JPS62290794A - Method and apparatus for coal gasification - Google Patents

Method and apparatus for coal gasification

Info

Publication number
JPS62290794A
JPS62290794A JP13366986A JP13366986A JPS62290794A JP S62290794 A JPS62290794 A JP S62290794A JP 13366986 A JP13366986 A JP 13366986A JP 13366986 A JP13366986 A JP 13366986A JP S62290794 A JPS62290794 A JP S62290794A
Authority
JP
Japan
Prior art keywords
oxygen
coal
air
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13366986A
Other languages
Japanese (ja)
Other versions
JPH0678531B2 (en
Inventor
Atsushi Morihara
淳 森原
Shuntaro Koyama
俊太郎 小山
Tomohiko Miyamoto
知彦 宮本
Jinichi Tomuro
戸室 仁一
Masaomi Tomomura
友村 政臣
Ryokichi Yamada
山田 良吉
Tetsuro Haga
鉄郎 芳賀
Shunsuke Nokita
舜介 野北
Takao Hishinuma
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP13366986A priority Critical patent/JPH0678531B2/en
Priority to EP87108457A priority patent/EP0249233A3/en
Publication of JPS62290794A publication Critical patent/JPS62290794A/en
Publication of JPH0678531B2 publication Critical patent/JPH0678531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/16Continuous processes simultaneously reacting oxygen and water with the carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To enable the production of a large volume of a raw gas for coal gasification with a small apparatus, by reducing the air pressure after formation of a high-concn. nitrogen gas through the use of an adsorbent capable of adsorbing a large amt. of oxygen and pressurized air, thereby forming oxygen- enriched air, and utilizing the air for coal gasification. CONSTITUTION:Air which has been pressurized to such an extent that coal can be transported and the coal packing vessel can be sufficiently pressurized is passed through a plurality of columns packed with an adsorbent in which the equilibrium adsorption amt. of oxygen is larger than that of nitrogen at the same pressure and the same temp., thereby forming a high concn. nitrogen gas. Before the adsorption of oxygen reaches equilibrium, the pressure of air passing through the column is reduced to such an extent that a gasifying agent is sufficiently fed into a coal gasification oven, thereby desorbing the adsorbed oxygen and forming oxygen-enriched air. The above procedures are repeated in a plurality of columns while staggering the operation time, thereby continuously forming a high-concn. nitrogen gas and oxygen-enriched air. Thus, a high- purity nitrogen gas is used for transporting coal and pressurizing the coal packing vessel, while oxygen-enriched air is used as a coal gasifying agent.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は石炭のガス化装置に関し、更に詳しく言えば石
炭又はその他の炭化水素類を、空気分離装置で生成した
ガスで搬送して、空気分離装置で生成したガス化剤と共
に石炭ガス化炉に供給し高温、高圧下で反応させ可燃性
ガスを得る石炭ガス化方法及びガス化装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a coal gasification device, and more specifically, the present invention relates to a coal gasification device that produces coal or other hydrocarbons with an air separation device. The present invention relates to a coal gasification method and a gasification apparatus for obtaining a combustible gas by transporting it as a gas and supplying it to a coal gasification furnace together with a gasification agent produced in an air separation device and causing a reaction under high temperature and high pressure.

〔従来の技術〕[Conventional technology]

石炭は、豊富な埋蔵量を持つ有用なエネルギー源である
が、固体であり、且つ灰分を多く含有しているため1石
油や天然ガスに比べてその利用分野が限定されている。
Coal is a useful energy source with abundant reserves, but because it is solid and contains a large amount of ash, its fields of use are limited compared to oil and natural gas.

しかし、この石炭をガスや液に転換すれば、利用分野が
大幅に広がり有益なエネルギー源になり得るため、各国
で石炭の流体化技術が開発されている。
However, if this coal is converted into gas or liquid, it can be used in a wide range of fields and become a useful energy source, so coal fluidization technology is being developed in various countries.

このような情勢下で、特に石炭ガス化装置は、次世代の
発電方法として注目されている石炭ガス化複合発電シス
テムの要素機器として研究開発が進められている。
Under these circumstances, coal gasification equipment in particular is being researched and developed as an elemental device for coal gasification combined cycle power generation systems, which are attracting attention as a next-generation power generation method.

石炭ガス化とは、石炭を細かく砕いて酸化剤と共に高温
のガス化炉へ供給する。そして高温の炉内で石炭が反応
して部分酸化等のガス化反応を起こさせる。これにより
一酸化炭素、水素を主成分とする可燃性ガスを生成させ
る。
Coal gasification involves pulverizing coal into fine pieces and feeding them together with an oxidizer to a high-temperature gasifier. Then, the coal reacts in a high-temperature furnace to cause gasification reactions such as partial oxidation. This generates flammable gas whose main components are carbon monoxide and hydrogen.

石炭ガス化複合発電システムでは、この石炭ガス化炉で
得られた高温の可燃性ガスの顕熱を熱回収してスチーム
を作りスチームタービンを駆動させ、これと同時にガス
化した可燃性ガスでガスタービンを駆動させるものであ
る。このシステムでは、従来のスチームタービンだけの
場合に比べ発電効率を数%向上させることができる。こ
のような1石炭ガス他事合発電のような大規模な需要に
対応して石炭ガス化装置も大容量化、高効率化が進めら
れている。
In a coal gasification combined cycle power generation system, the sensible heat of the high-temperature combustible gas obtained in the coal gasifier is recovered to produce steam and drive a steam turbine, and at the same time, the gasified combustible gas is used to generate gas. It drives the turbine. This system can improve power generation efficiency by several percentage points compared to conventional steam turbines alone. In response to such large-scale demand for power generation involving one coal and gas, coal gasification equipment is also being made larger in capacity and more efficient.

発電を目的に石炭ガス化を行う場合、酸化剤として酸素
を用いる酸素ガス化と、酸化剤として空気を用いる空気
ガス化という2つのガス化方法に大きく分けることがで
きる。このガス化方式の違いによるガス化効率、酸化剤
製造コスト、発電コストを第1表に示す。
When coal gasification is performed for the purpose of power generation, it can be roughly divided into two gasification methods: oxygen gasification using oxygen as an oxidizing agent and air gasification using air as an oxidizing agent. Table 1 shows the gasification efficiency, oxidant production cost, and power generation cost depending on the gasification method.

第  1  表 酸素ガス化では、酸化剤が全て反応するのでガス化炉の
効率が良い、しかし、酸素の製造コストが必要なため発
電コストが高くなる。一方空気ガス化では、酸化剤とし
て反応しない空気も合わせて供給するのでガス化炉の効
率が低い。しかし、酸素の製造コストが不要なため発電
コストは安くなる。そこで、従来酸素製造に用いらてい
た深冷法の替わりにP S A (Pressure 
SwingAdsorption)を用いれば低い酸化
剤製造コストで高いガス化効率を得られるので空気だけ
で石炭をガス化するシステムと比較して更に発電コスト
を低減させつると考えられる。
Table 1 In oxygen gasification, the efficiency of the gasifier is good because all the oxidizing agent is reacted, but the production cost of oxygen is required, which increases the power generation cost. On the other hand, in air gasification, the efficiency of the gasifier is low because air that does not react as an oxidant is also supplied. However, since the production cost of oxygen is not required, the cost of power generation will be lower. Therefore, instead of the deep cooling method conventionally used for oxygen production, PSA (Pressure
If Swing Adsorption is used, high gasification efficiency can be obtained at a low oxidizer production cost, so it is thought that the power generation cost will be further reduced compared to a system that gasifies coal using only air.

ガス化の場合には純度が#fi端に高い酸素が必要とさ
れるわけではない。それは、q索;湯度が空気に比べて
少しでも高い酸素富化空気であれば、炉内の温度が上昇
する。これにより例えば噴流層によるガス化の場合、炉
内の石炭から生じる灰分を容易に溶かすことができるの
で、不必要に燃焼反応を促進させて昇温を行う必要がな
くなり、ガス化効率が上昇する。また酸素分圧が上昇す
るために反応が促進され、効率の向上が計れるのである
In the case of gasification, oxygen with high purity at the #fi end is not required. This is because the temperature inside the furnace increases if the temperature of the oxygen-enriched air is even slightly higher than that of air. For example, in the case of gasification using a spouted bed, the ash generated from the coal in the furnace can be easily melted, eliminating the need to unnecessarily accelerate the combustion reaction and raise the temperature, increasing gasification efficiency. . In addition, the reaction is promoted because the oxygen partial pressure increases, and efficiency can be improved.

このような見地から酸素富化空気を製造するのに。From this point of view, to produce oxygen-enriched air.

PSAを用いた例が特開昭51−50298号に見られ
る。
An example using PSA can be found in JP-A-51-50298.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、PSAで石炭ガス化炉の酸化剤を生成するには
様々な問題点があった。
However, there are various problems in producing an oxidizing agent for a coal gasifier using PSA.

まず、石炭ガス化炉には石炭を搬送することを目的に純
度の非常に高い窒素が必要なことである。
First, coal gasifiers require very high purity nitrogen for the purpose of conveying the coal.

これは石炭をガス化炉内に供給する気体に酸素が含まれ
ると石炭が粉Ii1爆発し危険であるためである。また
、一般に粉体を高圧の炉内へ供給するにはロックホッパ
ーシステムが用いられるが、この方式であると加圧した
気体と粉塵を混合するので、気体に酸素が含まれると石
炭が粉塵爆発し危険であるためである。
This is because if the gas supplied to the coal gasifier contains oxygen, the coal will explode into powder, which is dangerous. In addition, a lock hopper system is generally used to feed powder into a high-pressure furnace, but since this system mixes pressurized gas and dust, if the gas contains oxygen, the coal will explode into dust. This is because it is dangerous.

従来の深冷法では酸素と同時に窒素も生成するので、こ
の生成した窒素を用いて石炭搬送用のガスとすれば良か
った。しかしPSAでは、酸素を生成させたときに廃棄
されるガスは空気に比べれば窒素濃度は高いが、酸素濃
度が高く搬送用ガスとして使用することはできない、結
果として石炭搬送用の窒素は別のプラントから持ち込む
か、酸化剤製造用以外に窒素製造用のプラントを作らね
ばならない、その結果、結局プラント全体のコストに影
響を及ぼし発電コストを高くする。
In the conventional deep cooling method, nitrogen is also produced at the same time as oxygen, so it was sufficient to use the produced nitrogen as a gas for transporting coal. However, in PSA, the gas that is discarded when oxygen is generated has a higher nitrogen concentration than air, but the oxygen concentration is so high that it cannot be used as a conveying gas.As a result, nitrogen for coal conveying is a different gas. Either the nitrogen must be brought in from the plant or a plant must be built for nitrogen production in addition to the oxidizer production, which ultimately affects the overall cost of the plant and increases the power generation cost.

次に、大容量化すると装置が極端に大型化する点である
。常圧製品を作りだすという従来のPSAの概念からP
SAはほぼ常圧付近で操作されてきた。従って大容量の
ガスを処理しようとすると、塔が非常に大きくなる。一
般にガス化炉で大容量化を行おうとした時、高圧化する
が、PSAでは。
Second, increasing the capacity requires an extremely large device. P
SA has been operated near normal pressure. Therefore, if a large volume of gas is to be processed, the tower becomes very large. Generally, when trying to increase the capacity of a gasifier, the pressure increases, but in PSA.

高圧化しても結局大量のガスを廃棄せねばならないので
、効率が悪くなる。従って、従来ガス化炉に必要な酸化
剤をP S Aで製造しようとするとガイ他炉の30倍
の敷地に必要となる。このような大型化を目的として特
開昭51−80682号に脱着を2段行った例が見られ
る。しかしガス化炉に用いるほど大型化は考えられてい
ない。
Even if the pressure is increased, a large amount of gas must be disposed of, resulting in poor efficiency. Therefore, if the oxidizing agent required for conventional gasification furnaces were to be manufactured using a PSA, a site 30 times larger than that of a Gai et al. furnace would be required. For the purpose of increasing the size, an example in which two stages of attachment and detachment are performed can be seen in JP-A-51-80682. However, it is not considered to be large enough to be used in a gasifier.

これらの問題点を解決すべくPSAの根本原理から考察
したうえで本発明は生まれた。
The present invention was created after considering the fundamental principles of PSA in order to solve these problems.

本発明は、非常に小さな装置で大容量の石炭ガス化に使
用する酸化剤等の原料ガスを生産できる石炭ガス化用P
SA及び、該PSAを用いてシステム全体の効率を大幅
に向」ニさせるPSAによる石炭ガス化装置に関する発
明である。
The present invention is a PLC for coal gasification that can produce raw material gas such as an oxidizing agent used in large-capacity coal gasification with a very small device.
This invention relates to a coal gasification apparatus using SA and a PSA that uses the PSA to significantly improve the efficiency of the entire system.

〔問題点を解決するための手段〕[Means for solving problems]

前記した問題点は同じ圧力、温度において窒素に比べて
酸素の平衡吸着量の大きい吸着剤を充填した複数の塔に
1石炭電送、及び石炭充填容器の加圧を十分に行える圧
力に加圧した空気を流通させて高濃度窒素ガスを生成し
、酸素の平衡吸着量に達する以前に、該塔内を流通する
空気圧力を石炭ガス化炉へガス化剤を十分に供給できる
圧力まで減圧して吸着剤に吸着された酸素を脱着させて
富化酸素空気を生成し、以上の操作を複数の層で時間を
ずらして繰り返すことにより高純度窒素ガス及び富化酸
素空気を連続的に生成して、高純度窒素ガスを石炭搬送
、及び石炭充填容器の加圧に用い、富化酸素空気を石炭
ガス化剤として用いる石炭ガス化方法によって解決され
る。
The above-mentioned problem is that the pressure must be high enough to transmit coal to multiple towers filled with an adsorbent that has a larger equilibrium adsorption amount of oxygen than nitrogen at the same pressure and temperature, and to pressurize the coal-filled container sufficiently. Highly concentrated nitrogen gas is generated by circulating air, and before the equilibrium adsorption amount of oxygen is reached, the pressure of the air flowing in the column is reduced to a pressure that can sufficiently supply the gasifying agent to the coal gasifier. Oxygen-enriched air is generated by desorbing the oxygen adsorbed by the adsorbent, and by repeating the above operations in multiple layers at different times, high-purity nitrogen gas and oxygen-enriched air are continuously generated. The problem is solved by a coal gasification method that uses high-purity nitrogen gas for conveying the coal and pressurizing the coal-filled container, and using oxygen-enriched air as the coal gasification agent.

〔作用〕[Effect]

本発明の方法によ九ば、高濃度窒素ガスを生成させるた
めに高圧の空気を用いるので小さい容量の塔で多量のガ
スを作ることができ、吸着剤に吸着した酸素を前記した
圧力よりも低い圧力にて脱着して塔の再生を計るととも
に生成した富化酸素空気をガス化剤として使用するので
システムとしての無駄がなくなり全体として効率を向上
させ得る。
According to the method of the present invention, since high-pressure air is used to generate highly concentrated nitrogen gas, a large amount of gas can be produced in a column with a small capacity, and the oxygen adsorbed on the adsorbent can be Since the tower is regenerated by desorption at low pressure and the generated oxygen-enriched air is used as a gasification agent, there is no waste in the system and the overall efficiency can be improved.

〔実施例〕〔Example〕

本発明の詳細を述べるにあたって、まず以下にPSA、
石炭ガス化装置の基本概念を述べる。
In describing the details of the present invention, first of all, PSA,
This section describes the basic concept of coal gasification equipment.

石炭ガス化装置の簡単なフローを第2図に示す。Figure 2 shows a simple flow of the coal gasifier.

また石炭ガス化装置に必要なガスをまとめて第2表に示
す。
Table 2 summarizes the gases required for the coal gasifier.

第  2  表 石炭ガス化用酸化剤の石炭供給量に対する割合は、最高
の冷ガス効率を与える割合が好ましい。
Table 2 The ratio of the oxidizing agent for coal gasification to the amount of coal supplied is preferably the ratio that provides the highest cold gas efficiency.

ここで、冷ガス効率とは、供給した石炭の発熱量に対す
る生成したガスの発熱量の割合を表す1石炭ガス化は、
一般に部分ガス化反応を主体とするものであり、下式で
示される。
Here, cold gas efficiency refers to the ratio of the calorific value of the generated gas to the calorific value of the supplied coal.1 Coal gasification is:
Generally, it is mainly based on a partial gasification reaction, and is expressed by the following formula.

ここで石炭は簡単のため灰分等の成分は除外して炭化水
素として表す、上式から石炭中のカーボンが、全て一酸
化炭素になった場合に最も生成ガスの発熱量が高くなる
。この反応は1発熱反応であるため、外部から熱を加え
なくとも反応は進行する。しかし、空気で石炭のガス化
を行おうとする場合、一定量の発熱量があっても空気中
に含まれる不活性ガスの窒素により薄められ、炉内の温
度を上昇させることができず、ガス化反応速度が遅くな
り、ガス化速度を低下させるという欠点がある。特に、
気流層で石炭のガス化を行おうとした時、気流層の大き
な特徴として、石炭中の灰分を溶融させて処理すること
があるが、このためには炉内の温度を灰分の溶融温度以
上に高くする必要があり、上式の部分酸化反応による発
熱量では不充分である。そこで一般に、1!&素量を増
大させて、上式の反応と並行して燃焼反応も行わせる。
Since coal is simple, components such as ash are excluded and expressed as hydrocarbons.From the above equation, the calorific value of the generated gas is highest when all the carbon in the coal becomes carbon monoxide. Since this reaction is a one-exothermic reaction, the reaction proceeds without applying heat from the outside. However, when trying to gasify coal with air, even if there is a certain amount of calorific value, it is diluted by the inert gas nitrogen contained in the air, making it impossible to raise the temperature inside the furnace, and the gas There is a disadvantage that the gasification rate is slowed down and the gasification rate is reduced. especially,
When trying to gasify coal in an air bed, a major feature of the air bed is that the ash in the coal is melted and processed, but in order to do this, the temperature inside the furnace must be raised to a temperature higher than the melting temperature of the ash. The amount of heat generated by the partial oxidation reaction in the above equation is insufficient. So generally, 1! & Increasing the elementary quantity and causing a combustion reaction to occur in parallel with the reaction in the above equation.

→nC0z+−HzO しかし燃焼反応を同時に起させると、生成ガス中の発熱
量が低下し、冷ガス効率が低下する。そこで酸素富化空
気により空気中に含まれる不活性ガスの窒素量を減らし
て高温化することが考えられる。この酸素富化空気の酸
素量は特に気流層においては、炉内の温度を灰分の溶融
温度以上に高くすれば良く、その酸素濃度は25%程度
である。
→nC0z+-HzO However, if the combustion reactions occur simultaneously, the calorific value in the generated gas decreases, and the cold gas efficiency decreases. Therefore, it is possible to increase the temperature by reducing the amount of nitrogen, an inert gas, contained in the air by using oxygen-enriched air. The oxygen content of this oxygen-enriched air, especially in the air flow bed, can be determined by raising the temperature inside the furnace to a temperature higher than the melting temperature of the ash, and the oxygen concentration is about 25%.

石炭搬送用気体としては、自然発火の考え方から、少な
くともm素濃度が5%以下であることが必要である。ま
た、石炭搬送用気体の必要量は、石炭の安定搬送条件か
ら窒素供給量/石炭供給量を0.1 にすることが最も
好ましい、また、石炭を搬送するのに必要な圧力は1石
炭の供給量や搬送ガス量によって大きく左右され、一般
に、数気圧必要である。
From the perspective of spontaneous combustion, the gas for transporting coal must have at least an m element concentration of 5% or less. In addition, it is most preferable that the amount of gas required for transporting coal is 0.1 (nitrogen supply amount/coal supply amount) from the viewpoint of stable coal transport conditions, and the pressure required to transport coal is 0.1. It largely depends on the amount of supply and the amount of carrier gas, and generally several atmospheres are required.

このように石炭ガス化を高効率で行うために、要求され
るガスを小型のPSAで一挙に供給することを考えた。
In order to perform coal gasification with high efficiency in this way, we considered supplying the required gas all at once using a small PSA.

すなわち、ガス化炉圧力に搬送差圧を加えた圧力で酸素
を吸着させて高純度の窒素を生成して石炭搬送用気体に
用い、ガス化炉圧力で吸着させた酸素を脱着させ酸素富
化空気を生成して石炭ガス化の酸化剤として使うことを
特徴とする。
In other words, high-purity nitrogen is produced by adsorbing oxygen at a pressure that is the sum of the gasifier pressure and the conveying differential pressure, and is used as a coal conveying gas, and the adsorbed oxygen is desorbed at the gasifier pressure to enrich it with oxygen. It is characterized by generating air and using it as an oxidizing agent for coal gasification.

第3図にPSAのフローを示す、PSAでは、高圧で時
定成分のガスを吸着させ、低圧で脱着させる。従って低
圧のパージガスでは、前記した特定成分のガスの濃度が
高く、高圧で取り出されるガスでは特定成分のガス濃度
が低い、そこで、一般的に空気中の酸素と窒素を分離す
るには、ゼオライト系の吸着剤を用いて、窒素を吸着さ
せ、酸素の濃度が高いガスを生成させている。しかし、
このような方法で製造した酸素富化空気は石炭ガス化に
用いるには好ましない。窒素吸着型、酸素富化空気製造
方法により得られるガスを第3表□に示す。
FIG. 3 shows the flow of PSA. In PSA, a time-determined component gas is adsorbed at high pressure and desorbed at low pressure. Therefore, low-pressure purge gas has a high concentration of the above-mentioned specific components, while gas extracted at high pressure has a low concentration of specific components. Therefore, in order to separate oxygen and nitrogen from the air, zeolite Adsorbents are used to adsorb nitrogen and produce gas with a high concentration of oxygen. but,
Oxygen-enriched air produced in this manner is not preferred for use in coal gasification. Gases obtained by the nitrogen adsorption type, oxygen-enriched air production method are shown in Table 3 □.

第  3  表 このようなPSAで生産されたガスは、前記した石炭ガ
ス化1こ要求されるガスと比較すると、非常に適合性が
悪いことが分かる。特に、製品ガスは石炭搬送用ガスと
して使用するには酸$4a度が高すぎる。従ってこれを
再度他のPSAに導入して更に窒素濃度を高めて使用せ
ざるを得ない、この方法では装置が複雑となり好ましく
ない。また、他のユーティリティで酸素濃度が10%程
度のガスを必要とするものは特に存在しない。
Table 3 It can be seen that the gas produced in such a PSA is very poorly suited when compared with the gas required for coal gasification as described above. In particular, the acidity of the product gas is too high to be used as coal conveying gas. Therefore, it is necessary to reintroduce the nitrogen into another PSA to further increase the nitrogen concentration.This method is undesirable because the apparatus becomes complicated. Furthermore, there are no other utilities that require gas with an oxygen concentration of about 10%.

また、仮に再度他のPSAを導入して更に窒素濃度を高
めて使用する場合でも、常にガス化炉より低い圧力で生
産されるため、再度加圧する必要が生じ、エネルギー的
に大きくロスする。
Furthermore, even if another PSA is reintroduced to further increase the nitrogen concentration and used, the production is always at a lower pressure than the gasifier, so it will be necessary to pressurize again, resulting in a large energy loss.

更に、本来大量に必要とすべきガス化剤の酸素富化空気
が少量しか生産されず、また少量で良いはずの石炭搬送
ガスとして使用すべき窒素富化ガスが大量に生産されて
しまう。
Furthermore, only a small amount of oxygen-enriched air, which is a gasification agent that is originally required in large quantities, is produced, and a large amount of nitrogen-enriched gas, which should be used as a coal carrier gas, is produced in large quantities.

この点は、特にPSAが大容量化できない大きな理由で
ある。
This point is a major reason why the capacity of PSA cannot be increased.

すなわち、大容量化の手法として、高圧化があるが、こ
の大量に棄ててしまうガスが多いために加圧化したエネ
ルギーが結局無駄になるのでコストが上り、無駄になつ
しまう、また本来、塔内の無駄なガスを保持するために
、塔内を有効に使用していないという大きな欠点があっ
た。
In other words, one way to increase capacity is to increase the pressure, but since a large amount of gas is discarded, the pressurized energy is ultimately wasted, increasing costs and wasting it. A major drawback was that the inside of the tower was not used effectively to retain the waste gas inside.

以上のように従来の一般的に用いられている富化酸素製
造用PSAは石炭ガス化には非常に不合理であったに れに対し本発明は全く逆転の発想を行い、石炭ガス化に
非常に適合性のあるPSAを発明しまた、このPSAを
用いて高効率発電システムを考案するに至った。
As mentioned above, the conventional PSA for producing enriched oxygen was extremely unreasonable for coal gasification, but the present invention has a completely opposite idea and is suitable for coal gasification. He invented a highly compatible PSA and devised a highly efficient power generation system using this PSA.

石炭ガス化に必要なガスの(第2表)は酸素富化ガスな
のでPSAで生産されるガス■(第3表)と対応するが
、石炭ガス化に必要なガスのは低圧(ガス化炉圧)でか
つ大量に必要であるのに対しPSA生産されるガス■は
、これと全く反対であり高圧で少量しか生産されない、
この点が、石炭ガス化に適応性が悪い主な原因である。
The gas required for coal gasification (Table 2) corresponds to the gas produced in PSA (Table 3) because it is an oxygen-enriched gas, but the gas required for coal gasification is low pressure (gasification furnace). The gas produced by PSA is completely opposite to this, and is produced in small amounts at high pressure.
This point is the main reason why coal gasification is poorly adapted.

しかも、無駄なガスが存在するということは。Moreover, there is a lot of wasted gas.

装置の中に無駄なスペースが存在するということを示し
ている。これがPSAを大型化できない原因になってい
る。
This indicates that there is wasted space in the device. This is the reason why PSA cannot be made larger.

そこで、窒素を表着させることをやめ、酸素を吸着させ
被吸看ガスを石炭ガス化の搬送用ガスに、パージガスを
石炭ガス化のガス化剤として使用することを試みた。そ
の頃略を第4図に示す。
Therefore, an attempt was made to stop adsorbing nitrogen and use the absorbed gas as a transport gas for coal gasification and the purge gas as a gasification agent for coal gasification by adsorbing oxygen. An outline of that time is shown in Figure 4.

rd!素を選択的に吸着させる剤は、特開昭58−33
979号にみられる。また、選択性を持たないとしても
、吸着速度が大きく異なるM S C(Molccul
arSieving Carbon)がある、これは、
平衡吸着量はwt素と窒素でほぼ同等であるが、初期の
吸着速度が酸素と窒素で大きく異なるという性質を有す
る。
rd! An agent that selectively adsorbs elements is disclosed in Japanese Patent Application Laid-open No. 58-33.
Seen in issue 979. In addition, even if it does not have selectivity, there are molecules with very different adsorption rates.
arSieving Carbon), which is
Although the equilibrium adsorption amount is approximately the same for wt element and nitrogen, it has a property that the initial adsorption rate is significantly different between oxygen and nitrogen.

従って、初期には酸素が大量に吸着されて、まだ窒素の
吸XJ−iが少ないために層を通過したガスから酸素だ
けが吸着され窒素濃度が高くなり、まだ窒素の吸着量が
少ないうちに脱着操作を開始すれば酸素を選択的に吸着
したのとほぼ同等の効果がある。
Therefore, in the early stage, a large amount of oxygen is adsorbed, and since the amount of nitrogen adsorbed is still small, only oxygen is adsorbed from the gas that has passed through the layer, and the nitrogen concentration increases. Once the desorption operation begins, the effect is almost the same as selectively adsorbing oxygen.

本発明の1実施例を第1図により説明する。One embodiment of the present invention will be described with reference to FIG.

全体は、空気分離装置2石炭供給装置1石炭ガス化炉よ
り構成される。
The entire system is composed of an air separation device, a coal supply device, and a coal gasification furnace.

空気分離装置は、空気4を供給する圧縮器18゜吸着、
脱着をそれぞれ行うことができる吸脱着塔11、定期的
に吸脱着塔Allと他の装置とのガスの流通の、開閉を
行うバルブ23,27,29、更に吸脱着塔Allと同
等の操作を行える吸脱著増B12.バルブ23,27.
29よりなる。吸着剤はw1素を選択的に大量あるいは
高速に吸着可能な剤を充填する。
The air separation device includes a compressor 18° adsorption unit that supplies air 4;
An adsorption/desorption column 11 that can perform desorption, valves 23, 27, and 29 that periodically open and close gas flow between the adsorption/desorption column All and other devices, and further operations equivalent to those of the adsorption/desorption column All. Significant increase in suction and extraction B12. Valve 23, 27.
Consists of 29. The adsorbent is filled with an agent capable of selectively adsorbing w1 element in large quantities or at high speed.

石炭供給装置は、石炭1を加圧下に溜める加圧ホッパ1
09石炭1を供給状態の圧力にする供給ホラ4132石
炭1を定量するフィーダ141石炭1と搬送ガスを混合
する混合器15より構成される。更に石炭1の加圧を行
うためのバルブ22゜26.21.搬送ガスの量を制御
するW8!l?i計31等より構成される。
The coal supply device includes a pressurized hopper 1 that stores coal 1 under pressure.
09 Consists of a feeder 143 for bringing the coal 1 to a supply pressure 4132 a feeder 141 for quantifying the coal 1 and a mixer 15 for mixing the coal 1 and the carrier gas. Furthermore, a valve 22゜26.21. for pressurizing the coal 1. W8 controls the amount of carrier gas! l? It is composed of a total of 31 items.

石炭ガス化炉は、ガス他炉本体161石炭バーナ17よ
り構成される。
The coal gasification furnace is composed of a gas furnace main body 161 and a coal burner 17.

次に本実施例の動作について説明する。空気4は、圧縮
器18の入り口に取り付けられたフィルターにより気流
中のダストを除去され、圧縮器18により加圧される。
Next, the operation of this embodiment will be explained. The air 4 is pressurized by the compressor 18 after dust is removed from the air by a filter attached to the inlet of the compressor 18 .

加圧する圧力は、石炭供給ホッパ13やエダクタ−15
に十分に搬送用ガスを供給することが出来る圧力P1に
、吸着剤が充填された吸脱着基All、12をガスが通
過する際に必要な圧力損失ΔPp を加えた圧力以上に
設定する。加圧された空気はバルブ29あるいは30を
経て吸脱着基All、12へ供給される。
The pressure to be applied is determined by the coal supply hopper 13 and the eductor 15.
The pressure P1 is set to be equal to or higher than the pressure P1 that can supply a sufficient amount of the transport gas to the gas, plus the pressure loss ΔPp required when the gas passes through the adsorption/desorption groups All and 12 filled with the adsorbent. The pressurized air is supplied to the adsorption/desorption groups All, 12 via the valve 29 or 30.

PSAは、吸脱着基All、12内の圧力変化により吸
脱着を繰り返す、そして吸脱着基A11゜12内の圧力
はバルブ23,24,27,28゜29.30により決
定される。サイクルに応じた各バルブ開閉状態を第4表
に示す。
PSA repeatedly adsorbs and desorbs due to pressure changes within the adsorption/desorption groups All, 12, and the pressure within the adsorption/desorption groups A11, 12 is determined by valves 23, 24, 27, 28, 29, 30. Table 4 shows the opening and closing states of each valve depending on the cycle.

第  4  表 まず、吸脱着基Allについて説明する。サイクル1の
状態になるとバルブ29が開き、吸脱着基11に圧縮器
18から加圧された空気が直接供給されるので、吸脱着
基Allに圧縮器の圧力は上昇する。これにより、吸脱
着基Allの内部に充填された吸着剤に酸素が選択的に
吸着される。
Table 4 First, the adsorption/desorption group All will be explained. When the state of cycle 1 is reached, the valve 29 is opened and pressurized air is directly supplied from the compressor 18 to the adsorption/desorption group 11, so that the pressure of the compressor increases to the adsorption/desorption group All. As a result, oxygen is selectively adsorbed by the adsorbent filled inside the adsorption/desorption group All.

すなわち吸脱着基11では吸着操作が行われる。That is, adsorption operation is performed in the adsorption/desorption group 11.

従って、吸脱着基Allよりバルブ23を通過して石炭
供給搬送装置へ送られるガスにはU鋼含有量が少ないす
なわち窒素濃度が高く石炭を自然発火させない搬送ガス
に適したガスが供給される6以上の操作をある一定時間
連続して行うと、吸脱着基Allは酸素を選択的に酸素
を吸着できなくなる8本実施例では、吸脱着基Allに
は酸素を窒素に比べて選択的に高速に吸着可能な吸着剤
であるMSCを充填する。従って、単に吸着剤の平衡吸
着量に達したために酸素を吸着できなくなった訳ではな
い、この理由をMSCの第5図に示した基本性能曲線か
ら説明する。横軸は吸着操作を開始してからの経過時間
を示し、縦軸は吸着剤1g当たりに吸着するガス量を示
す。MSCは、酸素と窒素で平衡吸着量はほぼ等しいが
、初期吸着速度が大きく異なり、初期においては酸素の
吸着速度が、窒素の吸着速度に比べて非常に速いことを
示している。従って、1分付近においては酸素吸着量が
窒素吸着量に対して大きい、この結果酸素が選択的に吸
着される。更に、1分以上ガスを流し続けると、窒素も
吸着されるので、選択性がなくなるのである1以上から
吸着操作から脱着操作へ切り替える時間が決定される。
Therefore, the gas sent from the adsorption/desorption group All through the valve 23 to the coal supplying and conveying device is supplied with a gas that has a low U steel content, that is, a high nitrogen concentration, and is suitable as a conveying gas that does not cause coal to spontaneously ignite. If the above operations are performed continuously for a certain period of time, the adsorption/desorption group All will no longer be able to selectively adsorb oxygen.8 In this example, the adsorption/desorption group All will selectively adsorb oxygen at a higher rate than nitrogen. is filled with MSC, which is an adsorbent capable of adsorption. Therefore, it does not mean that oxygen cannot be adsorbed simply because the adsorbent reaches its equilibrium adsorption amount.The reason for this will be explained from the basic performance curve of MSC shown in FIG. 5. The horizontal axis shows the elapsed time after starting the adsorption operation, and the vertical axis shows the amount of gas adsorbed per gram of adsorbent. MSC shows that although the equilibrium adsorption amounts of oxygen and nitrogen are almost equal, the initial adsorption rates are significantly different, and the oxygen adsorption rate is initially much faster than the nitrogen adsorption rate. Therefore, around 1 minute, the amount of oxygen adsorption is larger than the amount of nitrogen adsorption, and as a result, oxygen is selectively adsorbed. Furthermore, if the gas continues to flow for more than 1 minute, nitrogen will also be adsorbed, so selectivity will be lost.The time to switch from adsorption operation to desorption operation is determined from 1 or more.

酸素を選択的に吸着できなくなると、吸脱着基Allに
とっては脱着操作に当たるサイクル2に移る。サイクル
2では、まず吸脱着基Allの生成ガス切り替えバルブ
23、及び吸脱着基Allへ原料ガスである空気を供給
するバルブ29が同時に閉められる。そしてパージガス
切り替えバルブ27が開けられる。バルブ27が開けら
れると、石炭ガス化炉16へガス化剤を供給するバーナ
17と吸脱着基Allが連通され、吸脱着基A11は予
め、石炭ガス化炉16よりも高い圧力に設定されている
ので吸脱着基All内のガスは石炭ガス化炉16へ流れ
込む。そして吸脱着基A11内の圧力が低くなり始める
。吸脱着塔All内の吸着剤には高い圧力での吸着操作
によって酸素が大量に吸着されている。この吸脱着基A
ll内の圧力を低下させる操作により吸脱着基Δ11内
の吸着剤に吸着されていた酸素は脱着される。
When oxygen can no longer be selectively adsorbed, the process moves to cycle 2, which is a desorption operation for the adsorption/desorption group All. In cycle 2, first, the produced gas switching valve 23 of the adsorption/desorption group All and the valve 29 for supplying air, which is a raw material gas, to the adsorption/desorption group All are simultaneously closed. Then, the purge gas switching valve 27 is opened. When the valve 27 is opened, the burner 17 that supplies the gasification agent to the coal gasification furnace 16 and the adsorption/desorption group All communicate with each other, and the adsorption/desorption group A11 is set to a higher pressure than the coal gasification furnace 16 in advance. Therefore, the gas in the adsorption/desorption group All flows into the coal gasifier 16. Then, the pressure within the adsorption/desorption group A11 begins to decrease. A large amount of oxygen is adsorbed on the adsorbent in the adsorption/desorption tower All by adsorption operation at high pressure. This adsorption/desorption group A
Oxygen adsorbed by the adsorbent in the adsorption/desorption group Δ11 is desorbed by reducing the pressure in the adsorption/desorption group Δ11.

この結果、ガス化剤としてガス化炉16へ供給されるガ
スの酸素濃度が原料ガスの空気4よりも高くなり、所謂
、酸素富化空気となる。
As a result, the oxygen concentration of the gas supplied as a gasification agent to the gasification furnace 16 becomes higher than that of the raw material gas air 4, resulting in so-called oxygen-enriched air.

脱着操作が終了すると再びサイクル1を繰りかえす0以
上のような操作を吸脱着基B12でも同様に実施する。
When the desorption operation is completed, cycle 1 is repeated again, and the same operation as above is performed on the adsorption/desorption group B12.

但し、吸脱着基Allが吸着操作を行っているときに吸
脱着基B12では脱着操作を、吸脱着基Allが脱着操
作を行っている時には吸脱着基B12では吸着操作を行
う、このようにしてほぼ連続的に窒素濃度の高い石炭搬
送用ガス、及び石炭ガス他剤用酸素富化空気を同時に得
ることができる。
However, when the adsorption/desorption group All is performing the adsorption operation, the adsorption/desorption group B12 performs the desorption operation, and when the adsorption/desorption group All is performing the desorption operation, the adsorption/desorption group B12 performs the adsorption operation. Coal conveying gas with a high nitrogen concentration and oxygen-enriched air for coal gas and other agents can be obtained almost continuously at the same time.

石炭搬送用ガスは、バルブ22を経て加圧ホッパ10へ
、またバルブ26を経て供給ホッパ13へ、更に流量調
節計機能を持つバルブ31を経てエダクタ15へ供給さ
れる0石炭1は石炭ガス化炉16でガス化し易い粒径に
粉砕分級され石炭加圧ホッパ10へ供給される。
The coal conveying gas is supplied to the pressurizing hopper 10 via the valve 22, to the supply hopper 13 via the valve 26, and further to the eductor 15 via the valve 31 having a flow rate controller function. The coal is crushed and classified in a furnace 16 to a particle size that is easily gasified, and then supplied to a coal pressurizing hopper 10.

石炭1は、固体であるのでそのまま加圧されたガス化炉
へ供給することはできない、そこでロックホッパシステ
ムを用いる。この原理を次に述べる。まず、バルブ25
を閉め、バルブ31を開放にして加圧ホッパ10を常圧
にしておき、石炭1を加圧ホッパ10に導く。次に、バ
ルブ31を閉めてバルブ22を開は搬送用気体を加圧ホ
ッパへ供給し加圧する。そして、前もって加圧しておい
た供給ホッパ13と等しい圧力になったら、バルブ25
を開けて石炭1を加圧ホッパ1oがら供給ホッパ13へ
供給する。その後、バルブ25を閉め、バルブ21をあ
けることで加圧ホッパ1oの内部の搬送用ガスを抜き出
し、加圧ホッパ13を常圧にし、始めの動作に移る。
Since the coal 1 is solid, it cannot be directly fed to the pressurized gasifier, so a lock hopper system is used. This principle will be explained next. First, valve 25
is closed, the valve 31 is opened to keep the pressure hopper 10 at normal pressure, and the coal 1 is introduced into the pressure hopper 10. Next, the valve 31 is closed and the valve 22 is opened to supply and pressurize the conveying gas to the pressurizing hopper. When the pressure is equal to that of the supply hopper 13, which has been pressurized in advance, the valve 25
is opened and the coal 1 is supplied to the supply hopper 13 from the pressurized hopper 1o. Thereafter, by closing the valve 25 and opening the valve 21, the transport gas inside the pressure hopper 1o is extracted, the pressure hopper 13 is brought to normal pressure, and the operation moves to the beginning.

供給ホッパ13内に充填された石炭1は、ロータリーフ
ィーダ14により定量され、エダクタ15へ送られる。
Coal 1 filled in supply hopper 13 is metered by rotary feeder 14 and sent to eductor 15 .

エダクタ15で石炭1と流量調節バルブ31で流量をI
aIyiされた搬送用ガスと混合され、Wi送管を通し
てバーナ17へ送られる6バーナ17で酸化剤と石炭が
混合され、石炭ガス化炉16へ送られる。
The eductor 15 controls the coal 1 and the flow rate adjustment valve 31 controls the flow rate I.
The oxidizing agent and coal are mixed with the aIyi conveying gas and sent to the burner 17 through the Wi pipe.The oxidizing agent and coal are mixed in the burner 17 and sent to the coal gasifier 16.

石炭ガス化炉16では、高温の炉内で石炭1が酸化剤と
反応してガス化され可燃性のガスを生成する。酸化剤は
、富化酸素空気であるため普通の空気に比べて炉内を高
温化できるため、より低い酸素/石炭でガス化を進めた
場合でも、石炭1中に灰分を溶融させることができるの
でガス化効率を向上させることができる。
In the coal gasification furnace 16, the coal 1 reacts with an oxidizing agent in a high-temperature furnace and is gasified to generate flammable gas. Since the oxidizer is oxygen-enriched air, it can raise the temperature inside the furnace higher than normal air, so even if gasification is performed with lower oxygen/coal, the ash content in the coal 1 can be melted. Therefore, gasification efficiency can be improved.

N1素富化空気の生成量と搬送ガスの生成量の比率は、
サイクルの間隔や、吸脱着基のSv(体積速度)等によ
り大きく変化するが、必要なガス組成に応じた操作範囲
は計算によりある程度求めることができる。
The ratio between the amount of N1-enriched air produced and the amount of carrier gas produced is:
Although it varies greatly depending on the cycle interval, Sv (volume velocity) of the adsorption/desorption group, etc., the operating range depending on the required gas composition can be determined to some extent by calculation.

各、搬送ガス中の窒素濃度における。ガス化剤の生成量
とガス化剤の酸素濃度の関係を第6図に示す。横軸には
ガス化剤である酸素富化空気の酸素濃度を、縦軸には原
料(空気)に対するガス他剤生成量の比を示す。図中に
は、搬送ガス窒素濃度を99.9,99,95.90%
 とした時に両者の関係を示す、これらは、吸着剤の性
能によることは勿論であるが、1塔において吸着、脱着
の切り替えサイクル、あるいは吸着、脱着時における操
作圧力を変化させることにより達成される。
each at the nitrogen concentration in the carrier gas. FIG. 6 shows the relationship between the amount of gasifying agent produced and the oxygen concentration of the gasifying agent. The horizontal axis shows the oxygen concentration of oxygen-enriched air, which is a gasification agent, and the vertical axis shows the ratio of the amount of gas and other agents produced to the raw material (air). In the figure, the carrier gas nitrogen concentration is 99.9, 99, 95.90%.
The relationship between the two is shown when .

一般的には、吸着時間を短くして、より速い時期に、吸
着、脱着を切り替えることで搬送ガス窒素濃度を高くで
き、また、吸着、脱着時における操作圧力の差を大きく
することにより、搬送ガス窒素濃度を高くすることでき
る。
Generally, the carrier gas nitrogen concentration can be increased by shortening the adsorption time and switching between adsorption and desorption at a faster time, and by increasing the difference in operating pressure during adsorption and desorption. Gas nitrogen concentration can be increased.

ガス化剤が、20%の時は、酸素富化を全く行わなかっ
た場合の空気を表す。従って、搬送ガスとしての窒素は
生成せず全量ガス化剤として用いられる。
When the gasifying agent is 20%, it represents the air without any oxygen enrichment. Therefore, nitrogen as a carrier gas is not produced and the entire amount is used as a gasifying agent.

搬送ガス窒素濃度を一定とした時ガス化剤の酸1i4a
度を増大させるほど、ガス他剤生成量は減少する。例え
ば、搬送ガス窒素濃度が99.9%の時、ガス化剤の酸
素濃度が25%の場合、ガス他剤生成量の原料ガス量に
対する割合は、80%であり、残りの20%は、搬送ガ
スとして生成される。
When the carrier gas nitrogen concentration is constant, the gasifying agent acid 1i4a
As the temperature increases, the amount of gas and other agents produced decreases. For example, when the nitrogen concentration of the carrier gas is 99.9% and the oxygen concentration of the gasifying agent is 25%, the ratio of the amount of gas and other agents produced to the amount of raw material gas is 80%, and the remaining 20% is Produced as a carrier gas.

搬送ガス1!素濃度を小さくする程、ガス他剤生成量の
原料ガス量に対する割合は、減少する。すなわち、原料
ガスのうち、ガス化剤として使われる量が減少し、搬送
ガスとして使用される量が増大することを示している。
Carrier gas 1! As the elementary concentration decreases, the ratio of the amount of other gases produced to the amount of raw material gas decreases. That is, it is shown that the amount of raw material gas used as a gasifying agent decreases and the amount used as a carrier gas increases.

前述した様に、ガス化剤と搬送ガスとの割合は。As mentioned above, the ratio of gasifying agent and carrier gas.

5対1程度が良い、その割合は、ガス他剤生成量の原料
ガス量に対する比率が、80%である。このような場合
、ガス他剤酸素濃度を25%程度にすることができ、ガ
ス化効率を十分に高めることができる。
The ratio is preferably about 5:1, and the ratio of the amount of gas and other agents produced to the amount of raw material gas is 80%. In such a case, the oxygen concentration of other gases can be set to about 25%, and the gasification efficiency can be sufficiently increased.

本実施例特有の効果としては、吸脱着塔11゜12の吸
着時の圧力を、石炭搬送用ガスを供給できる圧力とした
ので、PSAから生成したガスを更に加圧する必要がな
いことである。一般に。
A unique effect of this embodiment is that the pressure at the time of adsorption in the adsorption/desorption towers 11 and 12 is set to a pressure that can supply gas for coal conveyance, so there is no need to further pressurize the gas generated from the PSA. in general.

PSAで生成したガスを加圧するのに圧縮器を用いるが
1石炭ガス化の様に石炭搬送用ガスと酸化剤の2種類の
ガスが必要とされ、しかも、石炭搬送用ガスと酸化剤は
必要とされる量が10倍程度異なるため処理量の大きく
異なる2台の圧縮器が必要となる。しかし、本実施例に
よれば、圧縮器は1台で良く、しかも、本来ガス化に必
要な圧縮器を用いて石炭搬送用ガスと酸化剤を製造する
ことができる。従って、従来のPSAと石炭ガス化装置
を単に組み合わせた場合に比べて、装置を極めて簡単に
でき、かつ富化酸素空気を製造するコストが殆ど必要な
くなる。
A compressor is used to pressurize the gas generated in PSA, but as in coal gasification, two types of gas are required: a coal transport gas and an oxidizer; Since the amounts to be processed differ by a factor of about 10, two compressors with significantly different throughputs are required. However, according to this embodiment, only one compressor is required, and moreover, the coal conveying gas and oxidizing agent can be produced using the compressor originally required for gasification. Therefore, compared to a case where a conventional PSA and a coal gasification device are simply combined, the device can be made extremely simple, and the cost for producing oxygen-enriched air is almost eliminated.

また、従来の様に製品ガスよりも大量のガスを廃棄して
いた場合には、廃棄したガスをも加圧していたので、多
くのエネルギーを無駄に使い、棄てていたことを示して
いる。しかし、本発明では、全量のガスを無駄なくガス
化に使用するので、効率良くガス化を行える。しかも、
ガスの全量を使用するので、空気分離器の内部を総て利
用でき、逆に言えば、従来よりはるかに小型の装置で処
理量を満たすことができる。
Furthermore, in the case where a larger amount of gas than the product gas was disposed of as in the past, the discarded gas was also pressurized, which means that a lot of energy was wasted and wasted. However, in the present invention, since the entire amount of gas is used for gasification without waste, gasification can be performed efficiently. Moreover,
Since the entire amount of gas is used, the entire interior of the air separator can be used, and conversely, the throughput can be met with a much smaller device than in the past.

更に本発明を用いた石炭ガス化装置を石炭ガス化複合発
電システムに使用した実施例を第7図に示す。
Further, FIG. 7 shows an example in which a coal gasification apparatus using the present invention is used in a coal gasification combined cycle power generation system.

石炭ガス化複合発電システムは1石炭ガス化装置16.
ガスタービン110.空気製造設備11゜12より構成
される。
A coal gasification combined cycle power generation system consists of 1 coal gasifier16.
Gas turbine 110. It consists of air production equipment 11° and 12.

石炭ガス化剤1i!16.及び空気分離装置11゜12
は、第1図に示したものと同様である0石炭ガス化装置
より生成したガスには、未反応のチャーや、有害な硫黄
化合物が含まれる。
Coal gasifier 1i! 16. and air separation device 11゜12
The gas produced by the coal gasifier is similar to that shown in FIG. 1, and contains unreacted char and harmful sulfur compounds.

未反応チャーは、サイクロン等の脱!Q装置101で、
生成ガス中に含まれるダストを除皮してホッパ102で
溜められた後、ホッパ103,104より構成されたロ
ックホッパシステムでフィーダ105でガス化炉16へ
リサイクルされる。気流中に含まれる硫黄化合物は、脱
硫装置106により除去される6脱硫装F!1106に
入る前に脱硫しやすい温度に熱交換器107によって生
成ガスの温度が下げられる。
Remove unreacted char from cyclones, etc.! In the Q device 101,
After the dust contained in the generated gas is removed and stored in a hopper 102, it is recycled to a gasifier 16 via a feeder 105 in a lock hopper system composed of hoppers 103 and 104. Sulfur compounds contained in the air stream are removed by a desulfurizer 106. Before entering 1106, the temperature of the generated gas is lowered by a heat exchanger 107 to a temperature that facilitates desulfurization.

脱塵、脱硫されたガスは、ガスタービン燃焼器108に
よって燃焼され、ガスタービン110を駆動させる。更
に燃焼ガスと熱交換器109を合せてスチームを生成さ
せ、スチームタービン111を駆動させる。これらのタ
ービンを駆動させることで得られたエネルギーにより圧
縮器18を駆動させ空気4を加圧しガス化、及びガスタ
ービン燃焼器108の燃焼に用いる。以上のようにして
The dedusted and desulfurized gas is combusted by the gas turbine combustor 108 to drive the gas turbine 110. Further, the combustion gas is combined with the heat exchanger 109 to generate steam, and the steam turbine 111 is driven. The energy obtained by driving these turbines drives the compressor 18 to pressurize the air 4 and use it for gasification and combustion in the gas turbine combustor 108. Do as above.

ガスタービン110.スチームタービン11を同時に駆
動させることで、高効率の複合発電を行う。
Gas turbine 110. Highly efficient combined power generation is performed by driving the steam turbines 11 at the same time.

少しでも大量のガスの方が、ガスタービン110を駆動
しやすくなるので、発電には有利である。
Even a small amount of gas makes it easier to drive the gas turbine 110, which is advantageous for power generation.

従って、空気でガス化して発電を行った場合、酸素でガ
ス化して発電した場合よりも生成ガス量が多いので発電
し易い。しかし、前述した様に、石炭ガス化炉において
、生成した熱が空気中に含まれる窒素により温度を」二
昇させることができないので石炭中の灰分を溶融させら
れず、燃焼反応を進めざるを得ない。結果として、生成
ガス中の可燃性ガスが減少して、ガス化効率が低下し、
発電コストを上昇させていた。
Therefore, when electricity is generated by gasification with air, the amount of generated gas is larger than when electricity is generated by gasification with oxygen, so it is easier to generate electricity. However, as mentioned above, in a coal gasifier, the generated heat cannot raise the temperature due to the nitrogen contained in the air, so the ash in the coal cannot be melted, and the combustion reaction must proceed. I don't get it. As a result, combustible gas in the produced gas decreases, reducing gasification efficiency.
This was causing the cost of power generation to rise.

しかし、本発明を実施した石炭ガス化炉を用いたシステ
ムにより、酸化剤装造コストは従来の空気ガス化と変わ
らずに、ガス化効率を酸素ガス化程度まで上昇させるこ
とができる。すなわち、加圧した総てのガスを用いるの
で空気ガス化の場合と同様のガス量が得られ、それらを
総て発電に使用できる。更に、ガス化炉内では酸素量富
化空気でガス化を行うので、炉内の温度を高くでき、低
い酸素化でガス化反応を行うことができる。しかも、酸
素富化空気を製造するために、なんら費用を必要としな
い。以上により発電コストを飛躇的に低下させることが
できる。
However, by using a system using a coal gasifier according to the present invention, the gasification efficiency can be increased to the level of oxygen gasification without changing the cost of installing an oxidizer compared to conventional air gasification. That is, since all pressurized gases are used, the same amount of gas as in the case of air gasification can be obtained, and all of them can be used for power generation. Furthermore, since gasification is performed with oxygen-enriched air in the gasification furnace, the temperature inside the furnace can be increased and the gasification reaction can be performed with low oxygenation. Moreover, no expense is required to produce oxygen-enriched air. As a result of the above, it is possible to dramatically reduce the cost of power generation.

また、空気分離装置を従来と比較して非常に小型化でき
る6発電を考えた場合、プラントの敷地面積が、そのま
ま発電所建設のコストに関係する。
Furthermore, when considering a power generation system that allows the air separation device to be much smaller than conventional ones, the site area of the plant is directly related to the cost of constructing the power plant.

、従来PSAを用いた場合、搬送ガスと石炭搬送用ガス
の両方に対してそれぞれPSAをinする必要があり、
またPSAでは、半分以上の層が脱着操作のため停止す
るので、非常に大きな敷地面積を必要とした。しかし、
本発明により、PSAに供給するガスを総て有効に使用
するので、従来に比べて1躇的に小型化できる。
When using a conventional PSA, it is necessary to insert a PSA for both the carrier gas and the coal conveying gas,
In addition, in PSA, more than half of the layers are stopped for desorption operations, so a very large site area is required. but,
According to the present invention, all of the gas supplied to the PSA is effectively used, so the size can be significantly reduced compared to the conventional one.

実施例2について第8図を用いて説明する。Example 2 will be explained using FIG. 8.

フローの概略は、実施例1とほぼ等しいが、吸着、脱着
塔の操作圧力を低くして、酸素富化空気。
The outline of the flow is almost the same as in Example 1, but the operating pressure of the adsorption and desorption towers is lowered to produce oxygen-enriched air.

石炭搬送用ガスを生成した後ブーストアップ用のコンプ
レサ−38および39により加圧しようとするものであ
る。
After the coal conveyance gas is generated, it is intended to be pressurized by boost-up compressors 38 and 39.

一般にPSAは、低温低圧で行われる。これは、特に平
衡吸着量の差を用いて空気中の酸素と窒素を分離するP
SAでは、低圧の方が被吸着ガスを脱着でき、性能が良
いためである。
PSA is generally performed at low temperature and pressure. This is a P method that uses the difference in equilibrium adsorption amount to separate oxygen and nitrogen from the air.
This is because in SA, the lower pressure allows the adsorbed gas to be desorbed and the performance is better.

本実施例特有効果としては、吸着、脱着の操作が容易な
点である。
A unique advantage of this embodiment is that adsorption and desorption operations are easy.

次に実施例3について第9図により説明する。Next, Example 3 will be explained with reference to FIG. 9.

フローの概略は、実施例1とほぼ同様である。The outline of the flow is almost the same as in the first embodiment.

本実施例における相違点は、第1に、吸着操作を終了し
たガス、すなわち搬送ガスとして用いられる高純度窒素
ガスの出口バルブ24.25の後にバッファタンク41
を設けたこと、また、脱着操作を終了したガス化剤の出
口バルブ27.28の後にバッファタンク42を設置し
たことである。
The difference in this embodiment is that, first, a buffer tank 41 is placed after the outlet valve 24, 25 for the gas that has completed the adsorption operation, that is, the high-purity nitrogen gas used as the carrier gas.
In addition, a buffer tank 42 was installed after the outlet valve 27, 28 for the gasifying agent after the desorption operation.

第2に、原料である空気4を圧縮器18で加圧した後、
水分を除去する剤を充填した吸着塔43を設けたことで
ある。
Second, after pressurizing the raw material air 4 with the compressor 18,
This is because an adsorption tower 43 filled with an agent for removing moisture is provided.

PSAでは、バルブ23〜24.27〜30の操作によ
り、吸脱着基A11.吸脱着塔B12内部の圧力を変化
させて吸着、あるいは脱着操作を行う、従って、吸脱着
基All、吸脱着基B12の出口ガスには大きな圧力の
変動が生じる。
In PSA, the adsorption/desorption groups A11. The adsorption or desorption operation is performed by changing the pressure inside the adsorption/desorption column B12. Therefore, large pressure fluctuations occur in the outlet gas of the adsorption/desorption group All and the adsorption/desorption group B12.

また、脱着操作の初期においては、圧力が脱着に適した
圧力に達しないので、吸着剤からの酸素脱着が十分でな
いために、酸素富化酸素の酸素濃度が低い、一方、脱着
操作の終期においては、逆に吸着剤からの酸素脱着が十
分に行なわれるために、酸素富化酸素のW1素濃度が高
くなる。
In addition, at the beginning of the desorption operation, the pressure does not reach the appropriate pressure for desorption, so the oxygen concentration in the oxygen-enriched oxygen is low because the oxygen desorption from the adsorbent is not sufficient, while at the end of the desorption operation, the oxygen concentration is low. On the contrary, since oxygen desorption from the adsorbent is sufficiently performed, the W1 elementary concentration of oxygen-enriched oxygen becomes high.

以上の用な、吸着、脱着の操作により生じる生成ガスの
圧力や組成の変動を、バッファタンク41.42によっ
て取り除こうとするものである。
The buffer tanks 41 and 42 are intended to eliminate fluctuations in the pressure and composition of the generated gas caused by the operations of adsorption and desorption as described above.

次に、第2の変更点である水分除去用の吸着塔43につ
いて説明する。一般に、PSAで称される吸着剤は、水
分に弱く、僅な水分含入によって著しく効率が低下する
。しかも本発明のように、比較的高圧で吸着、脱着操作
を行う場合、空気中に含まれる水分が凝縮し吸脱着基A
11.吸脱着塔B12内部に充填した剤の性能を劣化さ
せる。
Next, the adsorption tower 43 for moisture removal, which is the second modification, will be explained. In general, adsorbents referred to as PSA are sensitive to moisture, and their efficiency is significantly reduced by a small amount of moisture content. Moreover, when adsorption and desorption operations are performed at relatively high pressures as in the present invention, moisture contained in the air condenses and the adsorption/desorption group A
11. The performance of the agent packed inside the adsorption/desorption tower B12 is deteriorated.

そこで、系の中で最も高圧となる原料の空気4を圧縮器
18で加圧した後に水分吸着用の吸着塔43を設けて、
水分を取り除くものである。
Therefore, after pressurizing the raw material air 4, which has the highest pressure in the system, with the compressor 18, an adsorption tower 43 for moisture adsorption is installed.
It removes moisture.

本実施例特有の効果としては、吸着、脱着の操作により
生じる生成ガスの圧力や組成の変動が少なくなり、安定
した組成のガス化剤や、搬送ガスを、安定した圧力で供
給できるのでガス化炉の運転操作性が向上できる点であ
る。
The unique effects of this example are that fluctuations in the pressure and composition of the generated gas caused by adsorption and desorption operations are reduced, and gasifying agents and carrier gases with stable compositions can be supplied at stable pressures, which improves gasification. The advantage is that the operability of the furnace can be improved.

次に実施例4について第10図を用いて説明する。Next, Example 4 will be explained using FIG. 10.

フローの概略は、実施例1における第7図とほぼ等しい
、相違点は、空気分離装置における吸脱着基を多数設け
た点、及び脱着操作においてガス化炉で発生したガスを
用いた点である。
The outline of the flow is almost the same as FIG. 7 in Example 1, the difference being that a large number of adsorption/desorption groups were provided in the air separation device, and the gas generated in the gasifier was used in the desorption operation. .

前述した様にPSAは吸着操作と脱着操作を交互に繰り
返すが、この繰り返し操作により出口ガス組成の不安定
さ、出口圧力の不安定が生じる。
As described above, PSA alternately repeats adsorption and desorption operations, but this repeated operation causes instability in the outlet gas composition and outlet pressure.

また、本来、発電を目的とした石炭ガス化炉は処理量が
大きく、PSAI基では石炭ガス化に必要なガスを全て
供給することはできない、そこで、本実施例では第10
図に示すように、この繰り返し操作を、連続的に少しず
つ時間をずらして行えるように多数の吸着脱着塔130
を設けた点である。これにより、PSAの欠点である出
口ガス組成の不安定さ、出口圧力の不安定さを解消する
ことができる。
In addition, coal gasifiers originally intended for power generation have a large throughput, and the PSAI group cannot supply all the gas necessary for coal gasification.Therefore, in this example, the 10th
As shown in the figure, a large number of adsorption/desorption towers 130 are installed so that this repeated operation can be carried out continuously at slightly different times.
The point is that This makes it possible to eliminate the instability of the outlet gas composition and the instability of the outlet pressure, which are disadvantages of PSA.

更に、多数の吸着脱着塔130を設けたことにより負荷
変動性も向上させることができる。吸着脱着塔130が
一組しかなかった場合、負荷を変動させるためには、吸
着脱着塔130自体でガス処理量を変化させねばならな
い、しかし、吸着脱着塔130自体でガス処理量を変化
させるには吸着脱着塔130の中での空塔速値や、バル
ブの切り替え間隔を変化させる必要がある。このような
操作方法では、初期の設計条件に制約が生じる。
Furthermore, by providing a large number of adsorption/desorption towers 130, load fluctuation can also be improved. If there is only one set of adsorption/desorption towers 130, in order to vary the load, the amount of gas processed by the adsorption/desorption tower 130 itself must be changed. However, changing the amount of gas processed by the adsorption/desorption tower 130 itself requires It is necessary to change the superficial velocity value in the adsorption/desorption tower 130 and the valve switching interval. Such an operating method imposes restrictions on initial design conditions.

これに対し本実施例の様に多数の塔を設けたことで、負
荷を低くしたときにはそれに応じて使用する塔数を減少
するだけで、負荷変動に対応することができる。
On the other hand, by providing a large number of towers as in this embodiment, when the load is lowered, it is possible to cope with load fluctuations by simply reducing the number of towers used accordingly.

また、本実施例の特徴は、脱着操作においてガス化炉で
発生したガスを用いる点である。第7図でスチームター
ビン111を通過した後の低級スチームを、ライン14
0により吸脱着塔130へ導く、低級スチームとしては
、スチームタービンの他にガス化炉の水冷壁からの戻り
循環水、等の熱源を用いることが可能である。ライン1
40により導かれた熱源は、吸脱着塔130の脱着操作
において吸脱着塔130に供給する。これにより吸着剤
に吸看されたa素がより速やかに脱着される。また1本
発明では、脱着されたガスが石炭ガス化のガス化剤とな
るので、ガス化剤がより加熱されて、ガス化炉内の温度
を上昇させることができ、ガス化効率を向上させること
ができる。
Further, a feature of this embodiment is that the gas generated in the gasifier is used in the desorption operation. In FIG. 7, the low grade steam after passing through the steam turbine 111 is transferred to the line 14.
As the low-grade steam guided to the adsorption/desorption tower 130 by the steam turbine, it is possible to use a heat source such as return circulating water from the water-cooled wall of the gasifier in addition to a steam turbine. line 1
The heat source guided by 40 is supplied to the adsorption/desorption tower 130 during the desorption operation of the adsorption/desorption tower 130 . As a result, the a element adsorbed by the adsorbent is more quickly desorbed. In addition, in the present invention, the desorbed gas becomes the gasifying agent for coal gasification, so the gasifying agent is heated further, and the temperature inside the gasifier can be increased, improving the gasification efficiency. be able to.

本実施例特有の効果としては、生成ガスの組成や、圧力
が安定し、脱着の効率が向上できるのでより高性能なガ
スの分離が可能なことである。
The unique effects of this embodiment are that the composition and pressure of the generated gas are stabilized, and the efficiency of desorption can be improved, making it possible to separate gases with higher performance.

次に、実施例5について、第11図を用いて説明する。Next, Example 5 will be described using FIG. 11.

将来、酸素吸着剤の性能が大幅に向上することが考えら
れる。このような場合、吸脱着塔の大きさを飛躍的に小
型化できると考えられる。
It is conceivable that the performance of oxygen adsorbents will improve significantly in the future. In such a case, it is considered that the size of the adsorption/desorption tower can be dramatically reduced.

そこで1本実施例においては、複数の吸脱着塔を1つに
まとめ、空気分離塔90とした。
Therefore, in this embodiment, a plurality of adsorption/desorption towers were combined into one air separation tower 90.

本実施例特有の効果としては、一体化することにより、
構造をシンプルにでき、操作性、運転性を向上させるこ
とができる点である。
As an effect unique to this embodiment, by integrating,
The structure can be simplified and operability and driveability can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明により、ガス化剤及び搬送ガスを空気から同時に
殆ど製造のためのエネルギーを用いずに製造して石炭ガ
ス化にもちいることができるので。
According to the present invention, the gasifying agent and the carrier gas can be simultaneously produced from air and used for coal gasification using almost no production energy.

ガス化に必要な設備を非常に小型化でき、且つガス化発
電による電気製造コストを低減することができる。
The equipment necessary for gasification can be significantly downsized, and the cost of producing electricity through gasification power generation can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の概略図、第2図は、石炭ガス化装
置の概略フローと必要なガスの組成、第3図は、PSA
の概略フローと生成されるガスの組成、第4図は、石炭
ガス化装置とPSAを本発明により組み合わせたシステ
ムの概略フローと送られるガスの組成、第5図は、実施
例1に用いる吸着剤の吸着量と時間の関係、第6図は、
実施例1の操作条件の説明図、第7図は、実施例1の石
炭ガス化装置を用いた発電システムのフロー、第8図は
、実施例2の概略図、第9図は、実施例3の概略図、第
10図は、実施例4の概略図、第11図は、実施例5の
概略図。 1・・・石炭、2・・・廃棄ガス、3・・・石炭ガス化
生成ガス、4・・・空気、5・・・スラグ、10・・・
加圧ホッパ、11・・・吸脱着塔A、12・・・吸脱着
塔B、13・・・供給ホッパ、14・・・ロータリーフ
ィーダー、15・・・エダクタ−116・・・石炭ガス
化炉、17・・・石炭バーナ、18・・・圧縮器、23
・・・吸脱着塔A製品ガス切り替えバルブ、24・・・
吸脱着塔Bi品ガス切り替えバルブ、27・・・吸脱着
塔Aパージガス切り替えバルブ、28・・・吸脱着塔B
パージガス切り替えバルブ、29・・・吸脱着塔AfI
X料ガス供給バルブ、!+−5 30・・・吸脱着塔B原料ガス供給バルブ、     
  ゝ代理人 弁理士 小川勝男  − 第2g ロックオ1ソバ0システム 万力   30αtcL 第3図 第4図 ロア7/パノ八〇 3gt>を先     富f鱈り化炭3・0圧f)  
  30^t^ 第5図 鳴時間薄1 第60 招7図 III−スチームクービン 第8 に 37 フースト7ノフ゛5正午高名1 第90 42 /(ラフ1タンク 第1O図 30・−吸膣1塔
Fig. 1 is a schematic diagram of Example 1, Fig. 2 is a schematic flow of the coal gasifier and the composition of necessary gas, and Fig. 3 is a PSA
Fig. 4 shows the schematic flow of the system combining a coal gasifier and PSA according to the present invention and the composition of the gas sent, and Fig. 5 shows the adsorption composition used in Example 1. The relationship between the adsorption amount of the agent and time, Figure 6, is as follows.
An explanatory diagram of the operating conditions of Example 1, FIG. 7 is a flow of a power generation system using the coal gasifier of Example 1, FIG. 8 is a schematic diagram of Example 2, and FIG. 9 is a diagram of the example. 3, FIG. 10 is a schematic diagram of Example 4, and FIG. 11 is a schematic diagram of Example 5. 1...Coal, 2...Waste gas, 3...Coal gasification product gas, 4...Air, 5...Slag, 10...
Pressure hopper, 11... Adsorption/desorption tower A, 12... Adsorption/desorption tower B, 13... Supply hopper, 14... Rotary feeder, 15... Eductor-116... Coal gasification furnace , 17... Coal burner, 18... Compressor, 23
...Adsorption/desorption tower A product gas switching valve, 24...
Adsorption/desorption tower Bi product gas switching valve, 27...Adsorption/desorption tower A purge gas switching valve, 28...Adsorption/desorption tower B
Purge gas switching valve, 29...adsorption/desorption tower AfI
X gas supply valve! +-5 30...Adsorption/desorption tower B raw material gas supply valve,
ゝAgent Patent Attorney Katsuo Ogawa - 2nd g Lock-O 1 Soba 0 System Vise 30αtcL Fig. 3 Fig. 4 Loa 7/Pano 803gt> wealth f cod charcoal 3.0 pressure f)
30^t^ 5th figure ringing time thin 1 60 invitation 7 figure III-Steam Kubin 8th 37 foust 7 nof 5 noon high name 1 90 42 / (rough 1 tank 1st O figure 30・- sucking vagina 1 tower

Claims (1)

【特許請求の範囲】 1、同じ圧力、温度において酸素を窒素に比べて速く大
量に吸着する吸着剤を充填した複数の塔に、加圧した空
気を流通させて高濃度窒素ガスを生成し、窒素が吸着剤
に大量吸着され始める以前に、該塔を通る空気の圧力を
減圧して吸着剤に吸着された酸素を脱着させて富化酸素
空気を生成し、以上の操作を各塔で時間をずらして繰り
返すことにより高濃度窒素ガス及び富化酸素空気を連続
的に生成して、高濃度窒素ガスを石炭搬送、及び石炭充
填容器の加圧に用い、富化酸素空気を石炭ガス化剤とし
て用いる石炭ガス化方法。 2、同じ圧力、温度における酸素の平衡吸着量が窒素に
比べて大きい吸着剤を充填した複数の塔に、加圧した空
気を流通させて高濃度窒素ガスを生成し、酸素の平衡吸
着量に達する以前に、該塔を流通する空気の圧力を減圧
して吸着剤に吸着された酸素を脱着させて富化酸素空気
を生成し、以上の操作を複数の塔で時間ずらして繰り返
すことにより高濃度窒素ガス及び富化酸素空気を連続的
に生成して、高濃度窒素ガスを石炭搬送、及び石炭充填
容器の加圧に用い、富化酸素空気を石炭ガス化剤として
用いる石炭ガス化方法。 3、同じ圧力、温度において酸素を窒素に比べて速く大
量に吸着する吸着剤を充填した複数の塔に、加圧した空
気を流通させて高濃度窒素ガスを生成し、窒素が吸着剤
に大量吸着され始める以前に、該塔内を流通する空気の
圧力を減圧して吸着剤に吸着された酸素を脱着させて富
化酸素空気を生成し、以上の操作を複数の層で時間をず
らして繰り返すことにより高濃度窒素ガス及び富化酸素
空気を連続的に生成する空気分離装置、及び、該空気分
離装置により生成した高濃度窒素ガスを石炭搬送、及び
石炭充填容器の加圧に用い、富化酸素空気を石炭ガス化
剤として用いて石炭をガス化する炉、より構成された石
炭ガス化装置。 4、同じ圧力、温度における酸素の平衡吸着量が窒素に
比べて大きい吸着剤を充填した複数の塔に、加圧した空
気を流通させて高濃度窒素ガスを生成し、酸素の平衡吸
着量に達する以前に、該塔を流通する空気の圧力を減圧
して吸着剤に吸着された酸素を脱着させて富化酸素空気
を生成し、以上の操作を複数の塔で時間ずらして繰り返
すことにより高濃度窒素ガス及び富化酸素空気を連続的
に生成する空気分離装置、及び、該装置により生成した
高濃度窒素ガスを石炭搬送、及び石炭充填装置の加圧に
用いて石炭をガス化する炉、より構成された石炭ガス化
装置。
[Claims] 1. Generating highly concentrated nitrogen gas by passing pressurized air through a plurality of towers filled with an adsorbent that adsorbs oxygen faster and in large quantities than nitrogen at the same pressure and temperature; Before a large amount of nitrogen begins to be adsorbed on the adsorbent, the pressure of the air passing through the tower is reduced to desorb the oxygen adsorbed on the adsorbent to generate oxygen-enriched air. High concentration nitrogen gas and enriched oxygen air are continuously generated by shifting and repeating the steps.The high concentration nitrogen gas is used for conveying coal and pressurizing the coal filling container, and the enriched oxygen air is used as a coal gasifying agent. coal gasification method used as 2. Generate highly concentrated nitrogen gas by passing pressurized air through multiple towers filled with adsorbents that have a larger equilibrium adsorption amount of oxygen than nitrogen at the same pressure and temperature. Before reaching this point, the pressure of the air flowing through the tower is reduced to desorb the oxygen adsorbed by the adsorbent to generate oxygen-enriched air, and the above operation is repeated in multiple towers at different times to increase the oxygen content. A coal gasification method that continuously generates concentrated nitrogen gas and oxygen-enriched air, uses the highly concentrated nitrogen gas for conveying coal and pressurizing a coal-filled container, and uses enriched oxygen air as a coal gasification agent. 3. Generate highly concentrated nitrogen gas by passing pressurized air through multiple columns filled with adsorbents that adsorb oxygen faster and in large quantities than nitrogen at the same pressure and temperature, and a large amount of nitrogen is absorbed into the adsorbents. Before the adsorption begins, the pressure of the air flowing through the tower is reduced to desorb the oxygen adsorbed by the adsorbent to generate oxygen-enriched air, and the above operations are performed in multiple layers at different times. An air separation device that continuously generates high-concentration nitrogen gas and oxygen-enriched air by repeating the process; A coal gasifier consisting of a furnace that gasifies coal using oxygenated air as a coal gasifying agent. 4. Generate highly concentrated nitrogen gas by passing pressurized air through multiple towers filled with adsorbents that have a larger equilibrium adsorption amount of oxygen than nitrogen at the same pressure and temperature. Before reaching this point, the pressure of the air flowing through the tower is reduced to desorb the oxygen adsorbed by the adsorbent to generate oxygen-enriched air, and the above operation is repeated in multiple towers at different times to increase the oxygen content. An air separation device that continuously generates concentrated nitrogen gas and oxygen-enriched air, and a furnace that gasifies coal by using the highly concentrated nitrogen gas generated by the device to convey coal and pressurize a coal filling device. A coal gasifier consisting of:
JP13366986A 1986-06-11 1986-06-11 Coal gasification method and apparatus Expired - Fee Related JPH0678531B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13366986A JPH0678531B2 (en) 1986-06-11 1986-06-11 Coal gasification method and apparatus
EP87108457A EP0249233A3 (en) 1986-06-11 1987-06-11 Coal gasification process and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13366986A JPH0678531B2 (en) 1986-06-11 1986-06-11 Coal gasification method and apparatus

Publications (2)

Publication Number Publication Date
JPS62290794A true JPS62290794A (en) 1987-12-17
JPH0678531B2 JPH0678531B2 (en) 1994-10-05

Family

ID=15110140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13366986A Expired - Fee Related JPH0678531B2 (en) 1986-06-11 1986-06-11 Coal gasification method and apparatus

Country Status (2)

Country Link
EP (1) EP0249233A3 (en)
JP (1) JPH0678531B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210028A (en) * 1990-01-12 1991-09-13 Tokyo Electric Power Co Inc:The Power generating method of gas turbine using gasified gas of residual fuel as fuel
CN103221515A (en) * 2010-05-17 2013-07-24 通用电气公司 System and method for conveying a solid fuel in a carrier gas
CN104165536A (en) * 2014-08-21 2014-11-26 兰州兰洛炼化设备有限公司 Heat tracing type pulverized coal conveying, heat exchange and separation device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392079B (en) * 1988-03-11 1991-01-25 Voest Alpine Ind Anlagen METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
US5238932A (en) * 1992-05-20 1993-08-24 Merrell Dow Pharmaceuticals Inc. Mercaptoacetylamide tricyclic derivatives useful as inhibitors of enkephalinase
CN1068336C (en) * 1993-05-21 2001-07-11 埃克森化学专利公司 Process for polymerizing monomers in fluidized beds
CN108774549B (en) * 2018-08-29 2023-10-24 中国石油化工股份有限公司 Entrained-flow pulverized coal hydro-gasification furnace, hydro-gasification system and hydro-gasification method
CN112503521B (en) * 2020-11-25 2021-09-03 西安交通大学 Gasification coupling low NOx combustion system, low NOx combustion method and design method
CN114917722B (en) * 2022-07-21 2022-10-18 广州能源检测研究院 Gaseous high temperature desorption of active carbon VOCs and coupling processing system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976442A (en) * 1974-12-18 1976-08-24 Texaco Inc. Synthesis gas from gaseous CO2 -solid carbonaceous fuel feeds
EP0040935B1 (en) * 1980-05-23 1985-07-24 Mitsubishi Jukogyo Kabushiki Kaisha Oxygen adsorbent and process for the separation of oxygen and nitrogen using same
NL8201715A (en) * 1982-04-26 1983-11-16 Shell Int Research PROCESS FOR GASIFICATION OF A SOLID CARBON-FUEL FUEL.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210028A (en) * 1990-01-12 1991-09-13 Tokyo Electric Power Co Inc:The Power generating method of gas turbine using gasified gas of residual fuel as fuel
CN103221515A (en) * 2010-05-17 2013-07-24 通用电气公司 System and method for conveying a solid fuel in a carrier gas
CN104165536A (en) * 2014-08-21 2014-11-26 兰州兰洛炼化设备有限公司 Heat tracing type pulverized coal conveying, heat exchange and separation device

Also Published As

Publication number Publication date
EP0249233A2 (en) 1987-12-16
JPH0678531B2 (en) 1994-10-05
EP0249233A3 (en) 1988-07-20

Similar Documents

Publication Publication Date Title
AU2008278730B2 (en) Method of and a plant for combusting carbonaceous fuel by using a solid oxygen carrier
US10081772B2 (en) Conversion of carbonaceous fuels into carbon free energy carriers
US8480768B2 (en) Hot solids gasifier with CO2 removal and hydrogen production
RU2513404C2 (en) Method of fuel supply for fluidised gasification reactor from storage hopper
JP6021371B2 (en) Chemical looping combustion system
US20140144082A1 (en) Methods of Converting Fuel
CN103635449A (en) Systems for converting fuel
CN107849462A (en) Produced by metal oxide circulating reduction and the synthesis gas of oxidation
WO2011035257A1 (en) Systems, devices and methods for calcium looping
JPS62290794A (en) Method and apparatus for coal gasification
CA2456699A1 (en) Liquid fuel synthesis system
US10632440B2 (en) CLC process and installation with the production of high purity nitrogen
JPS63183992A (en) Coal gasification method by psa and apparatus therefor
JP2003226501A (en) Hydrogen production system
US20230357005A1 (en) Redox looping systems and methods for production of oxidized products
CN103270255B (en) Air separation equipment and the Integrated gasification combined cycle equipment comprising air separation equipment
WO2011082448A1 (en) Sorbent regeneration
WO2024076772A1 (en) Method and device for making hydrogen from heterogenous waste
WO2023096643A1 (en) Systems and methods for redox energy recovery
WO2024115103A1 (en) METHOD OF HYDROGENATION AND CALCINATION OF CaCO3 WITH H2
JPS63168487A (en) Method and equipment for coal gasification
EP2478074A1 (en) Systems, devices and methods for calcium looping

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees