JPS62291114A - Icb depositing apparatus - Google Patents

Icb depositing apparatus

Info

Publication number
JPS62291114A
JPS62291114A JP13548386A JP13548386A JPS62291114A JP S62291114 A JPS62291114 A JP S62291114A JP 13548386 A JP13548386 A JP 13548386A JP 13548386 A JP13548386 A JP 13548386A JP S62291114 A JPS62291114 A JP S62291114A
Authority
JP
Japan
Prior art keywords
filament
voltage
vacuum
thin film
icb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13548386A
Other languages
Japanese (ja)
Other versions
JPH0732126B2 (en
Inventor
Hiromoto Ito
弘基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13548386A priority Critical patent/JPH0732126B2/en
Publication of JPS62291114A publication Critical patent/JPS62291114A/en
Publication of JPH0732126B2 publication Critical patent/JPH0732126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To use an ICB depositing apparatus for a long life by applying an accelerating voltage before energizing a filament and to control the rising time of the filament while monitoring the vacuum degree to stably form a thin film of high quality. CONSTITUTION:A predetermined accelerating voltage is applied between an accelerating electrode 13 and a grid electrode 12, the currents of a bombarding filament 5 and an ionizing filament 8 are gradually raised, the vacuum degree in a vacuum tank 18 is always monitored by an ionization vacuum meter 21, and the vacuum degree waits for the gas from an ICB depositing apparatus to be exhausted without rising the currents before the performance of a thin film becomes a proved value. Then, a bombarding voltage is applied by a second DC power source 11 between a crucible 1 and the filament 5, and an ionizing voltage is applied by a second DC power source 11 between a grid 9 and the filament 8. After a thin film 15 is deposited, a bombarding current and an ionizing current are reduced at a rate of 0.1-0.5A per minute, and the current values of the filaments 5 and 8 are reduced at a rate of approx. 2A per min.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野〕 この発明はICB蒸着装置に関し、特に蒸着薄膜を形成
する場合の運転シーケンスの改良に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an ICB vapor deposition apparatus, and particularly relates to an improvement in the operation sequence when forming a vapor deposited thin film.

〔従来の技術〕[Conventional technology]

第1図は例えば特公昭54−9592号に示された従来
のICB(クラスタイオンビーム)型薄膜形成装置の断
面図である。図において、1はルツボ、2はこのルツボ
1内にあって溶融される蒸着物質、3はルツボ1の上部
にあけられた少なくとも1つのノズルで、このノズル3
から前記溶融した物質2が蒸発して、その蒸気が噴出し
、クラスタ4が形成される。5はルツボlを加熱するボ
ンバードフィラメント、6は前記ボンバードフィラメン
ト5を通電加熱する交流電源、7はバイアス用の第1直
流電源、8はイオン化フィラメントで、これから放出さ
れるイオン化用電子を前記クラスタ4の一部に衝突させ
て正電荷のクラスタイオンにする。9は前記イオン化フ
ィラメント8から放出されたイオン化用電子を加速して
これを前記ルツボ1から噴出してきたクラスタ4に衝突
させるグリッド、10は前記イオン化フィラメント8を
通電加熱する交流電源、11はバイアス用の第2直流電
源、12及び13はイオン化された前記クラスタ4を加
速制御するグリッド電極及び加速電極、14はその表面
に薄膜15が形成される基板、16はバイアス用の第3
直流電源、17はルツボ1の熱シールド板、18は真空
槽、19は前記イオン化フィラメント8の熱シールド板
、2゜は前記直流電源7,11.16及び交流電源6゜
10が収納されている電源装置、21は真空槽18内の
真空度を計測する電離真空針、22は蒸着膜厚を計測す
る膜厚セジサ、23は蒸着物質が基板14に蒸着するの
をさえぎるシャッター、24は前記電源20、シャッタ
ー23を制御し、真空計21、膜厚センサ22をモニタ
ーする制御装置、25は真空排気装置である。
FIG. 1 is a sectional view of a conventional ICB (cluster ion beam) type thin film forming apparatus disclosed in, for example, Japanese Patent Publication No. 54-9592. In the figure, 1 is a crucible, 2 is a vapor deposition material that is melted in this crucible 1, and 3 is at least one nozzle bored in the upper part of the crucible 1.
The molten substance 2 evaporates from the molten material 2, and its vapor is ejected, forming a cluster 4. 5 is a bombarded filament that heats the crucible 1; 6 is an AC power source that heats the bombarded filament 5; 7 is a first DC power source for bias; 8 is an ionizing filament; collide with some of the particles to form positively charged cluster ions. 9 is a grid that accelerates the ionizing electrons emitted from the ionizing filament 8 and causes them to collide with the cluster 4 ejected from the crucible 1; 10 is an AC power source that heats the ionizing filament 8; 11 is for biasing; 12 and 13 are grid electrodes and acceleration electrodes that accelerate and control the ionized cluster 4; 14 is a substrate on which a thin film 15 is formed; 16 is a third bias voltage source;
A DC power source, 17 is a heat shield plate for the crucible 1, 18 is a vacuum chamber, 19 is a heat shield plate for the ionized filament 8, 2° is the DC power source 7, 11.16, and an AC power source 6° 10 are housed. A power supply device, 21 is an ionization vacuum needle for measuring the degree of vacuum in the vacuum chamber 18, 22 is a film thickness gauge for measuring the thickness of a deposited film, 23 is a shutter for blocking the deposition of a deposition substance on the substrate 14, and 24 is the power supply. 20, a control device that controls the shutter 23 and monitors the vacuum gauge 21 and the film thickness sensor 22; 25, a vacuum evacuation device;

まず前記電源装置20内の各バイアス電源の機能は次の
通りである。第1直流電源7はルツボ加熱用フィラメン
ト5から放出された熱電子がルツボ1に衝突するように
フィラメント5に対してルツボ1の電位を正にバイアス
する。次に第2直流電源11はグリッド9に対してイオ
ン化フィラメント8を負の電位にバイアスし、イオン化
フィラメント8から放出された熱電子をグリッド9内部
に引き出す。また第3直流電源16はアース電位である
加速電極13に対してグリッド電極12を正電位にバイ
アスし、両電極間に形成される電界レンズによって、グ
リッド内部で生成される正電荷のクラスタイオンを加速
制御する。
First, the functions of each bias power supply in the power supply device 20 are as follows. The first DC power supply 7 positively biases the potential of the crucible 1 with respect to the filament 5 so that the thermoelectrons emitted from the crucible heating filament 5 collide with the crucible 1. Next, the second DC power supply 11 biases the ionization filament 8 to a negative potential with respect to the grid 9, and draws out the thermoelectrons emitted from the ionization filament 8 into the grid 9. Further, the third DC power supply 16 biases the grid electrode 12 to a positive potential with respect to the accelerating electrode 13 which is at ground potential, and the electric field lens formed between the two electrodes collects positively charged cluster ions generated inside the grid. Control acceleration.

次に動作について説明する。Next, the operation will be explained.

真空排気装置&25によって、真空槽18内が1.OX
 10−’Torr程度の真空度になるまで排気した後
、第3図に示す蒸着運転シーケンスに従って、まず最初
に制御袋M24よりフィラメント5及び8を通電加熱す
る交流電源6及び10に信号が伝送され、毎分数A程度
の立ち上げ速度でフィラメント温度が約2000℃程度
になるまで、すなわち電流が25〜30A程度になるま
で徐々に加熱される(第3図A、  B)。フィラメン
ト5及び8の通電加熱プロセスの立ち上げ完了後、制御
装置24より、第1直流電源7及び第2直流電源11に
信号が伝送され、ルツボ1とフィラメント5間に流れる
ボンバード電流が毎分 0.5 A程度増加するように
第1直流電源7によりボンバード電圧が印加され、所定
のボンバード入力(ボンバード電流とボンバード電圧の
積)に到達するまでコントロールされる(第3図C)。
The inside of the vacuum chamber 18 is 1. OX
After evacuation to a degree of vacuum of approximately 10-' Torr, a signal is first transmitted from the control bag M24 to the AC power sources 6 and 10 that heat the filaments 5 and 8 by applying electricity according to the evaporation operation sequence shown in FIG. The filament is gradually heated at a startup rate of about several A per minute until the filament temperature reaches about 2000° C., that is, until the current reaches about 25 to 30 A (FIGS. 3A and B). After the start-up of the energization heating process for the filaments 5 and 8 is completed, a signal is transmitted from the control device 24 to the first DC power supply 7 and the second DC power supply 11, and the bombardment current flowing between the crucible 1 and the filament 5 is increased to 0 per minute. A bombardment voltage is applied by the first DC power supply 7 so as to increase by about .5 A, and is controlled until a predetermined bombardment input (product of bombardment current and bombardment voltage) is reached (FIG. 3C).

これと同時に、クラスタ4がイオン化される割合の目安
となるグリッド9とフィラメント8間に流れるイオン化
電流が、毎分0.5A程度増加するように第2直流電源
11によりイオン化電圧が印加され、所定のイオン化電
流に到達するまでコントロールされる(第3図D)。イ
オン化部及びボンバード部の立ち上げ完了後、制御装置
24により、第3直流電源16に信号が伝送され、所定
の加速電圧が加速電極13とグリッド電極12間に印加
される(第3図E)。立ち上げ完了後、電離真空計21
で計測される真空槽18内の真空度が、基板14表面に
形成される薄膜15の性能が保障される程度、例えば3
.0 Xl0−”T。
At the same time, an ionization voltage is applied by the second DC power supply 11 so that the ionization current flowing between the grid 9 and the filament 8, which is a measure of the rate at which clusters 4 are ionized, increases by about 0.5A per minute. The ionization current is controlled until it reaches an ionization current of (Fig. 3D). After the ionization section and the bombardment section are started up, the control device 24 transmits a signal to the third DC power supply 16, and a predetermined acceleration voltage is applied between the acceleration electrode 13 and the grid electrode 12 (Fig. 3E). . After completion of startup, ionization vacuum gauge 21
The degree of vacuum in the vacuum chamber 18 measured at
.. 0 Xl0-”T.

rr以下に低下した後、制御装置24からシャッター2
3を開ける信号が伝送され(第3図F)、基板14表面
上に蒸着が開始され薄膜15が形成される。この薄膜1
5の膜厚は、膜厚センサ22によって計測され所定の膜
厚が形成されると、制御装置24によりシャッター23
を閉じる信号が伝送され薄膜15の蒸着が完了する(第
3[19G)。
After the temperature decreases to below rr, the control device 24 releases the shutter 2.
3 is transmitted (FIG. 3F), vapor deposition is started and a thin film 15 is formed on the surface of the substrate 14. This thin film 1
The film thickness of No. 5 is measured by the film thickness sensor 22, and when a predetermined film thickness is formed, the shutter 23 is activated by the control device 24.
A signal to close the gate is transmitted, and the deposition of the thin film 15 is completed (third [19G)].

その後制御袋?&24より加速電圧、ボンバード電圧、
及びイオン化電圧をOFFする信号が第3直流電源16
、第1直流電源7、及び第2直流電源11に伝送され(
第3図H)、次にフィラメント5及び8の通電電流をO
FFする信号が交流電源6及び10に伝送され(第3図
I)、立ち下げが完了する。その後真空排気装置25を
稼動させたまま装置を冷却してから、基板14が取り出
される。
Control bag then? &24, acceleration voltage, bombardment voltage,
and a signal for turning off the ionization voltage is supplied to the third DC power supply 16.
, transmitted to the first DC power supply 7 and the second DC power supply 11 (
Figure 3H), then the current flowing through filaments 5 and 8 is set to O.
The FF signal is transmitted to the AC power supplies 6 and 10 (FIG. 3 I), and the shutdown is completed. Thereafter, the device is cooled while the vacuum evacuation device 25 is kept operating, and then the substrate 14 is taken out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の蒸着運転シーケンスによるICE蒸着装置は以上
のように構成されているので、次のような問題点があっ
た。
Since the conventional ICE vapor deposition apparatus using the vapor deposition operation sequence is configured as described above, it has the following problems.

(11装置の脱ガス量は、過去の運転履歴によって異な
るが、真空度に関係なくフィラメント通電加熱及びボン
バード、イオン化電流の立ち上げが行なわれるため、脱
ガス量の多い場合には立ち上げ完了後、シャッタ・−が
開かれるまでの真空排気に時間がかかり、すでに蒸着物
質が噴出されている装置に、蒸着物質がこもるため、装
置の寿命が低下し、蒸着物質がむだに消費される。
(The amount of degassing of the 11 equipment varies depending on the past operation history, but since the filament is energized and heated, bombarded, and the ionization current is started regardless of the degree of vacuum, if the amount of degassing is large, it may be necessary to It takes time to evacuation until the shutter is opened, and the vapor deposition material is trapped in the device that has already spouted the vapor deposition material, which shortens the life of the device and wastes the vapor deposition material.

(2)蒸着完了後、装置の立ち下げが急激に行なわれる
ことにより装置が急冷されるため、蒸着物質がシールド
類などの装置各部に付着し、特に装置材料を腐食する蒸
着物質の場合には、装置の寿命がいちじるしく低下する
ば゛かりでなく、急冷による熱変形により、フィラメン
トなどの装置各部が時折破壊されることがある。
(2) After evaporation is completed, the equipment is rapidly shut down and cooled down, so the evaporation material adheres to various parts of the equipment such as shields, especially in the case of evaporation materials that corrode equipment materials. Not only will the life of the device be significantly reduced, but also various parts of the device, such as the filament, may occasionally be destroyed due to thermal deformation caused by rapid cooling.

(3)  フィラメントから飛び出す電子は、加速電圧
が印加されていない場合には、アース電位であるルツボ
及びグリッドにむかって飛び出すが、この場合基板もア
ース電位であるため、一部の熱電子が基板に衝突し、基
板に損傷を与えることがある。
(3) If no accelerating voltage is applied, the electrons ejected from the filament will eject toward the crucible and grid, which are at ground potential. In this case, since the substrate is also at ground potential, some thermionic electrons may cause damage to the board.

この発明は上記のような問題点を解消するためになされ
たもので、高品質の薄膜が安定的に形成でき、装置を高
寿命に使用できるような蒸着運転シーケンスによって稼
動するICB蒸着装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides an ICB evaporation device that operates with a evaporation operation sequence that allows stable formation of high-quality thin films and allows the device to be used for a long time. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るICB蒸着装置の蒸着運転シーケンスは
、フィラメント通電前に加速電圧を印加すると共に、フ
ィラメントの立ち上げは、真空度をモニターしながらそ
の立ち上げ時間を制御し、〔作用〕 この発明においては、クラスタイオンを電界加速するだ
めの加速電圧を予め印加することにより、電子が基板に
衝突し損傷を与えることを防ぎ、真空度をモニターしな
がらフィラメントを立ち上げることにより、薄膜の性能
が保障される真空度以下で蒸着物質の蒸気が噴出するの
で、高品質の薄膜が形成できると共に蒸着物質のむだが
少なくなり、蒸着終了後に装置を冷却しながら立ち下げ
を行なうので、蒸着物質の装置への付着が減少し、装置
の高寿命化が達成される。
In the vapor deposition operation sequence of the ICB vapor deposition apparatus according to the present invention, an accelerating voltage is applied before the filament is energized, and the start-up time of the filament is controlled while monitoring the degree of vacuum. By applying an accelerating voltage in advance to accelerate cluster ions with an electric field, it prevents electrons from colliding with the substrate and causing damage, and by launching the filament while monitoring the degree of vacuum, the performance of the thin film is guaranteed. Since the vapor of the evaporation material is ejected below the vacuum level, a high-quality thin film can be formed and there is less waste of the evaporation material.After the evaporation is completed, the equipment is cooled down and shut down, so that the evaporation material is not transferred to the equipment. This reduces adhesion and increases the lifespan of the device.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。IC
B蒸着装置は従来例の第1図と同じである。
An embodiment of the present invention will be described below with reference to the drawings. IC
The B vapor deposition apparatus is the same as the conventional example shown in FIG.

本実施例においては、真空排気装置25によって、真空
槽18内の圧力が1.Ox 10−’Torr程度の真
空度になるまで排気した後、第2図に示す蒸着運転シー
ケンスに従って、ICB蒸着装置を制御する。
In this embodiment, the vacuum exhaust device 25 reduces the pressure inside the vacuum chamber 18 to 1. After evacuation to a degree of vacuum of approximately 10-' Torr of Ox, the ICB evaporation apparatus is controlled according to the evaporation operation sequence shown in FIG.

以下、図を用いて詳細に説明する。まず最初に制御装置
24より、第3直流電源16に信号が伝送され、所定の
加速電圧が加速電極13とグリッド電極12間に印加さ
れる(第2図A)7次にフィラメント立ち上げプロセス
に移るう加速電圧印加下でフ、イラメント立ち上げを行
なうシーケンスが本発明の大きな特徴である。
Hereinafter, this will be explained in detail using figures. First, a signal is transmitted from the control device 24 to the third DC power supply 16, and a predetermined accelerating voltage is applied between the accelerating electrode 13 and the grid electrode 12 (Fig. 2A).7 Next, the filament starting process begins. A major feature of the present invention is the sequence in which the filament is started up while the accelerating voltage is applied.

制御装置24よりボンバードフィラメント5及びイオン
化フィラメント8を通電加熱する交流電源6及び10に
信号が伝送され、フィラメントを加熱する通電電流が徐
々に上げられる。このとき制御装置24は、電離真空計
21で計測される真空槽18内の真空度をたえずモニタ
ーし、真空度が薄膜の性能が保障される値もしくはその
値の約173程度以下(たとえば1.0〜3.OX 1
0−’Torr)になるまではフィラメントの通電電流
を上昇させる信号を送らずに、装置からの脱ガスが排気
させるまで待機する。このように常に真空度が所定の値
以下になるようにチェックしながら、フィラメント通電
電流の上昇速度を制御してフィラメント温度が約200
0℃程度になるまで徐々に加熱する(第2図B)。次に
制御装置24より、第1直流電源7及び第2直流電源1
1に信号が伝送され、ルツボ1とボンバードフィラメン
ト5間に、第1直流電源7によりボンバード電圧が印加
され、フィラメント5よりルツボ1にむかって熱電子が
飛び出し、ボンバード電流が流れる。同時にグリッド9
とイオン化フィラメント8間に第2直流電源11により
イオン化電圧が印加され、フィラメント8よりグリッド
9にむかって熱電子が飛び出し2て、イオン化電流が流
れる。これらのボンバード電流及びイオン化電流の所定
の値までの立ち上げシーケンスも、フィラメント通電加
熱プロセスと同様、制御装置24は電離真空計21で計
測される真空槽18内の真空度をたえずモニターし、真
空度が薄膜の性能が保障される値以下であることをチェ
ックしながら、上記電流が設定値に達するまでその立ち
上げ速度を制御する(第2図C)。
A signal is transmitted from the control device 24 to the AC power supplies 6 and 10 that heat the bombarded filament 5 and the ionized filament 8, and the current that heats the filaments is gradually increased. At this time, the control device 24 constantly monitors the degree of vacuum in the vacuum chamber 18 as measured by the ionization vacuum gauge 21, and determines whether the degree of vacuum is a value that guarantees the performance of the thin film or less than about 173 of that value (for example, 1. 0~3.OX 1
A signal to increase the current flowing through the filament is not sent until the current reaches 0-'Torr), and the device waits until the degassing from the device is exhausted. In this way, while constantly checking that the degree of vacuum is below a predetermined value, the rate of increase in the current flowing through the filament is controlled so that the filament temperature reaches approximately 200.
Gradually heat until the temperature reaches about 0°C (Figure 2B). Next, the control device 24 controls the first DC power supply 7 and the second DC power supply 1.
A signal is transmitted to the crucible 1, a bombardment voltage is applied between the crucible 1 and the bombarded filament 5 by the first DC power supply 7, hot electrons are ejected from the filament 5 toward the crucible 1, and a bombarded current flows. grid 9 at the same time
An ionizing voltage is applied between the filament 8 and the ionizing filament 8 by the second DC power supply 11, and thermionic electrons fly out from the filament 8 toward the grid 9, causing an ionizing current to flow. Similarly to the filament energization heating process, the control device 24 constantly monitors the degree of vacuum in the vacuum chamber 18 as measured by the ionization vacuum gauge 21, and controls the startup sequence for raising the bombardment current and ionization current to predetermined values. While checking that the current is below a value that guarantees the performance of the thin film, the ramp-up speed is controlled until the current reaches the set value (FIG. 2C).

このようにして立ち上げが完了すると、すでに真空度が
所定の値に到達しているため、制御装置24はすぐにシ
ャッター23を開ける信号を伝送して蒸着を開始するこ
とができる(第2図D)。膜厚センサ22によって、計
測される膜厚が所定の値に到達すると、制御装置24よ
り、シャッター23を閉じる信号が伝送され、薄膜15
の蒸着が完了する(第2図E)。
When startup is completed in this way, the degree of vacuum has already reached a predetermined value, so the control device 24 can immediately transmit a signal to open the shutter 23 and start vapor deposition (see Figure 2). D). When the film thickness measured by the film thickness sensor 22 reaches a predetermined value, the control device 24 transmits a signal to close the shutter 23, and the thin film 15
evaporation is completed (Fig. 2E).

次に装置の立ち下げプロセスに移る。Next, the process moves on to shutting down the device.

まず制御装置21より第1直流電源7及び第3直流電源
11に信号が伝送され、ボンバード電流及びイオン化電
流が毎分0.1〜0.5A程度の割合で減少するように
、ボンバード電圧及びイオン化電圧が下げられOFFに
なる(第2図F)、次に交流電流6及び10に信号が伝
送されてボンバードフィラメント5及びイオン化フィラ
メント8を、通電加熱している電流値を毎分約2A程度
の割合で減少させてOFFする(第2図G)。このよう
に立ち下げシーケンスが完了した後、制御装置24より
第3直流電源16に信号が伝送されて、加速電圧がOF
Fされる(第2図H)。その後真空排気袋!25を稼動
させたまま装置を冷却した後、基板14を取り出す。
First, a signal is transmitted from the control device 21 to the first DC power supply 7 and the third DC power supply 11, and the bombardment voltage and ionization are controlled so that the bombardment current and ionization current decrease at a rate of about 0.1 to 0.5A per minute. The voltage is lowered and turned off (FIG. 2 F), and then a signal is transmitted to the alternating currents 6 and 10 to increase the current value heating the bombarded filament 5 and ionized filament 8 at a rate of about 2 A per minute. Reduce it by a certain percentage and turn it off (Fig. 2 G). After the shutdown sequence is completed in this way, a signal is transmitted from the control device 24 to the third DC power supply 16, and the acceleration voltage is turned off.
F (Fig. 2H). Then a vacuum bag! After cooling the device while operating the substrate 25, the substrate 14 is taken out.

なお上記実施例では、加速電圧、ボンバード電圧、及び
イオン化電圧が設定後一定の場合について示したが、こ
れらは成膜条件によってその値を変化させてもよい。
In the above embodiments, the acceleration voltage, bombardment voltage, and ionization voltage are constant after being set, but their values may be changed depending on the film forming conditions.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、まずフィシメントか
ら熱電子が放出される前に加速電圧を印加するようにし
たので、基板の電位(アース電位)よりフィラメント電
位の方が高く保たれるため、熱電子によって基板及び基
板上の薄膜が損傷をうけることがなく、またフィラメン
ト立ち上げを真空度をモニターしながら行なうようにし
たため、薄膜の性能が保障される真空度以下で蒸気が噴
出されるため、蒸着物質のむだが少なく、またシャッタ
ーが開かれるまでの排気に伴う待機時間が少なく精度の
高い薄膜が形成できるばかりでなく、装置が高寿命化す
る。またフィラメントの立ち下げを時間をかけて行ない
、装置を徐々に冷却するようにしたので、シールド類な
どの装置各部に付着する蒸着物質の量が減少し、さらに
装置の高寿命化が達っせられる効果がある。
As described above, according to the present invention, since the accelerating voltage is applied before thermoelectrons are emitted from the fisciment, the filament potential is kept higher than the potential of the substrate (earth potential). The substrate and the thin film on the substrate are not damaged by thermionic electrons, and the filament is launched while monitoring the vacuum level, so steam is ejected at a vacuum level below which the performance of the thin film is guaranteed. Therefore, there is less wastage of the vapor deposited material, and there is less waiting time for exhaust until the shutter is opened, which not only allows formation of highly accurate thin films but also extends the lifespan of the device. In addition, since the filament is lowered over time and the device is cooled down gradually, the amount of deposited material that adheres to various parts of the device, such as shields, is reduced, and the life of the device is extended. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明及び従来のICB蒸着装置を示す断面
側面図、第2図はこの発明によるICB蒸着装置の蒸着
運転シーケンスを示す図、第3図は従来の蒸着運転シー
ケンスを示す図である。第1図において、1はルツボ、
5はボンバードフィラメント、8はイオン化フィラメン
ト、9はグリッド、12はグリッド電極、13は加速電
極、14は基板、18は真空槽、20は直流電源7.1
1.16及び交流電源6.10を収納する電源装置、2
1は電離真空計、22は膜厚センサ、23はシャッター
で、24はICB蒸着装置全体の制御装置、25は排気
装置である。
FIG. 1 is a cross-sectional side view showing an ICB vapor deposition apparatus according to the present invention and a conventional one, FIG. 2 is a view showing a vapor deposition operation sequence of the ICB vapor deposition apparatus according to the present invention, and FIG. 3 is a view showing a conventional vapor deposition operation sequence. . In Figure 1, 1 is a crucible;
5 is a bombarded filament, 8 is an ionization filament, 9 is a grid, 12 is a grid electrode, 13 is an accelerating electrode, 14 is a substrate, 18 is a vacuum chamber, 20 is a DC power source 7.1
1.16 and an AC power supply 6.10;
1 is an ionization vacuum gauge, 22 is a film thickness sensor, 23 is a shutter, 24 is a control device for the entire ICB deposition apparatus, and 25 is an exhaust device.

Claims (1)

【特許請求の範囲】[Claims] (1)自動制御運転機能を備えたICB蒸着装置におい
て、 真空槽内の真空度をモニターするモニター手段と、 クラスタイオンを電界加速するための加速電圧を印加す
る加速電圧印加手段と、 予め上記加速電圧印加手段により加速電圧を印加し、上
記モニター手段の出力を得て薄膜の性能が保障される真
空度以下で、ボンバードフィラメント及びイオン化フィ
ラメントの加熱及び電圧印加を行い、 上記フィラメントの電圧印加の停止及び冷却を、蒸着物
質の装置への付着を減少させるように徐々に行なう蒸着
運転シーケンス制御手段とを備えたことを特徴とするI
CB蒸着装置。
(1) In an ICB deposition apparatus equipped with an automatic control operation function, a monitoring means for monitoring the degree of vacuum in the vacuum chamber, an acceleration voltage application means for applying an acceleration voltage for accelerating cluster ions with an electric field, and the above-mentioned acceleration in advance Apply an accelerating voltage by the voltage application means, obtain the output of the monitoring means, heat the bombarded filament and the ionized filament and apply voltage at a vacuum level below which guarantees the performance of the thin film, and stop applying the voltage to the filament. and a vapor deposition operation sequence control means for gradually performing cooling so as to reduce adhesion of the vapor deposition substance to the apparatus.
CB vapor deposition equipment.
JP13548386A 1986-06-11 1986-06-11 ICB deposition equipment Expired - Lifetime JPH0732126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13548386A JPH0732126B2 (en) 1986-06-11 1986-06-11 ICB deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13548386A JPH0732126B2 (en) 1986-06-11 1986-06-11 ICB deposition equipment

Publications (2)

Publication Number Publication Date
JPS62291114A true JPS62291114A (en) 1987-12-17
JPH0732126B2 JPH0732126B2 (en) 1995-04-10

Family

ID=15152773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13548386A Expired - Lifetime JPH0732126B2 (en) 1986-06-11 1986-06-11 ICB deposition equipment

Country Status (1)

Country Link
JP (1) JPH0732126B2 (en)

Also Published As

Publication number Publication date
JPH0732126B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US4810342A (en) Method for controlling substrate temperature in a high temperature sputtering process
JP3688725B2 (en) Method for forming a metal oxide layer, vacuum processing apparatus therefor and member coated with at least one metal oxide layer
EP0041850B2 (en) A method of vacuum depositing a layer on a plastics film substrate
JPS59208841A (en) Vapor stream and ion stream generator
JPS62291114A (en) Icb depositing apparatus
JPH089782B2 (en) Thin film manufacturing method
JP2001307650A (en) Method of operating ion source and irradiation device of ion beam
JPH11335820A (en) Vapor deposition and vapor deposition device
US6342132B1 (en) Method of controlling gas density in an ionized physical vapor deposition apparatus
JPS6147645A (en) Formation of thin film
JP3422724B2 (en) Frequency adjustment device for piezoelectric element
JPS58161774A (en) Sputtering method
JPS63238266A (en) Sputtering device
JP2002220657A (en) Apparatus and method for forming thin film
JPH0313564A (en) Apparatus for producing semiconductor
JPH04191364A (en) Method and device for ion plating
US6022598A (en) ICB method of forming high refractive index films
JPH0521982B2 (en)
JPH027392B2 (en)
JPH05179431A (en) Device for forming thin film
JPH05339720A (en) Device for formation of thin film
JPS6329735Y2 (en)
JPH0649934B2 (en) Method for controlling automatic operation sequence of thin film forming apparatus
JP2662796B2 (en) Focused ion beam irradiation processing equipment
JPS60158619A (en) Thin film evaporating device