JPS62290823A - Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness - Google Patents

Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness

Info

Publication number
JPS62290823A
JPS62290823A JP13108186A JP13108186A JPS62290823A JP S62290823 A JPS62290823 A JP S62290823A JP 13108186 A JP13108186 A JP 13108186A JP 13108186 A JP13108186 A JP 13108186A JP S62290823 A JPS62290823 A JP S62290823A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
annealing
ion plating
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13108186A
Other languages
Japanese (ja)
Other versions
JPH0327632B2 (en
Inventor
Masao Iguchi
征夫 井口
Kazuhiro Suzuki
一弘 鈴木
Yasuhiro Kobayashi
康宏 小林
Ujihiro Nishiike
西池 氏裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13108186A priority Critical patent/JPS62290823A/en
Publication of JPS62290823A publication Critical patent/JPS62290823A/en
Publication of JPH0327632B2 publication Critical patent/JPH0327632B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the adhesiveness of a surface film consisting of TiN, etc., by subjecting the mirror-finished surface of a steel sheet to electron beam heating in a specific temp. range at the time of forming said surface film on the mirror-finished surface of the steel sheet after annealing by the ion plating. CONSTITUTION:After the surface of the grain oriented silicon steel sheet subjected to the finish annealing is removed of the oxide, the surface is finished by polishing to the specular surface having <=0.4mu center line average height Ra. The surface film consisting of at least one kind among TiN, TiC and Ti (C, N) is formed mainly by the ion plating on the surface of such steel sheet. The mirror-finished surface is subjected to the electron beam heating in a 200-600 deg.C heating range prior to the above-mentioned ion plating treatment in the above-mentioned process for producing the silicon steel sheet. The extra- low iron loss grain oriented silicon steel sheet provided with the surface film having the excellent adhesiveness is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も鉄損の低減に係わる極限的な要請を満たそうとする近
年来の目覚ましい開発努力は、逐次その実を挙げつつあ
るが、その実施に伴う重大な弊害として、一方向性けい
素鋼板の使用に当たっての加工、組立てを経たのちいわ
ゆるひずみ取り焼鈍がほどこされた場合に、特性劣化の
随伴を不可避に生じて、使途についての制限を受ける不
利が指摘される。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) Satisfies the ultimate requirements for improving the electrical and magnetic properties of grain-oriented silicon steel sheets, especially for reducing iron loss. The remarkable development efforts that have been made in recent years are gradually bearing fruit, but one of the serious drawbacks associated with these efforts is that when using unidirectional silicon steel sheets, so-called strain relief annealing is applied after processing and assembly. It has been pointed out that, when such a material is used, it inevitably causes characteristic deterioration, resulting in a disadvantage in that its usage is restricted.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を招くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development that will lead to a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(1101<001> 、すなわち
ゴス方位に、高度に集積させたもので、主として変圧器
その他の電気機器の鉄心として使用され、電気・磁気的
特性として製品の磁束密度(B、。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (1101<001>, Goss orientation), and are mainly used in transformers and other electrical equipment. Used as an iron core, the product's magnetic flux density (B,.

で代表される)が高く、鉄損(W+?/S。値で代表さ
れる)の低いことが要求される。
It is required that the iron loss (represented by the value W+?/S) be high and the iron loss (represented by the value W+?/S) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30+nの製品の磁気特性がB
、。1 、90T以上、1,7.。1.05讐/kg以
下、また板厚0.23+nの製品の磁気特性が81゜1
 、89T以上、h、7.。0.90W/kg以下の超
低鉄損一方向性けい素鋼板が製造されるようになって来
ている。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30+n have magnetic properties of B.
,. 1, 90T or more, 1,7. . The magnetic properties of products with a weight of 1.05 mm/kg or less and a plate thickness of 0.23+n are 81°1.
, 89T or more, h, 7. . Unidirectional silicon steel sheets with ultra-low core loss of 0.90 W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では)置火の少ない変圧器
を作る場合に鉄損の減少分を金額に換算して変圧器価格
に上積みする「ロス・エバリユエーション」 (鉄損評
価)制度が普及している。
In particular, recently there has been a marked increase in demand for features that reduce power loss from an energy-saving perspective, and in Europe and the United States, when creating a transformer that requires less heating, the reduction in iron loss is converted into a monetary amount and added to the transformer price. The “loss evaluation” (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向での
レーザ照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭58−26405号及び特公昭58−26406号各
公報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料として効果的であるが、ひずみ取り
焼鈍を施す、主として鉄心トランス材料にあっては、レ
ーザー照射によって折角に導入された局部微小ひずみが
焼鈍処理により解放されて磁区幅が広くなるため、レー
ザー照射効果がなくなるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for stacked iron cores that are not subjected to strain relief annealing. There is a drawback that the laser irradiation effect disappears because microstrains are released by annealing and the magnetic domain width becomes wider.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕〜上げ焼鈍後の鋼板表面
を鏡面仕上げするか又はその鏡面仕上げ面上に金属めっ
きやさらにその上に絶縁被膜を塗布焼付けすることによ
る、超低鉄損一方向性けい素鋼板の製造方法が提案され
ている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of the unidirectional silicon steel sheet after finishing and final annealing was mirror-finished, or the mirror-finished surface was plated with metal or further insulated. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by applying and baking a coating has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストア・7プになる割り
に鉄損低減への寄与が充分でない上、とくに鏡面仕上げ
後に不可欠な絶縁被膜を塗布焼付した後の密着性に問題
があるため、現在の製造工程において採用されるに至っ
てはいない。また特公昭56−4150号公報において
も鋼板表面を鏡面仕上げした後、酸化物系セラミックス
薄膜を蒸着する方法が提案されている。しかしながらこ
の方法も600℃以上の高温焼鈍を施すと鋼板とセラミ
ック層とが剥離するため、実際の製造工程では採用でき
ない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process standpoint, as it does not contribute enough to reducing iron loss despite the significant cost increase. Due to problems with adhesion after coating, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは、上記した鏡面仕上げによる鉄損向上の実効
をより有利に引き出すことも含めその場合でも、今日の
省エネ材料開発の観点では上記したごときコストアップ
の不利を凌駕する特性、なかでも高温処理でも特性劣化
を伴うことなくして絶縁層の密着性、耐久性の問題を克
服することが肝要と考え、このような基本認識に立脚し
、とくにイオンプレーティング処理における張力付与被
膜形成条件に根本的改善を加えることによって、有利な
超低鉄損化を達成することがこの発明の目的である。
(Problems to be Solved by the Invention) The inventors believe that even if they take advantage of the above-mentioned effect of improving iron loss through mirror finishing, the above-mentioned cost increase is still possible from the perspective of today's energy-saving material development. Based on this basic understanding, we believe that it is important to overcome the problems of insulating layer adhesion and durability without deteriorating the characteristics even during high-temperature treatment, and in particular, we believe that it is important to overcome the disadvantages of ion play. It is an object of the present invention to achieve an advantageous ultra-low iron loss by fundamentally improving the conditions for forming a tensioning film in the tensioning process.

(問題点を解決するための手段) 上述した目的は次の事項を骨子とする構成によって有利
に充足される。
(Means for Solving the Problems) The above-mentioned objectives are advantageously satisfied by a configuration based on the following matters.

仕上げ焼鈍を経た一方向性けい素鋼板につき、その表面
の酸化物を除去したのち、研磨により鋼板表面を中心線
平均粗さRaで0.4 μm以下の鏡面に仕上げ、つい
でイオンプレーティングにより、主とし7TiN 、 
TiCないしはTi (C,N) (7)少なくとも一
種よりなる表面被膜を被成してなる一方向性けい素鋼板
の製造方法において、上記イオンプレーティング処理に
先立ち、鏡面仕上げ表面に200〜600°Cの温度範
囲におけるエレクトロンビーム加熱を施すことを特徴と
する、密着性に優れた表面被膜をそなえる超低鉄)員一
方向性けい素鋼板の製造方法。
After removing the oxides on the surface of the unidirectional silicon steel plate that has undergone finish annealing, the steel plate surface is polished to a mirror finish with a center line average roughness Ra of 0.4 μm or less, and then ion plating is performed, Mainly 7TiN,
TiC or Ti (C,N) (7) In a method for producing a grain-oriented silicon steel sheet coated with a surface coating consisting of at least one kind, the mirror-finished surface is coated at an angle of 200 to 600° prior to the ion plating treatment. A method for producing an ultra-low-iron unidirectional silicon steel sheet having a surface coating with excellent adhesion, the method comprising performing electron beam heating in a temperature range of C.

以下この発明の成功が専かれた具体的実験に従って説明
を進める。
The following description will be based on specific experiments in which the success of this invention was achieved.

C:0.044 wt:(以下華に%で示す)、 Si
:3.44%Mn:0.070%、 Se:0.020
%、 Sb:0.025%および門0:0.025%を
含有する組成になるけい素鋼スラブを、1350℃で4
時間加熱後、熱間圧延して2.4鶴厚さの熱延板とした
。ついで950℃の中間焼鈍を挟み2回の冷間圧延を施
して0.23mm厚の最終冷延板とした。その後820
℃の湿水素中で脱炭を兼ねる1次再結晶焼鈍を施した後
、鋼板表面上にA l zOs(70%)、 Mg0(
25%)、Zr0z(5%)を主成分とする焼鈍分離剤
を塗布してから、850℃で50時間の2次再結晶焼鈍
ついで乾水素雰囲気中で1200°C110時間の純化
焼鈍を施した。
C: 0.044 wt: (hereinafter shown in %), Si
:3.44%Mn:0.070%, Se:0.020
%, Sb: 0.025% and Sb: 0.025% at 1350 °C.
After heating for an hour, it was hot-rolled to obtain a hot-rolled sheet with a thickness of 2.4 mm. Then, cold rolling was performed twice with intermediate annealing at 950° C. to obtain a final cold rolled sheet having a thickness of 0.23 mm. Then 820
After primary recrystallization annealing that also serves as decarburization in wet hydrogen at ℃, Al zOs (70%), Mg0 (
After applying an annealing separator containing Zr0z (5%) as the main component, secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 110 hours in a dry hydrogen atmosphere. .

その後鋼板表面上の酸化物を除去したのち、化学研磨に
より鋼板表面を中心線平均粗さRaで0.1μmの鏡面
状態に仕上げた。
Thereafter, oxides on the surface of the steel plate were removed, and the surface of the steel plate was finished into a mirror-like state with a centerline average roughness Ra of 0.1 μm by chemical polishing.

その後イオンプレーティング装R(IICD法)を使用
して、試料にl kg/ 璽m2の荷重を付加した状態
でTiN被膜(約1.Ot1m厚)を被成するに除し、
次の要領で実験を行なった。
After that, using an ion plating device R (IICD method), a TiN film (about 1.0 m thick) was applied to the sample with a load of 1 kg/m2.
The experiment was conducted in the following manner.

■研磨後、超音波洗浄、フレオンガス洗浄、ボンバード
メント(アルゴンガス中で10ninのボンバードメン
ト処理、試料温度は300℃)、ついでイオンプレーテ
ィング処理。
■After polishing, ultrasonic cleaning, Freon gas cleaning, bombardment (10 nin bombardment treatment in argon gas, sample temperature 300°C), and then ion plating treatment.

■研磨後、ボンバードメント(アルゴンガス中で10m
1nのボンバードメント処理、試料温度は300℃)、
ついでイオンプレーティング処理。
■After polishing, bombardment (10m in argon gas)
1n bombardment treatment, sample temperature was 300℃),
Then ion plating treatment.

■研磨後、エレクトロンビームで鋼板表面を300℃に
加熱したのち、イオンプレーティング処理。
■After polishing, the surface of the steel plate is heated to 300℃ using an electron beam, and then subjected to ion plating treatment.

上記の各処理を施して得た製品板の磁気特性および密着
性について調べた結果を表1に示す。
Table 1 shows the results of investigating the magnetic properties and adhesion of the product plates obtained by applying each of the above treatments.

*180°曲げを行なってもはく離しない直径表1に示
した成績から明らかなように、■の研磨後、超音波洗浄
、フレオンガス洗浄、ボンバードメント、ついでイオン
プレーティング処理を施して得た鋼板の磁気特性は、B
IGが1.92T 、鉄損讐、77、。が0.70W/
kg程度であり、また密着性も20龍φではく離が生じ
良好とはいい難かった。
*Diameter that does not peel off even after 180° bending As is clear from the results shown in Table 1, the steel plate obtained by polishing (■), ultrasonic cleaning, Freon gas cleaning, bombardment, and then ion plating treatment. The magnetic properties are B
IG is 1.92T, iron loss is 77. is 0.70W/
kg, and the adhesion was not good as peeling occurred at 20 mm diameter.

また■の研磨後、ボンバードメント、ついでイオンプレ
ーティング処理を施した場合の磁気特性は、BIoが、
1.92T 、鉄1員1,7.。が0.72W/fur
ではく離限界直径は25■1φであり、磁気特性、密着
性とも十分ではなかった。
In addition, after polishing (■), bombardment, and then ion plating, the magnetic properties are as follows:
1.92T, iron 1 member 1,7. . is 0.72W/fur
The peeling limit diameter was 25.times.1φ, and both magnetic properties and adhesion were insufficient.

これに対し、■の研磨後、エレクトロンビームで前加熱
したのちイオンプレーティングを施して得た鋼板の磁気
特性は、B、。が1.93T 、鉄…WIT/S。
On the other hand, the magnetic properties of the steel sheet obtained by polishing (■), preheating with an electron beam, and then ion plating are B. is 1.93T, iron...WIT/S.

が0.67讐ハgで、しかもはく離限界直径は15 a
sと、磁気特性、被膜密着性共に掻めて良好であった。
is 0.67g, and the peeling limit diameter is 15a.
s, magnetic properties, and film adhesion were all excellent.

次に高真空中で処理可能な連続イオンプレーティング装
置においてTiNの被覆実験を行なった。
Next, a TiN coating experiment was conducted using a continuous ion plating device capable of processing in a high vacuum.

C:0.048%、Si:3.36%、Mn:0.66
%、Se:0.020%、Sb:0.025%およびM
o:0.025%を含有する組成になるけい素鋼熱延板
に、950℃の中間焼鈍を挟む2回の冷間圧延を施して
0.23mm厚の最終冷延板とした。その後湿水素中で
820℃の脱炭・1次再結晶焼鈍を施した後、鋼板表面
にMgO(60%)、A 1 z(h (35%) 、
Zr(h(3%) 、Ti0z(2%)を主成分とする
焼鈍分離剤を塗布してから、850℃で50時間の2次
再結晶焼鈍ついで飽水素中で1200’c、5時間の純
化焼鈍を施した。
C: 0.048%, Si: 3.36%, Mn: 0.66
%, Se: 0.020%, Sb: 0.025% and M
A hot-rolled silicon steel sheet having a composition containing 0.025% o: was cold-rolled twice with intermediate annealing at 950° C. to obtain a final cold-rolled sheet with a thickness of 0.23 mm. After that, after decarburization and primary recrystallization annealing at 820°C in wet hydrogen, the surface of the steel sheet was coated with MgO (60%), A 1 z (h (35%),
After applying an annealing separator mainly composed of Zr(h(3%) and TiOz(2%)), secondary recrystallization annealing was performed at 850°C for 50 hours, and then in saturated hydrogen at 1200°C for 5 hours. Purification annealing was performed.

その後銅板表面の酸洗処理を行なった後、電解併重によ
り、中心線平均粗さRaで0.05μmの鏡面に仕上げ
た。
Thereafter, the surface of the copper plate was pickled, and then electrolytically combined to give a mirror surface with a centerline average roughness Ra of 0.05 μm.

その後連続イオンプレーティング茜置を用いて次の要領
でTi(C,N)のコーティングを行なった。
Thereafter, Ti(C,N) coating was performed using continuous ion plating in the following manner.

まずTiN(C,N)  コーティングに先立って、鋼
板にエレクトロンビーム(90°偏向のピアス型EB)
を用いて100〜800℃の温度範囲にわたって前加熱
を施し、しかるのちイオンプレーティング(IIcD法
)により匁勺0.8 μm厚のTi(C,N) コーテ
ィングを行なった。
First, prior to TiN(C,N) coating, an electron beam (pierce type EB with 90° deflection) was applied to the steel plate.
Preheating was carried out over a temperature range of 100 to 800° C. using a method of heating, and then a Ti(C,N) coating with a thickness of 0.8 μm was applied by ion plating (IIcD method).

なおこのときのエレクトロンビーム加熱方法は、第2図
に模式で示したようにエレクトロンビームの操作を泪板
画縁部で密に、一方中心部が粗になる条件下に鋼板全面
にわたって加熱した。
In this case, the electron beam heating method was such that the electron beam was heated over the entire surface of the steel plate under conditions such that the electron beam was operated densely at the edges of the plate while being coarse at the center.

かくして得られた製品の磁気特性(鉄損特性)および密
着性についての調査結果を第1図に示す。
FIG. 1 shows the results of an investigation regarding the magnetic properties (core loss properties) and adhesion of the thus obtained product.

第1図の結果から明らかなように、エレクトロンビーム
の加熱温度が200〜600℃の温度範囲において鉄損
特性および密着性とも大幅に向上している。
As is clear from the results shown in FIG. 1, both core loss characteristics and adhesion properties are significantly improved in the electron beam heating temperature range of 200 to 600°C.

(作 用) このようにTiN 、 TiCないしTi(C,N)の
イオンプレーティング処理に先立って、所定温度範囲の
エレクトロンビーム加熱を行なうことにより、超低鉄を
員と良好な被膜密着性とを兼備した一方向性けい素鋼板
を得ることができる。かかるイオンプレーティングの先
立つエレク1−ロンビーム加熱は、ヒ゛−ムを操イ乍さ
せることにより口牟反の温度を挙げると同時に鋼板表面
を清浄にする効果があるために超低鉄損化が実現できる
と考えられる。なお、このような′gI+Ji表面を清
浄にさせる効果は、ボンバードメント処理の場合、表面
を凹凸にするため期待できない。
(Function) In this way, prior to the ion plating treatment of TiN, TiC or Ti(C,N), by performing electron beam heating in a predetermined temperature range, ultra-low iron content and good film adhesion can be achieved. It is possible to obtain a unidirectional silicon steel sheet having the following properties. Electron beam heating, which precedes such ion plating, has the effect of raising the temperature of the plate while simultaneously cleaning the surface of the steel sheet by manipulating the beam, resulting in ultra-low iron loss. It seems possible. Incidentally, such an effect of cleaning the 'gI+Ji surface cannot be expected in the case of bombardment treatment because the surface becomes uneven.

すなわち超低鉄損を得るためには、ブレーティング処理
を施すべき鋼板表面を清浄にすると共に加熱することが
必要なわけであるが、このためにはエレクトロビーム加
熱が極めて有効であり、かくして次のイオンプレーティ
ングにおいて密着性に優れた表面被膜を形成させること
が可能となり、これによって表面被膜と鋼板との間に強
い密着性を保った状態で強い張力が清浄な鋼板表面上に
働くため、磁壁の移動が容易となり、このため従来比類
のない超低鉄損化が実現されるのである。上記の方法は
、塑性的な微小歪み分働きを利用するものではないので
、熱的安定性に何ら問題はなく、ひずみ取り焼鈍のごと
き高温の熱暦歴を経た場合であっても電気・磁気的特性
が劣化することはない。
In other words, in order to obtain ultra-low iron loss, it is necessary to clean and heat the surface of the steel plate to be subjected to brating treatment, and electrobeam heating is extremely effective for this purpose. In ion plating, it is possible to form a surface film with excellent adhesion, and as a result, a strong tension is exerted on the surface of a clean steel sheet while maintaining strong adhesion between the surface film and the steel sheet. The domain walls can move easily, and as a result, ultra-low iron loss unparalleled in the past can be achieved. Since the above method does not utilize the action of plastic minute strain components, there is no problem with thermal stability, and even when subjected to high temperature thermal history such as strain relief annealing, electrical and magnetic The physical characteristics will not deteriorate.

ここに仕上げ焼鈍後の−・方向性けい素鋼板は表面上の
酸化物を除去さらには研磨により鏡面状態とした後でイ
オンプレーティング処理を行うことが必要である。また
鏡面状態における仕上げ表面の中心線平均粗さばRa≦
0.4μmの鏡面状態とすることが必要で、Ra>0.
4 μmのときは表面が粗いため十分な鉄損低減が期待
できない。さらにこのときの酸化物の除去は酸洗等の化
学的処理あるいは研削等の機械的処理等を用いて良く、
また鏡面状態の形成に際しては化学研磨、電解研磨ある
いはハフ研磨を好適に用いることができる。
After finish annealing, it is necessary to remove oxides on the surface of the grain-oriented silicon steel sheet, polish it to make it mirror-like, and then perform ion plating treatment. In addition, the center line average roughness of the finished surface in a mirror state is Ra≦
It is necessary to have a mirror surface of 0.4 μm, and Ra>0.
When the thickness is 4 μm, the surface is rough, so a sufficient reduction in iron loss cannot be expected. Furthermore, the removal of oxides at this time may be performed using chemical treatments such as pickling or mechanical treatments such as grinding.
Furthermore, chemical polishing, electrolytic polishing, or Hough polishing can be suitably used to form a mirror surface.

次にこの張力付与被膜の膜厚は0.05〜5.0μmの
範囲が好適である。
Next, the thickness of this tension-applying film is preferably in the range of 0.05 to 5.0 μm.

膜厚が0.05μmに満たないと満足いく程度の張力付
与が期待できず、一方5.0μmをこえると、占積率お
よび密石性が劣化する他、経済的にも不利となる。
If the film thickness is less than 0.05 μm, satisfactory tension cannot be expected to be applied, while if it exceeds 5.0 μm, the space factor and stoneness deteriorate, and it is also economically disadvantageous.

次にこの発明による、一方向性けい素鋼板の製造工程に
ついて説明する。
Next, the manufacturing process of a unidirectional silicon steel sheet according to the present invention will be explained.

出発前ヰオは従来公知の一方向性けい素鋼素材成分、例
えば ■C: 0.01〜0.05%、 Si : 2.50
〜4.5910、Mn : 0.01〜0.29’o、
 Mo : 0.003〜0.1%、Sb : 0.0
05〜0.2%、S又はSeの1種あるい2種合計で、
0.005〜0.05%を含有する組成■C:0.旧〜
0.08%、 Si:2.O〜4.0%、S  :  
0.005 〜0゜05%、 N 二 0.001 〜
0.01%、Sol  At:  0.01〜0.06
X  。
Before starting, the material contains conventionally known unidirectional silicon steel material components, such as ■C: 0.01 to 0.05%, Si: 2.50
~4.5910, Mn: 0.01~0.29'o,
Mo: 0.003-0.1%, Sb: 0.0
05 to 0.2%, a total of one or two types of S or Se,
Composition containing 0.005-0.05% ■C: 0. Old ~
0.08%, Si:2. O~4.0%, S:
0.005 ~ 0°05%, N2 0.001 ~
0.01%, Sol At: 0.01-0.06
X.

Sn : 0.01〜0.5%、 Cu : 0.01
〜0.3%、Mn : O,O1〜0.2%を含有する
組成■C: 0.01〜0.06%、 Si : 2.
0〜4.0%、S : 0.005〜0.05%、B 
: 0.0003〜0.0004%、N : 0.00
1〜0.01%、Mn : 0.01〜0.2%を含有
する組成 ■C: 0.01〜0.06χ、 Si: 2.0〜4
.0%、Mn : 0.01〜0.2% S又はScの1種あるいは2種合計で0.005〜0.
05χを含有する組成 の如きにおいて適用可能である 次に熱延板は800〜1100°Cの均一化焼鈍を経て
1回の冷間圧延で最終板II7.とする1回冷延法か又
は、通常850℃から1050°Cの中間焼鈍をはさん
でさらに冷延する2回冷延法にて、後者の場合最初の圧
下率は50%から80%程度、R終の圧下率は50%か
ら85%程度で0.151mから0.35+n厚の最終
冷延板厚とする。
Sn: 0.01-0.5%, Cu: 0.01
~0.3%, Mn: O, composition containing O1~0.2% ■C: 0.01~0.06%, Si: 2.
0-4.0%, S: 0.005-0.05%, B
: 0.0003-0.0004%, N: 0.00
Composition containing 1-0.01%, Mn: 0.01-0.2% ■C: 0.01-0.06χ, Si: 2.0-4
.. 0%, Mn: 0.01-0.2% S or Sc, or 0.005-0.0% in total.
The hot-rolled sheet is then subjected to homogenization annealing at 800-1100°C and then cold-rolled once to form the final sheet II7. A one-time cold rolling method, in which the product is rolled, or a two-time cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, followed by further cold rolling; in the latter case, the initial rolling reduction is approximately 50% to 80%. , the rolling reduction at the end of R is approximately 50% to 85%, and the final cold-rolled plate thickness is 0.151 m to 0.35+n.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750°Cから850℃の湿水素中で脱炭・1次再結
晶焼鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to decarburization and primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C after surface degreasing.

その後鋼板表面にA l 203.ZrO□あるいはT
iO□。
After that, Al 203. is applied to the surface of the steel plate. ZrO□ or T
iO□.

MgO等を主成分とする焼鈍分離剤を塗布する。この発
明の場合は、フォルステライトが形成される場合であっ
ても形成されない場合であっても適用可能である。仕上
げ焼鈍後のフォルステライト被膜を形成させないために
はA I ZO:1等の不活性焼鈍分離剤の含有率を高
めることが必要である。
Apply an annealing separator mainly composed of MgO or the like. The present invention is applicable regardless of whether forsterite is formed or not. In order to prevent the formation of a forsterite film after final annealing, it is necessary to increase the content of an inert annealing separator such as A I ZO:1.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(110) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 00°C, and in addition, for example, 0.5-b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は、飽水素中で1100°
C以上で1〜20時間焼鈍を行って、鋼板の純化を達成
することが必要である。
Purification annealing after secondary recrystallization annealing is performed at 1100° in saturated hydrogen.
It is necessary to perform annealing at C or higher for 1 to 20 hours to achieve purification of the steel plate.

次にこの発明では、純化焼鈍後に鋼板表面の酸化物被膜
を硫酸、硝酸又は弗酸などの強酸により除去する。また
この酸化物除去は機械研削により行ってもよい。
Next, in the present invention, after purification annealing, the oxide film on the surface of the steel sheet is removed using a strong acid such as sulfuric acid, nitric acid, or hydrofluoric acid. Further, this oxide removal may be performed by mechanical grinding.

この酸化物除去処理の後、化学研磨あるいは電解研磨、
あるいはパフ研磨による機械的研磨等従来の手法により
鋼板表面を鏡面状態つまり中心線平均粗さRaで0.4
μm以下に仕上げる。
After this oxide removal treatment, chemical polishing or electrolytic polishing
Alternatively, the surface of the steel plate can be polished to a mirror finish using a conventional method such as mechanical polishing using puff polishing, that is, the center line average roughness Ra is 0.4.
Finished to below μm.

ここにRaを0.4μm以下に限定したのは、Raが0
.4μmを超えると表面が粗いために、充分な鉄り、の
低減が期待できないからである。
The reason why Ra is limited to 0.4 μm or less is that Ra is 0.
.. This is because if it exceeds 4 μm, the surface will be rough and a sufficient reduction in iron content cannot be expected.

その後イオンプレーティング装置 (HCD法、EB+
RF法、フルティアーク法)によりTiN 、 TiC
ないしTi(C,N)より主としてなる表面被膜を形成
させるが、かかるイオンプレーティングに先立ち、エレ
クトロンビーム加熱によって鋼板表面ヲ200〜600
℃の温度に加熱することが肝要である。この場合のエレ
クトロンビームの走査法は、前掲第2に示したように鋼
板の両縁部が密に、一方中心部が粗になるように鋼板金
回を均一に加熱することが望ましい。
After that, ion plating equipment (HCD method, EB+
TiN, TiC by RF method, Fluti-arc method)
A surface coating consisting mainly of Ti(C,N) or Ti(C,N) is formed.Prior to such ion plating, the surface of the steel sheet is heated to a depth of 200 to 600% by electron beam heating.
It is essential to heat to a temperature of °C. In this case, the scanning method of the electron beam is preferably such that the steel plate is heated uniformly so that both edges of the steel plate are dense and the center is rough, as shown in the second section above.

なおかかる表面v1.膜の膜jゾは0.05〜5.0μ
mとするのが望ましいことは前述したとおりである。
Furthermore, such surface v1. The thickness of the membrane is 0.05 to 5.0μ
As mentioned above, it is desirable to set the value to m.

このようにして張力付与被膜を形成したあと、これに重
ねて、りん酸塩とコロイダルシリカとを主成分とする絶
縁被膜の塗布焼付を行うことが、100万KVAにも上
る大容量トランスの使途においてとくに必要であり、こ
の絶縁性塗布焼付層の形成の如きは、従来公知の手法を
用いて良い。
After forming the tension-applying film in this way, applying and baking an insulating film whose main components are phosphate and colloidal silica is the best way to use a transformer with a large capacity of up to 1,000,000 KVA. This is especially necessary in the formation of this insulating coated and baked layer, and conventionally known methods may be used.

上記のように処理されたけい素鋼板は平たん化熱処理を
行うことができる。
The silicon steel plate treated as described above can be subjected to flattening heat treatment.

(実施例) n−例」− C: 0.044%、Si : 3.41%、Mn :
 0.063%、Mo : 0.021%、Se : 
0.020%およびSb : 0.025%を含有する
組成になる熱延板を、900 ℃で3分間の均−化焼鈍
後、950℃の中間焼鈍をはさんで2回の冷間圧延を行
って0.23mm厚の最終冷延板とした。
(Example) n-Example - C: 0.044%, Si: 3.41%, Mn:
0.063%, Mo: 0.021%, Se:
A hot rolled sheet having a composition containing 0.020% and Sb: 0.025% was homogenized at 900°C for 3 minutes and then cold rolled twice with intermediate annealing at 950°C. A final cold-rolled sheet with a thickness of 0.23 mm was obtained.

その後820℃の湿水素中で脱炭焼鈍を兼ねた1次再結
晶焼鈍後、鋼板表面ニA e 203 (70%)1M
gO(30%)を主成分とする焼鈍分離剤を塗布した後
850℃で50時佃の2次再結晶焼鈍し、ついで飽水素
中で1200°C18時間の純化焼鈍を行った。
After that, after primary recrystallization annealing that also served as decarburization annealing in wet hydrogen at 820°C, the steel plate surface was heated to A e 203 (70%) 1M.
After applying an annealing separator mainly composed of gO (30%), secondary recrystallization annealing was performed at 850° C. for 50 hours, followed by purification annealing at 1200° C. for 18 hours in saturated hydrogen.

その後酸洗により酸化被膜を除去後、3%IIFと11
20□液中で化学研磨して鏡面に仕上げた。
After that, after removing the oxide film by pickling, 3% IIF and 11
20□ Finished to a mirror surface by chemical polishing in liquid.

ついでエレクトロンビーム加熱によって、iU面仕上げ
表面を450℃に加熱したのち、イオンプレーティング
装置(HCD法)を用いて10分間のイオンプレーティ
ングを施し、)模写1.2μmのTiN張力付与絶縁被
膜を形成させた。このときの試料の条件は、弾性張カニ
 0.8kg/mm”とした。
Next, the finished iU surface was heated to 450°C by electron beam heating, and then ion plating was performed for 10 minutes using an ion plating device (HCD method) to form a 1.2 μm TiN tension-imparting insulating film. formed. The conditions for the sample at this time were an elastic tension of 0.8 kg/mm.

次にりん酸塩とコロイダルシリカとを主成分とする絶縁
性塗布焼付層を形成し、そのf&800’cで2時間の
ひずみ取り焼鈍を行った。
Next, an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed, and strain relief annealing was performed at f&800'c for 2 hours.

かくして得られた製品の磁気特性は次のとおりであった
The magnetic properties of the thus obtained product were as follows.

B+o=1.927.W+?/S。=0.68W/kg
B+o=1.927. W+? /S. =0.68W/kg
.

また密着性は25龍φの180  ’曲げを行なっても
はく離が起こらず良好であった。
Furthermore, the adhesion was good, with no peeling occurring even after 180' bending with a diameter of 25 mm.

大指貫叢 C: 0.059%、Si : 3.38%、Mn :
 0.076%、A l : 0.025%、S : 
0.023%、N : 0.0069%、Cu:0.1
%およびSn : 0.05%を含有する組成になる熱
延板を、1150℃で3分間の均−化焼鈍後急冷処理を
行い、その後300℃の温間圧延を施して0.20層厚
の最終冷延板とした。
Greater digitorum plexus C: 0.059%, Si: 3.38%, Mn:
0.076%, Al: 0.025%, S:
0.023%, N: 0.0069%, Cu: 0.1
% and Sn: A hot rolled sheet having a composition containing 0.05% was uniformly annealed at 1150°C for 3 minutes and then rapidly cooled, and then warm rolled at 300°C to a thickness of 0.20. The final cold-rolled sheet was obtained.

その後850℃のン兄水素中で脱炭焼鈍後、表面にAI
!z03(80%) 、 MgO(20%)を主成分と
する焼鈍分離剤を塗布した後850℃から1150℃ま
で8℃/hで昇温して2次再結晶させた後、軟水素中で
1200℃、8時間の純化焼鈍を行った。
After that, after decarburization annealing in hydrogen at 850℃, the surface is coated with AI.
! After applying an annealing separator mainly composed of z03 (80%) and MgO (20%), the temperature was raised from 850°C to 1150°C at a rate of 8°C/h for secondary recrystallization, and then in soft hydrogen. Purification annealing was performed at 1200°C for 8 hours.

その後酸洗により酸化物被膜を除去し、ついで3%HF
とHzOt液中で化学研磨して鏡面に仕上げた。
After that, the oxide film was removed by pickling, and then 3% HF
It was chemically polished in HzOt solution and finished to a mirror surface.

ついで鏡面仕上げ表面を、エレクトロンビームで走査す
ることによって板表面を500°Cに均一加熱したのち
、マルチアータ方弐のイオンプレーティング装置を用い
て、鋼板に0.5 kg/ mm”の弾性張力を加えな
がら次の条件下にTiCの薄膜(1,7μm厚)を鏡面
表面上に形成させ、次にりん酸塩とコロイダルシリカと
を主成分とする絶縁性塗布焼付層を形成させた後、80
0℃で2時間のひずみ取り焼鈍を行った。
Next, the mirror-finished surface was uniformly heated to 500°C by scanning with an electron beam, and then an elastic tension of 0.5 kg/mm was applied to the steel plate using a multi-arter ion plating device. A thin film of TiC (1.7 μm thick) was formed on the mirror surface under the following conditions while adding , and then an insulating coated and baked layer containing phosphate and colloidal silica as main components was formed. 80
Strain relief annealing was performed at 0°C for 2 hours.

かくして得られた製品の磁気特性は次のとおりであった
The magnetic properties of the thus obtained product were as follows.

B +o=1.92T、 W+?/S。=0.70匈/
kg。
B+o=1.92T, W+? /S. =0.70 匈/
kg.

また密着性は25層−φの1806曲by−を行なって
もはく離がなく良好であった。
The adhesion was also good with no peeling even after 25 layers - 1806 bends by -.

去侮■ユ C: 0.044%、Sj: 3.43%、Mn : 
0.064%、Mo : 0.021%、Se : 0
.022%およびSb : 0.025%を含有する組
成になる熱延板を、900℃で3分間の均−化焼鈍後、
950℃の中間焼鈍をはさんで2回の冷間圧延をJテっ
で0.20層m厚の最終冷延板とした。
Injury ■ Yu C: 0.044%, Sj: 3.43%, Mn:
0.064%, Mo: 0.021%, Se: 0
.. After homogenization annealing of a hot rolled sheet having a composition containing 0.022% and Sb: 0.025% at 900°C for 3 minutes,
A final cold rolled sheet with a thickness of 0.20 layer m was obtained by cold rolling twice with intermediate annealing at 950°C.

その後800℃の湿水素中で脱炭焼鈍後、鋼板表面にA
 l zo:+ (60%) 、 MgO(25%)、
Zn0(15%)を主成分とする焼鈍分離剤を塗布した
後850℃で50時間の2次再結晶焼鈍、ついで軟水素
中で1180°C110時間の純化焼鈍を行った。
After that, after decarburization annealing in wet hydrogen at 800℃, A
lzo:+ (60%), MgO (25%),
After applying an annealing separator mainly composed of Zn0 (15%), secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1180°C for 110 hours in soft hydrogen.

その後酸洗により鋼板表面の酸化物被膜を除去後、3%
IIFと1120□液中で化学研磨を施して鏡面に仕上
げた。
After that, after removing the oxide film on the steel plate surface by pickling, 3%
Chemical polishing was performed in IIF and 1120□ solution to give a mirror finish.

その後連続ラインのイオンプレーティング装置(IIC
D法)により、試料引張り荷重0.9kg/mm2でT
iNの薄膜(0,5μm厚)を形成させた。このイオン
プレーティングに先立ちエレクトロンビーム走査により
@板表面を450 ℃に均一加熱処理した。
After that, continuous line ion plating equipment (IIC)
D method), T at a sample tensile load of 0.9 kg/mm2
A thin film (0.5 μm thick) of iN was formed. Prior to this ion plating, the surface of the plate was uniformly heated to 450° C. by electron beam scanning.

かくして得られた製品の磁気特性は次のとおりであった
The magnetic properties of the thus obtained product were as follows.

B1゜”1.93T、 W+7ys。−0,68W/k
g、また密着性は1511φで180  °曲げを行な
ってもはく離が生ぜず良好であった。
B1゜”1.93T, W+7ys.-0,68W/k
g, and the adhesion was good, with no peeling occurring even when bent by 180 degrees with a diameter of 1511 mm.

(発明の効果) かくしてこの発明によれば、被膜密着性のみならず鉄損
特性に優れた超低鉄損一方向性けい素鋼板を得ることが
でき、しかもかくして得られた鋼板の磁気特性はたとえ
ひずみ取り焼鈍の如き高温処理を施された場合であって
も劣化することはない。
(Effects of the Invention) Thus, according to the present invention, it is possible to obtain an ultra-low iron loss unidirectional silicon steel sheet that has excellent not only film adhesion but also iron loss characteristics, and the magnetic properties of the steel sheet thus obtained are Even when subjected to high temperature treatment such as strain relief annealing, it does not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエレクトロンビームによる鋼板表面の加熱温度
と、製品板の鉄損値および被膜密着性との関係を示した
グラフ、 第2図は鋼板表面に対するエレクトロビームの走査要領
を示した図である。
Figure 1 is a graph showing the relationship between the heating temperature of the steel plate surface by the electron beam and the iron loss value and film adhesion of the product plate. Figure 2 is a diagram showing the scanning procedure of the electro beam on the steel plate surface. .

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍を経た一方向性けい素鋼板につき、その
表面の酸化物を除去したのち、研磨により鋼板表面を中
心線平均粗さRaで0.4μm以下の鏡面に仕上げ、つ
いでイオンプレーティングにより、主としてTiN、T
iCないしはTi(C,N)の少なくとも一種よりなる
表面被膜を被成してなる一方向性けい素鋼板の製造方法
において、 上記イオンプレーティング処理に先立ち、 鏡面仕上げ表面に200〜600℃の温度範囲における
エレクトロンビーム加熱を施すことを特徴とする、密着
性に優れた表面被膜をそなえる超低鉄損一方向性けい素
鋼板の製造方法。
[Scope of Claims] 1. After removing oxides from the surface of a unidirectional silicon steel plate that has undergone finish annealing, the steel plate surface is polished to a mirror finish with a center line average roughness Ra of 0.4 μm or less. Then, by ion plating, mainly TiN, T
In a method for manufacturing a grain-oriented silicon steel sheet coated with a surface coating made of at least one of iC or Ti(C,N), the mirror-finished surface is heated at a temperature of 200 to 600°C prior to the ion plating treatment. A method for producing an ultra-low iron loss unidirectional silicon steel sheet having a surface coating with excellent adhesion, the method comprising applying electron beam heating at a temperature within a range of 100 to 100 nm.
JP13108186A 1986-06-07 1986-06-07 Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness Granted JPS62290823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13108186A JPS62290823A (en) 1986-06-07 1986-06-07 Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13108186A JPS62290823A (en) 1986-06-07 1986-06-07 Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness

Publications (2)

Publication Number Publication Date
JPS62290823A true JPS62290823A (en) 1987-12-17
JPH0327632B2 JPH0327632B2 (en) 1991-04-16

Family

ID=15049544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13108186A Granted JPS62290823A (en) 1986-06-07 1986-06-07 Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness

Country Status (1)

Country Link
JP (1) JPS62290823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035302A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Electron beam irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035302A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Electron beam irradiation device

Also Published As

Publication number Publication date
JPH0327632B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPS62290823A (en) Production of ultra low iron loss grain oriented silicon steel sheet provided with surface film having excellent adhesiveness
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPS6318087A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0335377B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPH0327633B2 (en)
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS6324017A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPS6222409A (en) Manufacture of ultra-low iron loss unidirectional silicon steel plate
JPS6324099A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0327631B2 (en)