JPS6229149B2 - - Google Patents

Info

Publication number
JPS6229149B2
JPS6229149B2 JP57200605A JP20060582A JPS6229149B2 JP S6229149 B2 JPS6229149 B2 JP S6229149B2 JP 57200605 A JP57200605 A JP 57200605A JP 20060582 A JP20060582 A JP 20060582A JP S6229149 B2 JPS6229149 B2 JP S6229149B2
Authority
JP
Japan
Prior art keywords
plane mirror
laser beam
nozzle
drive mechanism
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57200605A
Other languages
Japanese (ja)
Other versions
JPS5992187A (en
Inventor
Susumu Hoshinochi
Tooru Takahama
Akinobu Kawatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57200605A priority Critical patent/JPS5992187A/en
Publication of JPS5992187A publication Critical patent/JPS5992187A/en
Publication of JPS6229149B2 publication Critical patent/JPS6229149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets

Description

【発明の詳細な説明】 本発明はレーザによる穴加工装置、特に形成せ
んとする穴径の大小に拘らず精度よく穴加工を行
いうる穴加工装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser hole machining device, and more particularly to a hole machining device that can perform hole machining with high accuracy regardless of the diameter of the hole to be formed.

この種の穴加工装置として従来種々の型式のも
のが提案されている。その一例は第1図に示すよ
うに、回転駆動される回転加工ヘツド10内に入
射されるレーザ光12を反射させて集光レンズ1
4に伝送させる一対の反射用平面鏡16A,16
Bと、集光レンズ14の集光方向にガスを噴射さ
せるノズル18とが配設された構成を有する。
Various types of hole machining devices have been proposed as this type of hole machining device. An example of this is as shown in FIG.
A pair of reflective plane mirrors 16A, 16 for transmitting data to
B, and a nozzle 18 that injects gas in the direction of convergence of the condenser lens 14.

然し乍ら、第1図の構成によると、加工ヘツド
10をレーザ光12の光軸を中心として回転させ
ることによつて穴加工を行い得るものであるが、
2枚の平面鏡16A,16Bを使用してレーザ光
12をクランク状に反射させるので、大径の穴加
工には好適であるが、平面鏡16A,16Bの寸
法的制約により小径の穴加工には限界がある欠点
を有する。
However, according to the configuration shown in FIG. 1, hole machining can be performed by rotating the machining head 10 around the optical axis of the laser beam 12;
Since the laser beam 12 is reflected in a crank shape using two plane mirrors 16A and 16B, it is suitable for drilling large diameter holes, but it is limited in drilling small diameter holes due to the dimensional restrictions of the plane mirrors 16A and 16B. has certain drawbacks.

又小径の穴加工を行う穴加工装置として第2図
に示すように4枚の平面鏡16A〜16Dを使用
してレーザ光12をコ字状に曲げた後再度入射光
と同方向にレーザ光を出射するように構成したも
のがあるが、この場合は4枚の平面鏡16A〜1
6Dを使用するのでその位置調整が面倒である欠
点を有する。
In addition, as shown in FIG. 2, a hole processing device for drilling small diameter holes uses four plane mirrors 16A to 16D to bend the laser beam 12 into a U-shape, and then redirects the laser beam in the same direction as the incident light. There is a device configured to emit light, but in this case, four plane mirrors 16A to 1
Since it uses 6D, it has the disadvantage that its position adjustment is troublesome.

さらに、第3図に示すように円錘レンズ20と
集光レンズ14とを組み合わせて、一挙に穴を形
成する方法もあるが、この方法は生産性が良い反
面被加工物に垂直に集光ビームが照射されず、穴
の精度が低下する欠点があると共にノズル18を
集光ビームと同軸に配設することが難しい上、加
工穴の径を円錘レンズ20と集光レンズ14との
2枚1組のレンズ系だけでは任意に設定すること
ができない欠点を有している。
Furthermore, as shown in Fig. 3, there is a method of forming holes all at once by combining a conical lens 20 and a condensing lens 14, but while this method has good productivity, it condenses the light perpendicularly to the workpiece. There is a disadvantage that the beam is not irradiated and the accuracy of the hole is reduced. In addition, it is difficult to arrange the nozzle 18 coaxially with the condensed beam, and the diameter of the machined hole is limited to the diameter of the conical lens 20 and the condensing lens 14. This lens system has the disadvantage that it cannot be set arbitrarily using just one lens system.

尚更に、第4図に示すように集光レンズ14を
その軸心から外れた位置を回動中心軸として回転
させ穴加工を行う方法もあるが、この方法は1枚
の集光レンズ14が加工が可能である利点を有す
るが、回転軸心からレンズ軸心までの距離が加工
穴の半径となり、レーザ光12の径と集光レンズ
14の大きさで加工できる穴径が規制されると共
に回転中心の設定が面倒である上装置が複雑化
し、さらに第3図の場合と同様に集光ビームが被
加工物に斜めに照射される欠点を有する。
Furthermore, as shown in FIG. 4, there is a method in which the hole is machined by rotating the condenser lens 14 with a position off its axis as the center of rotation. It has the advantage of being machinable, but the distance from the rotation axis to the lens axis becomes the radius of the hole to be machined, and the diameter of the hole that can be machined is regulated by the diameter of the laser beam 12 and the size of the condensing lens 14. This method has disadvantages in that it is troublesome to set the center of rotation, the apparatus is complicated, and the condensed beam is irradiated obliquely to the workpiece as in the case of FIG.

又第5図に示すように、加工ヘツド10及び集
光ビームを固定しておき、数値制御等の制御装置
25で被加工物22を載置した加工テーブル24
を所望の穴径で水平移動させて穴加工を行うもの
もあるが、このように加工テーブル24を移動さ
せる方式は第1図乃至第4図の光を走査する方式
に比べ重量移動が大きいため経済的でないと共に
精度もでにくい欠点がある。
Further, as shown in FIG. 5, the processing head 10 and the condensed beam are fixed, and a processing table 24 on which a workpiece 22 is placed is controlled by a control device 25 such as numerical control.
There is a method that performs hole processing by horizontally moving the machining table 24 to a desired hole diameter, but this method of moving the processing table 24 requires a larger weight shift than the method of scanning the light shown in FIGS. 1 to 4. This method has the drawbacks of being uneconomical and difficult to achieve accuracy.

このように従来装置では穴径の大小に拘らず高
精度で穴加工を行うことができないものであつ
た。
As described above, the conventional apparatus cannot machine holes with high precision regardless of the size of the hole diameter.

本発明は、前述の従来の課題に鑑み為されたも
のであり、その目的は3枚の平面鏡と1枚の集光
レンズを収納した軽量加工ヘツドによつて高精度
で任意径の穴加工、特に小穴加工を可能とするレ
ーザにより穴加工装置を提供することにある。
The present invention was developed in view of the above-mentioned conventional problems, and its purpose is to process holes of arbitrary diameter with high precision using a lightweight processing head that houses three plane mirrors and one condensing lens. In particular, it is an object of the present invention to provide a hole machining device using a laser that enables small hole machining.

上記目的を達成するために、本発明は、2枚の
平面鏡が反射面を外側として組み合わされたレー
ザ光の入出射用のく字状平面鏡と、その両反射面
と対向して進退自在に配設された1枚の平面鏡
と、上記レーザ光を集光する集光レンズと、該集
光されたレーザ光の出射方向にガスを噴射させる
ノズルと、該ノズルを上記対向平面鏡と連動させ
て駆動する直線駆動機構と、上記く字状平面鏡に
入射されるレーザ光の光軸に対して上記く字状平
面鏡、対向平面鏡及びノズルを一体的に回転させ
る回転駆動機構と、上記直線駆動機構及び回転駆
動機構を制御する制御装置とを具備することを特
徴とする。
In order to achieve the above object, the present invention provides a dogleg-shaped plane mirror for inputting and outputting laser light, which is a combination of two plane mirrors with their reflection surfaces on the outside, and a dogleg-shaped plane mirror for inputting and outputting laser light, which is arranged so as to be able to move forward and backward in opposition to both of the reflection surfaces. A single plane mirror provided, a condensing lens that condenses the laser beam, a nozzle that injects gas in the emission direction of the condensed laser beam, and the nozzle is driven in conjunction with the opposing plane mirror. a linear drive mechanism that rotates the doglegged plane mirror, the opposing plane mirror, and the nozzle integrally with respect to the optical axis of the laser beam incident on the doglegged plane mirror; The present invention is characterized by comprising a control device that controls the drive mechanism.

以下、図面に基づいて本発明の好適な実施例を
説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第6図は本発明装置の一実施例を示す断面構成
図である。
FIG. 6 is a cross-sectional configuration diagram showing an embodiment of the device of the present invention.

図中、第1図乃至第5図との対応部分には同一
符号を付してその詳細説明は省略するが、本発明
においては、加工ヘツド10内に2枚の平面鏡2
6,28が反射面30を外側としかつレーザ光1
2の光軸と直交する線に対して対称的に組み合わ
されたく字状平面鏡32がその平面鏡26をレー
ザ光12に対向させて固定配設され、このく字状
平面鏡32を両平面鏡26,28の反射面と対向
して平面鏡26での反射光を反射して平面鏡28
に伝送する対向平面鏡34がく字状平面鏡32に
対して進退自在に配設されていると共に集光レン
ズ14を配設したノズル18がレーザ光12の光
軸と平行に摺動自在に配設されている。
In the figure, parts corresponding to those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed explanation thereof is omitted.
6 and 28 have the reflective surface 30 on the outside and the laser beam 1
A doglegged plane mirror 32 combined symmetrically with respect to a line orthogonal to the optical axis of the laser beam 2 is fixedly arranged with its plane mirror 26 facing the laser beam 12. The plane mirror 28 reflects the reflected light from the plane mirror 26, facing the reflecting surface of the plane mirror 28.
An opposing plane mirror 34 is arranged to be able to move forward and backward with respect to the doglegged plane mirror 32, and a nozzle 18 equipped with a condensing lens 14 is arranged to be able to slide parallel to the optical axis of the laser beam 12. ing.

36は対向平面鏡34とノズル18とを連動さ
せて互に逆方向に平行移動させる直線駆動機構、
38は加工ヘツド10をレーザ光12の光軸を中
心として回転させる駆動モータ等の回転駆動機
構、40は両駆動機構を制御する数値制御装置で
ある。
36 is a linear drive mechanism that interlocks the opposing plane mirror 34 and the nozzle 18 and moves them in parallel in opposite directions;
38 is a rotation drive mechanism such as a drive motor that rotates the processing head 10 around the optical axis of the laser beam 12, and 40 is a numerical control device that controls both drive mechanisms.

以上が本発明装置の一例構成であるが、次にそ
の動作を説明する。
The above is an example of the configuration of the device of the present invention, and the operation thereof will be explained next.

加工ヘツド10に導入されるレーザ光12は平
面鏡26で反射され、次いで対向平面鏡34で反
射され、次いで平面鏡28で反射されて入射光と
平行な反射光として集光レンズ14に入射され被
加工物(図示せず)に照射される。この状態で数
値制御装置40の指令によつて回転駆動機構38
を駆動して加工ヘツド10をレーザ光12の光軸
を中心として回動させることによつて穴加工を行
うことができる。この場合穴径を設定するには、
第7図に示すように、加工穴の半径をxとしたと
き、対向平面鏡34の穴径零に対応する位置から
の前進変位量をlとし、平面鏡26へのレーザ光
12の入射角を(90゜−θ)としたとき、加工穴
の半径xはx=2lcos2θと表わすことができる。
この場合θ=30゜に設定するとx=lとなり対向
平面鏡34の変位量lがそのまま加工穴の半径と
なる。
The laser beam 12 introduced into the processing head 10 is reflected by a plane mirror 26, then reflected by an opposing plane mirror 34, then reflected by a plane mirror 28, and is incident on the condenser lens 14 as reflected light parallel to the incident light, and is directed to the workpiece. (not shown). In this state, the rotational drive mechanism 38 is
By driving the machining head 10 and rotating the machining head 10 around the optical axis of the laser beam 12, hole machining can be performed. In this case, to set the hole diameter,
As shown in FIG. 7, when the radius of the machined hole is x, the amount of forward displacement of the opposing plane mirror 34 from the position corresponding to zero hole diameter is l, and the angle of incidence of the laser beam 12 on the plane mirror 26 is ( 90°-θ), the radius x of the machined hole can be expressed as x=2lcos2θ.
In this case, if θ=30°, x=l, and the displacement l of the opposing plane mirror 34 directly becomes the radius of the machined hole.

また集光レンズ14及びノズル18も対向平面
鏡34と逆方向に同一量だけ移動させれば、ノズ
ル18の中心軸と集光ビームの光軸とが一致する
ことになる。
Furthermore, if the condensing lens 14 and the nozzle 18 are also moved by the same amount in the opposite direction to the opposing plane mirror 34, the central axis of the nozzle 18 and the optical axis of the condensed beam will coincide.

従つて、数値制御装置40の指令に基づいて直
線駆動機構36を駆動することによつて対向平面
鏡34と、集光レンズ14及びノズル18が互に
逆方向に同一距離移動され、所望の加工穴の半径
を設定することができる。
Therefore, by driving the linear drive mechanism 36 based on commands from the numerical control device 40, the opposing plane mirror 34, the condensing lens 14, and the nozzle 18 are moved the same distance in opposite directions to form a desired hole. You can set the radius of

なお、上記実施例においては、く字状平面鏡3
2及び対向平面鏡34で反射されたレーザ光を集
光レンズ14で集光する場合について説明した
が、この集光レンズ14をノズル18に設けず、
く字状平面鏡の入射側に配置して集光レンズを前
記く字状平面鏡、対向平面鏡及びノズルが取り付
けられた部分と別体あるいは一体的に取り付け、
く字状平面鏡にレーザ光を入射する前に前記集光
レンズにてレーザ光を集光するようにする。この
構成によれば、加工ヘツドの回転軸と集光レンズ
にて集光されるレーザ光の光軸とを容易に一致さ
せることができ、ノズル18に集光レンズ14を
設ける構成と比較すると、加工ヘツド10が回転
するときに発生する回転モーメンタム、つまり加
工穴径に応じてレーザ光の回転半径を変える際に
生じるレーザ光軸の運動量の変化を軽減できると
いう効果がある。
In the above embodiment, the doglegged plane mirror 3
2 and the facing plane mirror 34 are condensed by the condensing lens 14, but the condensing lens 14 is not provided in the nozzle 18,
A condensing lens is placed on the incidence side of the doglegged plane mirror and attached separately or integrally to the part to which the doglegged plane mirror, the opposing plane mirror and the nozzle are attached,
The laser beam is condensed by the condenser lens before the laser beam is incident on the doglegged plane mirror. According to this configuration, the rotation axis of the processing head and the optical axis of the laser beam focused by the condensing lens can be easily aligned, and compared to a configuration in which the condensing lens 14 is provided in the nozzle 18, This has the effect of reducing the rotational momentum that occurs when the machining head 10 rotates, that is, the change in momentum of the laser optical axis that occurs when the radius of rotation of the laser beam is changed depending on the diameter of the machining hole.

また、上記説明では本発明を穴加工に利用する
場合について述べたが、時間の経過と共に対向平
面鏡34を移動させることにより光走査を行い表
面処理を行う場合にも本発明を適用できること勿
論である。
Further, in the above description, the present invention is applied to hole machining, but it goes without saying that the present invention can also be applied to surface treatment by performing optical scanning by moving the opposed plane mirror 34 over time. .

以上のように本発明によれば、く字状平面鏡に
対して対向平面鏡を進退させることによつてレー
ザ光の照射位置を制御することができるので、加
工穴の大小に拘らず高精度で穴加工を行うことが
でき、しかもそのための構成が簡易軽量である等
の優れた効果を有する。
As described above, according to the present invention, the irradiation position of the laser beam can be controlled by moving the opposing plane mirror forward and backward with respect to the dogleg-shaped plane mirror, so that the hole can be drilled with high precision regardless of the size of the machined hole. It has excellent effects such as being able to be processed and having a simple and lightweight structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は従来装置を示す構成図、第
6図は本発明装置の一実施例を示す構成図、第7
図は本発明装置の穴加工の原理を示す原理構成図
である。 各図中同一部材には同一符号を付し、10は加
工ヘツド、12はレーザ光、14は集光レンズ、
18はノズル、32はく字状平面鏡、34は対向
平面鏡、36は直線駆動機構、38は回転駆動機
構、40は数値制御装置である。
1 to 5 are block diagrams showing a conventional device, FIG. 6 is a block diagram showing an embodiment of the device of the present invention, and FIG.
The figure is a principle configuration diagram showing the principle of hole machining by the apparatus of the present invention. In each figure, the same members are given the same symbols, 10 is a processing head, 12 is a laser beam, 14 is a condensing lens,
18 is a nozzle, 32 is a dogleg-shaped plane mirror, 34 is a facing plane mirror, 36 is a linear drive mechanism, 38 is a rotary drive mechanism, and 40 is a numerical control device.

Claims (1)

【特許請求の範囲】 1 2枚の平面鏡が反射面を外側として組み合わ
されたレーザ光の入出射用のく字状平面鏡と、そ
の両反射面と対向して進退自在に配設された1枚
の対向平面鏡と、上記レーザ光を集光する集光レ
ンズと、該集光されたレーザ光の出射方向にガス
を噴射させるノズルと、該ノズルを上記対向平面
鏡に連動させて駆動する直線駆動機構と、上記く
字状平面鏡に入射されるレーザ光の光軸に対して
上記く字状平面鏡、対向平面鏡及びノズルを一体
的に回転させる回転駆動機構と、上記直線駆動機
構及び回転駆動機構を制御する制御装置とを具備
することを特徴とするレーザによる穴加工装置。 2 特許請求の範囲第1項記載の装置において、
集光レンズがノズル内に配設されく字状平面鏡の
出射光を集光するようにしてなることを特徴とす
るレーザによる穴加工装置。 3 特許請求の範囲第1項記載の装置において、
集光レンズがく字状平面鏡の入射側に配設され、
集光されたレーザ光をく字状平面鏡に導くことを
特徴とするレーザによる穴加工装置。
[Scope of Claims] 1. A dogleg-shaped plane mirror for inputting and outputting laser light, which is a combination of two plane mirrors with their reflecting surfaces on the outside, and one mirror disposed so as to be able to move forward and backward in opposition to both of the reflecting surfaces. a condensing lens that condenses the laser beam, a nozzle that injects gas in the emission direction of the condensed laser beam, and a linear drive mechanism that drives the nozzle in conjunction with the opposed plane mirror. and a rotational drive mechanism that integrally rotates the doglegged plane mirror, the opposing plane mirror, and the nozzle with respect to the optical axis of the laser beam incident on the doglegged plane mirror, and controls the linear drive mechanism and the rotational drive mechanism. What is claimed is: 1. A laser hole machining device, characterized in that it is equipped with a control device. 2. In the device according to claim 1,
A hole processing device using a laser, characterized in that a condensing lens is disposed within a nozzle to condense light emitted from a dogleg-shaped plane mirror. 3. In the device according to claim 1,
A condensing lens is placed on the incidence side of the doglegged plane mirror,
A laser hole processing device characterized by guiding a focused laser beam to a dogleg-shaped plane mirror.
JP57200605A 1982-11-16 1982-11-16 Piercing device by laser Granted JPS5992187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200605A JPS5992187A (en) 1982-11-16 1982-11-16 Piercing device by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200605A JPS5992187A (en) 1982-11-16 1982-11-16 Piercing device by laser

Publications (2)

Publication Number Publication Date
JPS5992187A JPS5992187A (en) 1984-05-28
JPS6229149B2 true JPS6229149B2 (en) 1987-06-24

Family

ID=16427141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200605A Granted JPS5992187A (en) 1982-11-16 1982-11-16 Piercing device by laser

Country Status (1)

Country Link
JP (1) JPS5992187A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442078Y2 (en) * 1986-04-15 1992-10-02
DE102005047328B3 (en) * 2005-06-28 2006-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for boring and material removal by laser beam has equalizing unit between image rotation and focusing device with parallel and angular adjustment

Also Published As

Publication number Publication date
JPS5992187A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
JP6740267B2 (en) Laser processing equipment
JPH05293730A (en) Complex machine tool capable of laser machining
JP2002066780A (en) Laser machining apparatus
WO2022052162A1 (en) Three-dimensional scanning system having double-paraboloidal mirror dynamic focusing module
JP3257157B2 (en) CO2 laser drilling device and method
JP3365388B2 (en) Laser processing optics
JP2000071088A (en) Laser processing machine
JPS6229149B2 (en)
JPS60199586A (en) Laser working device
JP2021531507A (en) Optical devices and methods for providing two offset laser beams
JPS59223188A (en) Laser working device
JP3003895B2 (en) Laser processing equipment
WO2021199621A1 (en) Focal length adjusting device and laser processing device
JP2828871B2 (en) Trepanning head
RU2283738C1 (en) Device for laser working
JPH10216981A (en) Optical axis moving type laser bean machine
JPH04231191A (en) End operating body for moving in cartesian coordinate system
WO1990002627A1 (en) Laser beam bender
JPS59191583A (en) Hole machining by laser
CN111774725B (en) Manipulator, laser processing equipment and control method of manipulator
JP3479876B2 (en) Laser emission optical system
JPH0687089A (en) Laser beam machine
JP2001235701A (en) High-speed detailed laser beam machining method and its device
JPS60218Y2 (en) Laser processing equipment
JPH0691386A (en) Laser beam machine