラビング処理した後、周辺に
注入口なる個所を除いてエポキシ系接着剤をスク
リーン印刷法によつて塗布した)とスペーサとな
る四角柱体を設けたガラス基板と重ね合せ、エポ
キシ系接着剤を硬化させることによつてセルを作
成した。この時、2枚のガラス基板に施したラビ
ング方向が互に平行となり、且つストライプ状パ
ターン電極が互に直交する様にセル組みした。 次いで、このセルの真空槽の中に入れ、充分に
セル内部を真空に引いた後、セルの注入口に下記
の液晶材料を接触させることによつて、セル内部
と外部とを遮断した後、真空槽を大気圧に戻す
と、液晶材料がセル内部に注入された。この注入
工程は、液晶材料を等方相(75℃)下で行なつ
た。 液晶材料をセル内部に注入した後、注入口を封
止し、等方相下にある液晶材料を約0.5℃/時間
の割合で徐冷して等方相から順次コレステリツク
相、スメクチツクA相及びカイラルスメクチツク
C相に相転移を生じさせることによつて、28℃で
強誘電性カイラルスメクチツク液晶素子(記憶性
素子)を作成した。 この液晶素子の配向状態を直交ニコル下で偏光
顕微鏡により観察した。又、この液晶素子に30ボ
ルトと−30ボルトの電圧を印加して双安定性の評
価を行なつた。 これらの実験結果を第1表に示す。表中の〇は
配向欠陥が全くな良好な配向状態を示し、且つ良
好な双安定性を示したサンプルで、△は多少の配
向欠陥があつたが、実用可能な範囲での双安定性
を示したサンプルで、×は第7図に示す配向欠陥
71が多数発生し、実用が不可能なサンプルであ
る。尚、第7図中の付号のうち、第3図と同一付
号のものは、それと同一の部材を示している。
[Industrial Application Field] The present invention relates to a liquid crystal element applied to a liquid crystal display element, a liquid crystal-optical shutter array, etc., and more specifically, a liquid crystal element with improved display and driving characteristics by improving the initial alignment state of liquid crystal molecules. Regarding. [Prior Art] As a conventional liquid crystal element, for example, M. Schadt (M.Schadt) and Double You. “Applied Physics” by W. Helfrich.
“Applied Physics Letters” No. 18
Volume, No. 4 (published February 15, 1971), pp. 127~
“Voltage dependent optical activity of a twisted nematic liquid crystal” on page 128
(“Voltage Dependent Optical Activity of a
Twisted Nematic Liquid Crystal”
(nematic) liquid crystal display is known. This TN liquid crystal has a problem in that crosstalk occurs during time-division driving using a matrix electrode structure with high pixel density, so the number of pixels is limited. Furthermore, a display element is known in which a switching element using a thin film transistor is connected to each pixel and switching is performed for each pixel, but the process of forming the thin film transistor on the substrate is extremely complicated, and
There is a problem in that it is difficult to create a display element with a large area. To improve the drawbacks of conventional liquid crystal devices, the use of bistable liquid crystal devices was proposed by Clafk and Lagerwall (Japanese Patent Application Laid-Open No. 1983-1993).
-107216, US Pat. No. 4,367,924, etc.). In general, liquid crystals with bistability include:
A ferroelectric liquid crystal having a chiral smectic C phase (SmC * ) or H phase (SmH * ) is used.
The film thickness of this liquid crystal is kept small enough to release the helical structure of the ferroelectric liquid crystal, thus creating a bistable state consisting of a first optically stable state and a second optically stable state in response to an electric field. It will last. Therefore, unlike the optical modulation element used in the above-mentioned TN type liquid crystal, for example, the liquid crystal is oriented in the first optically stable state with respect to one electric field vector, and the first optically stable state with respect to the other electric field vector. The liquid crystal is aligned in the optically stable state of 2. [Problems to be Solved by the Invention] In order for the optical modulation element using the above-mentioned bistable liquid crystal to exhibit predetermined drive characteristics, the liquid crystal disposed between a pair of parallel substrates must be It is necessary that the molecules be arranged in such a state that conversion between stable orientation states can occur effectively. However, the above-mentioned chiral smectic liquid crystal device, in which the helical structure is released and bistability is imparted, has extremely difficult problems in producing the device. That is, based on the research conducted by the present inventors, in order to solidify the bistability of the chiral smectic liquid crystal described above, the film thickness of the liquid crystal (corresponding to the distance between a pair of substrates) can be reduced. However, it has been found that the thinner the film thickness is, the more likely the occurrence of orientation defects will be. Moreover, it was discovered that the occurrence of the alignment defects mentioned above was caused by the presence of a spacer, which was placed to maintain a uniform liquid crystal film thickness over the entire surface of the device. . Therefore, in view of the above-mentioned circumstances, an object of the present invention is to provide a liquid crystal such as a ferroelectric liquid crystal, as a display element having high-speed response, high-density pixels, and a large area, or as an optical shutter having a high shutter speed.
In particular, in optical modulation elements using ferroelectric liquid crystals with bistability, we provide liquid crystal elements that can fully demonstrate their characteristics by improving monodomain formation or initial orientation, which has been a problem in the past. It's about doing. [Means and effects for solving the problems] The present invention has fine protrusions that serve as spacers formed by using a photolithography process,
The first substrate is uniaxially aligned in one direction, and the second substrate is opposed to the first substrate. A liquid crystal element in which a chiral smectic liquid crystal formed by phase transition in the order of a cholesteric phase, a smectic A phase, and a chiral smectic C phase is arranged, wherein the protrusions first have the uniaxial orientation. It has a cylindrical shape with a diameter of 50 μm or less in the direction perpendicular to the processing direction, or a square prism shape has a width of 20 μm or less in the direction perpendicular to the uniaxial alignment treatment direction, or The present invention is characterized by a liquid crystal element having a hexagonal column shape having a width of 50 μm or less in the direction perpendicular to the direction of the uniaxial alignment process. [Example] The present invention will be described in further detail below with reference to the drawings as necessary. Figure 1 is for explaining the operation of ferroelectric liquid crystal.
This is a schematic drawing of an example of a cell. 21a
and 21b are substrates (glass plates) covered with transparent electrodes made of thin films such as In 2 O 3 , SnO 2 or ITO (indium-tein oxide),
In between, liquid crystal of SmC * phase or SmH * phase, which is oriented so that the liquid crystal molecular layer 22 is perpendicular to the glass surface, is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P⊥) 24 in a direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the dipole moment (P⊥)2
The alignment direction of the liquid crystal molecules 23 can be changed so that all of the liquid crystal molecules 4 are oriented in the direction of the electric field. liquid crystal molecule 23
has an elongated shape and exhibits refractive index anisotropy in its long and short axis directions. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the polarity of the applied voltage will change. It is easily understood that this results in a liquid crystal optical modulation element whose optical properties change. The thickness of the liquid crystal cell used in the liquid crystal element of the present invention can be made sufficiently thin (for example, 10 μm or less). As the liquid crystal layer becomes thinner, the helical structure of the liquid crystal molecules unravels due to the wall effect between the substrates, which are spaced sufficiently apart, even when no electric field is applied, as shown in Figure 2. structure can be adopted. Its dipole moment Pa or Pb is upward 34a or downward 34
Take either state b. In a cell like this,
As shown in FIG. 2, when an electric field Ea or Eb of different polarity above a certain threshold value is applied by the voltage applying means 31a and 31b, the dipole moment is directed upward 34a or downward depending on the electric field vector of the electric field Ea or Eb. 34b, and accordingly, the liquid crystal molecules are oriented to either the first stable state 33a or the second stable state 33b. As mentioned earlier, there are two advantages to using such ferroelectricity as an optical modulation element. The first is that the response speed is extremely fast, and the second is that the response speed is extremely fast.
is that the orientation of liquid crystal molecules has bistability. To further explain the second point using, for example, FIG. 2, when an electric field Ea is applied, the liquid crystal molecules
This state is stable even when the electric field is turned off. When an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to a second stable state 33b and change their orientation, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field Ea does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible. FIG. 3 specifically shows the liquid crystal element of the present invention, with FIG. 3A being a cross-sectional view thereof, and FIG. 3B being a plan view thereof. The liquid crystal element 300 shown in FIG.
(preferably flexible glass or flexible plastic) and a substrate 302 (preferably a glass plate), and the substrate 301 has a striped transparent electrode 303 and an insulating material is formed on the substrate 301. The formed orientation control film 304 is applied. or,
The substrate 302 includes a striped transparent electrode 305 perpendicular to the transparent electrode 303, a spacer 307 formed of an insulating material thereon, and an alignment control film 306 subjected to uniaxial alignment treatment (rubbing treatment, etc.) in the 312 direction. It is painted. The spacer 307 used in the present invention is made of polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylerin, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate on the substrate 302 on which the alignment control film 306 is formed. , polyamide, polystyrene, cellulose resin, melamine resin, urea resin, acrylic resin, and other resins, or SiO, SiO 2 or
It is obtained by forming an inorganic insulating film such as TiO 2 and then etching it into a predetermined shape using a normal photolithography process. At this time, the dry film thickness of the insulating film that becomes the spacer 307 corresponds to the height of the spacer. In the present invention, the above-mentioned uniaxial orientation treatment direction 312
It is particularly preferable that the length of the side a of the spacer 307 along the vertical direction is 0 μm to 20 μm.
When the length b of the component in the direction parallel to the uniaxial orientation treatment direction 312 in 07 is set to 300 μm or less, no orientation defects can occur. This point will be explained in more detail below. In a preferred embodiment of the invention, spacer 307
If these are provided at a rate of 0.1 to 100 per mm 2 of the flat surface of the liquid crystal element 300, the occurrence of alignment defects can be effectively prevented. In particular, the liquid crystal element 30
If the spacers 307 are provided at a rate of 0.5 to 50 per 1 mm 2 of the plane 0, the substrates 301 and 302
When the spacing is made sufficiently small (0.5 μm to 5 μm), the bistable monodomains provided by the liquid crystal film thickness can be completely free from alignment defects. Further, as the shape of the spacer 307 used in the present invention, in addition to the above-mentioned quadrangular prism, a cylinder, an inert cylinder, and a hexagonal prism shown in FIGS. 4 to 6 can be used. a and b and 31 in Figures 4 to 6
2 means the same as a and b and 312 in FIG. Particularly, a in FIGS. 4 and 5 means the contact points of the cylindrical body and the inert cylindrical body with respect to the uniaxial orientation processing direction 312, respectively. Further, c in FIG. 5 represents the short axis of the cylindrical body, which is perpendicular to the uniaxial orientation processing direction 312. The hexagonal prism shown in FIG. 6 is formed with a width d and a length b, and the direction of the width d is perpendicular to the uniaxial alignment direction 312. The above-mentioned spacer 307 has a pitch of 5 to 50 times the length b, preferably in the case of the cylindrical body shown in FIG.
It is preferable that they are provided at a pitch 10 to 20 times larger and that the length b corresponding to the diameter in the plane of the substrate is 50 μm or less. In the case of the inertia cylindrical body shown in Fig. 5, the pitch is 5 to 50 times the length c, preferably 10 to 20 times the length c, and the long axis b corresponding to the component parallel to the rubbing direction is 300 μm or less. It is preferable to do so. In the case of the hexagonal prism shown in Fig. 6, the pitch is 5 to 50 times the length d, preferably 10 to 20 times, and the length b corresponds to the component parallel to the rubbing direction.
is preferably 300 μm or less. Further, the liquid crystal shown in FIG. 3, particularly the ferroelectric chiral smectic liquid crystal 308,
It is sealed with a sealing material 309 (for example, epoxy adhesive) provided around the . In the liquid crystal element 300 of the present invention, crossed Nicol polarizers 310 and 311 are arranged on substrates 301 and 311, respectively.
It is placed on both sides of 2. Further, the alignment control films 304 and 306 used in the liquid crystal element 300 of the present invention include, for example, silicon monoxide, silicon dioxide, aluminum oxide, zirconia, magnesium fluoride, cerium oxide, cerium fluoride, silicon nitride, silicon carbide, and boron nitride. It can be obtained by forming a film by, for example, vapor deposition using a compound such as . Besides that,
For example, resins such as polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylerin, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin, melamine resin, urea resin, and acrylic resin. It can also be formed as a similar coating. The thickness of the alignment control films 304 and 306 depends on the charge injection prevention ability of the material and the thickness of the liquid crystal layer, but is usually 50 Å to 5 μ, preferably 500 Å to 5000 Å.
It is set within the range of Å. The alignment control films 304 and 306 have the effect of aligning the molecular direction of the uniaxial liquid crystal (smectic A phase, nematic phase, etc. that appears at a higher temperature than the ferroelectric chiral smectic liquid crystal phase) in one direction. I can do it. As a specific uniaxial alignment treatment method, a method of rubbing the plane of the substrate in one direction or an oblique vapor deposition method can be used (see 3 in the figure).
12 is the rubbing direction). The ferroelectric chiral smectic liquid crystal 308 used in the liquid crystal element 300 of the present invention has an isotropic phase (Iso) → cholesteric phase (Ch) → under cooling (slow cooling; 0.5°C/hour to 5°C/hour). Those that cause a phase transition from smectic A phase (SmA) to chiral smectic phase or those that cause a phase transition from isotropic phase to SmA to chiral smectic phase are preferred. Hereinafter, the present invention will be explained according to examples. Examples 1 to 23 A polyimide forming solution (polyamic acid obtained by dehydration condensation of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether) was placed on a glass substrate provided with ITO striped pattern electrodes. The film thickness after heating and curing N-methylpyrrolidone solution is 1500.
After coating to give a coating thickness of 100 Å, the polyimide acid was cured by heating to form a polyimide acid. Two glass substrates provided with this polyimide film were prepared. Of these two glass substrates, one glass plate was coated with another polyimide forming liquid (“PIQ” by Hitachi Chemical Co., Ltd.) so that the film thickness after curing was
It was applied to a thickness of 1 μm. Next, a positive resist solution ("AZ1350" manufactured by Shipey) was applied using a spinner and prebaked.
This resist layer was exposed using a 3 mm mask. The shape of the mask used at this time was square or rectangular, and a and b in Figure 3 were used.
The length corresponding to the length was taken as the value shown in Table 1.
Next, by developing with a developer containing tetramethylammonium hydroxide "MF312", the resist film in the exposed area and the underlying polyimide film are etched to form through holes, and after washing and drying, The resist film in unexposed areas was removed using methyl ethyl ketone. Thereafter, it was cured by heating at 200° C. for 60 minutes and at 350° C. for 30 minutes to form a spacer of polyimide isoindoquinazolinedione. Next, a rubbing treatment was performed with a cloth along the direction perpendicular to the side b of the square prism (spacer), followed by washing with water and acetone sequentially, and drying. Next, the other glass substrate on which the polyimide film described above was provided (after rubbing in advance, epoxy adhesive was applied around it by screen printing except for the injection port) and the spacer. A cell was created by laminating the glass substrate with a glass substrate provided with a rectangular prism, and curing the epoxy adhesive. At this time, the cells were assembled so that the rubbing directions applied to the two glass substrates were parallel to each other and the striped pattern electrodes were perpendicular to each other. Next, the cell was placed in a vacuum chamber, the inside of the cell was sufficiently evacuated, and the liquid crystal material described below was brought into contact with the injection port of the cell to isolate the inside of the cell from the outside. When the vacuum chamber was returned to atmospheric pressure, liquid crystal material was injected inside the cell. This injection step was carried out under the isotropic phase (75° C.) of the liquid crystal material. After injecting the liquid crystal material into the cell, the injection port is sealed, and the liquid crystal material in the isotropic phase is gradually cooled at a rate of approximately 0.5°C/hour to sequentially transform from the isotropic phase to the cholesteric phase, smectic A phase, and so on. A ferroelectric chiral smectic liquid crystal device (memory device) was produced at 28° C. by causing a phase transition in the chiral smectic C phase. The alignment state of this liquid crystal element was observed using a polarizing microscope under crossed Nicols. Furthermore, bistability was evaluated by applying voltages of 30 volts and -30 volts to this liquid crystal element. The results of these experiments are shown in Table 1. In the table, ○ indicates a good alignment state with no alignment defects and good bistability, while △ indicates a sample with some alignment defects but exhibits bistability within a practical range. In the samples shown, x indicates a sample in which a large number of orientation defects 71 shown in FIG. 7 occur, making it impossible to put it into practical use. Note that among the numbers in FIG. 7, the same numbers as in FIG. 3 indicate the same members.

【表】【table】

【表】 これらの実験によれば、辺aの長さを20μm以
下と設定することによつて配向欠陥が皆無の液晶
素子とすることができ、この際の四角柱体スペー
サの長さbは、配向欠陥の発生に対する大きな要
因となつていないことが判る。 実施例 24〜32 前記実施例1〜23で用いた四角柱体のスペーサ
に代えて、第4図に示す円柱体スペーサ(長さb
を第2表に示す)を用いたほかは、全く同様の方
法で液晶素子を作成し、その評価を行なつた。そ
の結果を第2表で明らかにする。
[Table] According to these experiments, by setting the length of side a to 20 μm or less, a liquid crystal element with no alignment defects can be obtained, and in this case, the length b of the quadrangular prism spacer is It can be seen that this is not a major factor in the occurrence of orientation defects. Examples 24 to 32 Instead of the rectangular prism spacer used in Examples 1 to 23, a cylindrical spacer (length b
(shown in Table 2), liquid crystal devices were prepared in exactly the same manner and evaluated. The results are shown in Table 2.

【表】 これらの実験によれば、辺aの長が0μm(辺a
がラビング処理方向に対して接点となつている)
の素子では、直径(b)を100μm以下とした時に実用
可能な配向状態と双安定性が得られ、特に直径(b)
を50μm以下とした時には配向欠陥が皆無の配向
状態の素子が得られたことが判る。 実施例 33〜40 前記実施例1〜23で用いた四角柱体のスペーサ
に代えて、第5図に示す惰円柱体スペーサ(長さ
bとcを第3表に示す)を用いたほかは、全同様
の方法で液晶素子を作成し、その評価を行なつ
た。その結果を第3表で明らかにする。
[Table] According to these experiments, the length of side a is 0 μm (side a
is the contact point with respect to the rubbing direction)
In this device, a practical orientation state and bistability can be obtained when the diameter (b) is 100 μm or less, and especially when the diameter (b)
It can be seen that an element in an oriented state with no orientation defects was obtained when the thickness was set to 50 μm or less. Examples 33 to 40 The square columnar spacers used in Examples 1 to 23 were replaced with cylindrical spacers shown in FIG. 5 (lengths b and c are shown in Table 3). , liquid crystal devices were fabricated using the same method and evaluated. The results are shown in Table 3.

【表】 これらの実験によれば、惰円柱体スペーサを用
いた液晶素子では、惰円柱体の長さbを300μm以
下とした時には、実用可能な液晶素子が得られ、
特に長さbを100μm以下とした時には配向欠陥を
皆無とした液晶素子とすることができる点が判
る。 実施例 41〜67 前記実施例1〜23で用いた四角柱体スペーサに
代えて、第6図に示す六角柱体スペーサ(長さ
a,bとdを第4表に示す)を用いたほかは、全
く同様の方法で液晶素子を作成し、その評価を行
なつた。その結果を第4表に示す。
[Table] According to these experiments, a practically usable liquid crystal element can be obtained when the length b of the cylinder is set to 300 μm or less in a liquid crystal device using a cylinder spacer.
In particular, it can be seen that when the length b is set to 100 μm or less, a liquid crystal element with no alignment defects can be obtained. Examples 41 to 67 In place of the square prism spacers used in Examples 1 to 23, hexagonal prism spacers shown in FIG. 6 (lengths a, b, and d are shown in Table 4) were used. created a liquid crystal device using exactly the same method and evaluated it. The results are shown in Table 4.

【表】【table】

〔効果〕〔effect〕

このような現象は、ネマチツク液晶やコレステ
リツク液晶では見られなかつた現象であり、又、
カイラルスメクチツク液晶でも、その螺旋構造を
解除するのに充分薄いセルの場合には特徴的に発
生する。前述の実験に於て、現象的には、辺bの
長さが、20μm以下であれば欠陥の発生率を減少
させることができる。
This phenomenon has never been observed in nematic liquid crystals or cholesteric liquid crystals, and
This phenomenon also occurs characteristically in chiral smectic liquid crystals when the cell is thin enough to release its helical structure. In the above-mentioned experiment, it was found that if the length of side b was 20 μm or less, the incidence of defects could be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で用いた強誘電性液晶素子を
模式的に示した斜視図である。第2図は、本発明
で用いた別の強誘電性液晶素子を模式的に示した
斜視図である。第3図Aは、本発明の液晶素子の
断面図で、第3図Bはその平面図である。第4
図、第5図及び第6図は、それぞれ本発明で用い
たスペーサ形状を示す平面図である。第7図は、
比較素子で発生した配向欠陥の状態をスケツチし
た説明図である。
FIG. 1 is a perspective view schematically showing a ferroelectric liquid crystal element used in the present invention. FIG. 2 is a perspective view schematically showing another ferroelectric liquid crystal element used in the present invention. FIG. 3A is a sectional view of the liquid crystal element of the present invention, and FIG. 3B is a plan view thereof. Fourth
5 and 6 are plan views showing the shape of the spacer used in the present invention, respectively. Figure 7 shows
FIG. 3 is an explanatory diagram showing a sketch of the state of alignment defects occurring in a comparative element.

Claims (1)

【特許請求の範囲】 1 フオトリソ工程を用いることによつて形成し
たスペーサとなる微細な突起体を有し、且つ一方
向に一軸性配向処理を施した第1の基板と、該第
1の基板に対向する第2の基板とを有し、該第1
の基板と第2の基板との間に降温下でコレステリ
ツク相、スメクチツクA相及びカイラルスメクチ
ツクC相の順で相転移させて形成したカイラルス
メクチツク液晶を配置してなる液晶素子であつ
て、前記突起体が前記一軸性配向処理方向の垂直
方向において50μm以下の径の円柱形状を備えて
なることを特徴とする液晶素子。 2 フオトリソ工程を用いることによつて形成し
たスペーサとなる微細な突起体を有し、且つ一方
向に一軸性配向処理を施した第1の基板と、該第
1の基板に対向する第2の基板とを有し、該第1
の基板と第2の基板との間に降温下でコレステリ
ツク相、スメクチツクA相及びカイラルスメクチ
ツクC相の順で相転移させて形成したカイラルス
メクチツク液晶を配置してなる液晶素子であつ
て、前記突起体が前記一軸性配向処理方向の垂直
方向において20μm以下の幅をもつ四角柱形状を
備えてなることを特徴とする液晶素子。 3 フオトリソ工程を用いることによつて形成し
たスペーサとなる微細な突起体を有し、且つ一方
向に一軸性配向処理を施した第1の基板と、該第
1の基板に対向する第2の基板とを有し、該第1
の基板と第2の基板との間に降温下でコレステリ
ツク相、スメクチツクA相及びカイラルスメクチ
ツクC相の順で相転移させて形成したカイラルス
メクチツク液晶を配置してなる液晶素子であつ
て、前記突起体が前記一軸性配向処理方向の垂直
方向において50μm以下の幅をもつ六角柱形状を
備えてなることを特徴とする液晶素子。
[Claims] 1. A first substrate having minute protrusions forming spacers formed by using a photolithography process and subjected to uniaxial alignment treatment in one direction, and the first substrate and a second substrate facing the first substrate.
A liquid crystal element in which a chiral smectic liquid crystal formed by phase transition in the order of a cholesteric phase, a smectic A phase, and a chiral smectic C phase is arranged between a substrate and a second substrate at a lower temperature. A liquid crystal element characterized in that the protrusion has a cylindrical shape with a diameter of 50 μm or less in a direction perpendicular to the uniaxial alignment treatment direction. 2. A first substrate having fine protrusions forming spacers formed by using a photolithography process and subjected to uniaxial alignment treatment in one direction, and a second substrate facing the first substrate. a substrate, the first
A liquid crystal element in which a chiral smectic liquid crystal formed by phase transition in the order of a cholesteric phase, a smectic A phase, and a chiral smectic C phase is arranged between a substrate and a second substrate at a lower temperature. A liquid crystal device characterized in that the protrusion has a square prism shape having a width of 20 μm or less in a direction perpendicular to the uniaxial alignment treatment direction. 3. A first substrate having fine protrusions forming spacers formed by using a photolithography process and subjected to uniaxial alignment treatment in one direction, and a second substrate facing the first substrate. a substrate, the first
A liquid crystal element in which a chiral smectic liquid crystal formed by phase transition in the order of a cholesteric phase, a smectic A phase, and a chiral smectic C phase is arranged between a substrate and a second substrate at a lower temperature. A liquid crystal element characterized in that the protrusion has a hexagonal column shape having a width of 50 μm or less in a direction perpendicular to the uniaxial alignment treatment direction.
JP10963985A 1985-05-16 1985-05-22 Liquid crystal element Granted JPS61267736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10963985A JPS61267736A (en) 1985-05-22 1985-05-22 Liquid crystal element
US06/862,978 US4775225A (en) 1985-05-16 1986-05-14 Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10963985A JPS61267736A (en) 1985-05-22 1985-05-22 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS61267736A JPS61267736A (en) 1986-11-27
JPH0547086B2 true JPH0547086B2 (en) 1993-07-15

Family

ID=14515381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10963985A Granted JPS61267736A (en) 1985-05-16 1985-05-22 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS61267736A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210126B2 (en) * 1993-03-15 2001-09-17 株式会社東芝 Manufacturing method of liquid crystal display device
US6888608B2 (en) * 1995-09-06 2005-05-03 Kabushiki Kaisha Toshiba Liquid crystal display device
JP2007025715A (en) * 1996-08-05 2007-02-01 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
JPH10104640A (en) * 1996-08-05 1998-04-24 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
JP2000193984A (en) * 1998-12-25 2000-07-14 Sony Corp Liquid crystal light valve device
JP3936126B2 (en) 2000-08-30 2007-06-27 シャープ株式会社 Transflective liquid crystal display device
US10901268B2 (en) * 2018-10-18 2021-01-26 Liqxtal Technology Inc. Liquid crystal phase modulation device having spacer in liquid crystal layer and method for fabricating the same

Also Published As

Publication number Publication date
JPS61267736A (en) 1986-11-27

Similar Documents

Publication Publication Date Title
US4775225A (en) Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment
US4712875A (en) Dimensions of spacer particles for a ferroelectric liquid crystal display
US4763995A (en) Spacers with alignment effect and substrates having a weak alignment effect
US4781441A (en) Method of controlling orientation of liquid crystal, device used therein and liquid crystal device produced thereby
JPH0236930B2 (en)
JPS59201021A (en) Optical modulation element and its manufacture
US5748274A (en) LCD having a voltage being applied to the LC in the chiral nematic phase prior to the display driving
JPH0547086B2 (en)
JP2647828B2 (en) Liquid crystal device manufacturing method
JPS61208031A (en) Liquid crystal element
JPS6031118A (en) Optical modulating element and its manufacture
JPS61203427A (en) Liquid crystal element
JPS61208030A (en) Liquid crystal element
JPS61204615A (en) Liquid crystal element
JPH0774867B2 (en) Liquid crystal element
JP2627063B2 (en) Liquid crystal device
JPS6031117A (en) Optical modulating element and its manufacture
JPH0644121B2 (en) Liquid crystal element
JPS61205921A (en) Liquid crystal element
JP2699999B2 (en) Liquid crystal element
JPS61205918A (en) Liquid crystal element
JPS61208033A (en) Liquid crystal element
JPH06100753B2 (en) Liquid crystal element
JPH0415452B2 (en)
JPS61208032A (en) Liquid crystal element