JPS6229004B2 - - Google Patents

Info

Publication number
JPS6229004B2
JPS6229004B2 JP56009315A JP931581A JPS6229004B2 JP S6229004 B2 JPS6229004 B2 JP S6229004B2 JP 56009315 A JP56009315 A JP 56009315A JP 931581 A JP931581 A JP 931581A JP S6229004 B2 JPS6229004 B2 JP S6229004B2
Authority
JP
Japan
Prior art keywords
temperature
sensitive resistance
resistance element
lead wire
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56009315A
Other languages
Japanese (ja)
Other versions
JPS57124221A (en
Inventor
Kyoshi Yoshida
Yoshiro Yamaura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENGYO KK
NIPPON GENSHIRYOKU KENKYUSHO
Original Assignee
KYOWA DENGYO KK
NIPPON GENSHIRYOKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENGYO KK, NIPPON GENSHIRYOKU KENKYUSHO filed Critical KYOWA DENGYO KK
Priority to JP931581A priority Critical patent/JPS57124221A/en
Publication of JPS57124221A publication Critical patent/JPS57124221A/en
Publication of JPS6229004B2 publication Critical patent/JPS6229004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element

Description

【発明の詳細な説明】 本発明は、極低温温度計の感温抵抗素子および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-sensitive resistance element for a cryogenic thermometer and a method for manufacturing the same.

極低温温度計は、MHD発電、核融合炉用超電
導磁石、超電導送電、超高速磁気浮上列車などに
おいて、極低温状態の計測に用いられる。
Cryogenic thermometers are used to measure extremely low temperatures in MHD power generation, superconducting magnets for fusion reactors, superconducting power transmission, ultrahigh-speed magnetic levitation trains, etc.

従来、この種の測定対象物の極低温度状態の計
測に用いられる極低温温度計としては、ゲルマニ
ウム温度計、白金抵抗温度計、カーボン抵抗温度
計などがあるが、4.2〜20〔K〕程度の極低温を
計測するものとしては手軽かつ安価に製造できる
ところからカーボン抵抗温度計が比較的よく用い
られている。カーボンを感温抵抗素子として用い
た極低温温度計は、原理的に感温抵抗素子を測定
対象物に接触させて熱平衡の状態にしたときの感
温抵抗素子の抵抗値を利用するものである。従つ
て、第1に、平面、筒面、球面、凹凸面等の種々
の形態をなしている測定対象物の表面にも感温抵
抗素子を確実に添着できることが要求される。第
2に、より正確な温度計測をするためには測定対
象物の温度が変化したときにはできるだけ速く熱
平衡状態を得ること、換言すれば温度変化に対す
る応答性が良いことが要求される。然しながら、
従来のカーボン温度計は、細いセラミツク棒また
は板に感温抵抗素子としてカーボンを焼成してな
る構成で、上述の測定対象物の表面への添着状態
が悪く、また温度変化に対する応答性も比較的悪
いものしかなかつた。従つて、従来のカーボン抵
抗温度計の斯かる欠点を改良したカーボン抵抗温
度計が斯界で望まれていた。
Conventionally, there are germanium thermometers, platinum resistance thermometers, carbon resistance thermometers, etc. as cryogenic thermometers used to measure the extremely low temperature state of this type of measurement object, but the temperature is about 4.2 to 20 [K]. Carbon resistance thermometers are relatively commonly used to measure extremely low temperatures because they are easy and inexpensive to manufacture. Cryogenic thermometers that use carbon as a temperature-sensitive resistance element basically utilize the resistance value of the temperature-sensitive resistance element when it is brought into contact with the object to be measured and brought into a state of thermal equilibrium. . Therefore, firstly, it is required to be able to reliably attach the temperature-sensitive resistance element to the surface of the object to be measured, which has various shapes such as a flat surface, a cylindrical surface, a spherical surface, and an uneven surface. Second, in order to measure temperature more accurately, it is required to obtain a thermal equilibrium state as quickly as possible when the temperature of the object to be measured changes, in other words, it is required to have good responsiveness to temperature changes. However,
Conventional carbon thermometers have a configuration in which carbon is fired as a temperature-sensitive resistance element on a thin ceramic rod or plate, which has poor adhesion to the surface of the object to be measured, and also has relatively poor responsiveness to temperature changes. There were only bad things. Accordingly, there has been a need in the art for a carbon resistance thermometer that improves upon the drawbacks of conventional carbon resistance thermometers.

上記の点に鑑み鋭意研究の結果、本発明者等は
感温抵抗素子としてカーボンを用いるカーボン抵
抗温度計において、感温抵抗素子を全体としてシ
ート状に形成することにより測定対象物の表面へ
の添着を容易ならしめると共に、実用上十分な温
度変化に対する応答性を得ることができることを
発見して本発明を完成した。
In view of the above points, as a result of intensive research, the present inventors have developed a carbon resistance thermometer that uses carbon as a temperature-sensitive resistance element, by forming the temperature-sensitive resistance element as a whole in a sheet shape, so that the surface of the object to be measured can be easily absorbed. The present invention was completed by discovering that it is possible to facilitate attachment and to obtain a practically sufficient response to temperature changes.

従つて本発明の主たる目的は極低温温度計の新
規な感温抵抗素子およびその製造法を提供するこ
とである。
Accordingly, a principal object of the present invention is to provide a novel temperature-sensitive resistance element for a cryogenic thermometer and a method for manufacturing the same.

本発明の別の目的は極低温状態を計測すべき測
定対象物の複雑な表面へも極めて容易且つ確実に
添着し且つ実用上十分な温度変化に対する応答性
を有する極低温温度計を提供することである。
Another object of the present invention is to provide a cryogenic thermometer that can be attached extremely easily and reliably to the complex surface of a measurement object whose cryogenic state is to be measured, and that has practically sufficient responsiveness to temperature changes. It is.

本発明の更なる目的は磁界強度の変化に対する
影響および温度係数が極めて優れた極低温温度計
を提供することである。
A further object of the invention is to provide a cryogenic thermometer which has excellent sensitivity to changes in magnetic field strength and temperature coefficient.

以下、図面に基づき本発明の一様態を詳述す
る。第1図および第2図において、1は感温抵抗
素子で、例えば長方形のフイルムベース2上に4
本のリード線箔3A,3B,3Cおよび3Dが接
着され、これらリード線箔3A〜3Bの一端部を
覆うようにカーボン感温抵抗材料4が被着されて
いる。ここで第1および第2のリード線箔3Aお
よび3Dは、電源電流供給用リード線としての機
能を果たすもので、ベース2の例えば右端部に
夫々幅広の外部端子5Aおよび5Dが形成され、
各外部端子5Aおよび5Dからベース2の後およ
び前端縁部を互いに対向しながら左方に延長して
感温抵抗材料4の後および前端部に電気的に接続
されている。かくして外部端子5Aおよび5Dに
例えば半田6によつて接続された外部リード線7
Aおよび7Dから、第1および第2のリード線箔
3Aおよび3Dを介して感温抵抗材料4を通じて
流れる電源電流が与えられる。これに対して、第
3および第4のリード線箔3Bおよび3Cは、検
出電圧出力用リード線としての機能を果すもの
で、ベース2の右端部に上述の外部端子5Aおよ
び5Dと並んで同様に幅広となされた外部端子5
Bおよび5Cが形成され、各外部端子5Bおよび
5Cから上述の第1および第2のリード線箔3A
および3Dの内側を互いに対向しながら左方に延
長して感温抵抗材料4の内側位置に電気的に接続
されている。かくして第1および第2のリード線
箱3Aおよび3Dを通じて感温抵抗材料4に流れ
る電源電流によつて第3および第4のリード線箔
3Bおよび3Cの接続点間の抵抗に生じる降下電
圧が第3および第4のリード線箔3Bおよび3D
を通じて導出され、外部端子5Bおよび5Cを介
して外部リード線7Bおよび7C(半田6によつ
て外部端子5Bおよび5Cに接続されている)に
送出される。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings. In FIGS. 1 and 2, numeral 1 denotes a temperature-sensitive resistance element, for example, 4
Book lead wire foils 3A, 3B, 3C and 3D are adhered, and a carbon temperature sensitive resistance material 4 is applied so as to cover one end of these lead wire foils 3A to 3B. Here, the first and second lead wire foils 3A and 3D function as power supply current supply lead wires, and wide external terminals 5A and 5D are formed, respectively, at the right end of the base 2, for example.
From each external terminal 5A and 5D, the rear and front edges of the base 2 extend to the left while facing each other, and are electrically connected to the rear and front edges of the temperature-sensitive resistance material 4. External lead wires 7 are thus connected to external terminals 5A and 5D by, for example, solder 6.
A and 7D provide a power supply current that flows through the temperature sensitive resistance material 4 via the first and second lead wire foils 3A and 3D. On the other hand, the third and fourth lead wire foils 3B and 3C function as lead wires for outputting the detected voltage, and are placed on the right end of the base 2 along with the above-mentioned external terminals 5A and 5D. External terminal 5 made wider
B and 5C are formed, and the above-mentioned first and second lead wire foils 3A are connected from each external terminal 5B and 5C.
and 3D, while facing each other, extending to the left and electrically connected to the inside position of the temperature-sensitive resistance material 4. In this way, the voltage drop generated in the resistance between the connection points of the third and fourth lead wire foils 3B and 3C due to the power supply current flowing through the temperature sensitive resistance material 4 through the first and second lead wire boxes 3A and 3D is 3 and 4 lead wire foils 3B and 3D
and is sent out to external lead wires 7B and 7C (connected to external terminals 5B and 5C by solder 6) via external terminals 5B and 5C.

尚、本発明の感温抵抗素子を使用する場合は感
温抵抗素子1は、第3図に示す如く、極低温の測
定対象物11の表面にベース2を適当な接着剤に
よつて接着させることにより測定対象物11の表
面に添着され、その外部リード線7Aおよび7
D,7Bおよび7Cが必要に応じて感温抵抗素子
1の近傍に配置された端子板12に接続され、こ
の端子板12からシールド線13を介して計測器
14の端子15に接続される。このように構成す
れば、感極抵抗材料4の温度がベース2を介して
ほぼ測定対象物11の極低温に低下するので、そ
の温度に対応する抵抗率によつて決まる降下電圧
が第3および第4のリード線箔3Bおよび3Cか
ら導出され、計測器14において計測される。
In addition, when using the temperature-sensitive resistance element of the present invention, the temperature-sensitive resistance element 1 has a base 2 adhered to the surface of the extremely low temperature measurement object 11 with a suitable adhesive, as shown in FIG. As a result, the external lead wires 7A and 7 are attached to the surface of the measurement object 11.
D, 7B, and 7C are connected to a terminal board 12 arranged near the temperature-sensitive resistance element 1 as necessary, and from this terminal board 12 to a terminal 15 of a measuring instrument 14 via a shielded wire 13. With this configuration, the temperature of the sensitive resistance material 4 is reduced to approximately the cryogenic temperature of the object to be measured 11 via the base 2, so that the voltage drop determined by the resistivity corresponding to the temperature is reduced to the third and third electrodes. It is derived from the fourth lead wire foils 3B and 3C and measured by the measuring device 14.

本発明の感温抵抗素子は次の材料を用いると実
用上好適なものが得られる。即ち、ベース2とし
ては、温度の変化に対する応答性を良くするた
め、できるだけ薄く、好ましくは10〜25μm、ま
た表面に添着したカーボン感温低抗材料4が剥離
しにくく、更には極低温で脆弱化しないものを用
いる必要がある。これに加えて電気的特性、即ち
絶縁性、耐電圧性をもつたものでなければならな
い。第1図および第2図に示した様態の場合、ベ
ース2としてガラス繊維にフエノール樹脂を含浸
させたフイルム、またはポリイミド、ポリウレタ
ン、ポリアミド等高分子材料からなるフイルムを
用いたところ良好な結果を得た。
The temperature-sensitive resistance element of the present invention can be obtained using the following materials, which are suitable for practical use. That is, in order to improve the responsiveness to temperature changes, the base 2 should be as thin as possible, preferably 10 to 25 μm, and the carbon temperature-sensitive low resistance material 4 attached to the surface should be difficult to peel off and furthermore be brittle at extremely low temperatures. It is necessary to use something that does not change. In addition, it must have electrical properties, ie, insulation and voltage resistance. In the case of the embodiments shown in Figures 1 and 2, good results were obtained when a film made of glass fiber impregnated with phenolic resin or a film made of a polymeric material such as polyimide, polyurethane, or polyamide was used as the base 2. Ta.

また第1〜第4のリード線箔3A〜3Dとして
は、温度係数が小さい良導体を用い、ベース2の
可撓性に対応できるものである必要がある。第1
図および第2図で示した態様の場合、第1〜第4
のリード線箱3A〜3DとしてCu−Ni系または
Ni−Cr系金属材料からなる厚さ約5〜10μmの
金属箔を接着剤でベース2上に接着し化学的にエ
ツチング処理に形成したものを使用した場合良好
な結果をもたらした。また、感温抵抗材料4とし
ては、カーボン抵抗素子として所定の比抵抗をも
ち、またベース2の可撓性に対応できるものであ
り、ベース2の第1〜第4のリード線箔3A〜3
Dから剥離し難いものであることが必要である。
第1図および第2図に示す態様の場合、感温抵抗
素子1は、直径が約300〜600Åのカーボン粉沫を
バインダとしてのエポキシ樹脂中に散在させて硬
化剤を用いてベース2ないし第1〜第4のリード
線箔3A〜3D上を覆うように硬化被着させて形
成されたものである。
Further, the first to fourth lead wire foils 3A to 3D must be made of good conductors with a small temperature coefficient and must be compatible with the flexibility of the base 2. 1st
In the case of the embodiments shown in Figures and Figure 2, the first to fourth
Lead wire boxes 3A to 3D are Cu-Ni type or
Good results were obtained when a metal foil made of a Ni--Cr metal material having a thickness of about 5 to 10 .mu.m was bonded onto the base 2 with an adhesive and formed by chemical etching. Further, the temperature-sensitive resistance material 4 has a predetermined specific resistance as a carbon resistance element, and is compatible with the flexibility of the base 2.
It is necessary that it is difficult to peel off from D.
In the case of the embodiments shown in FIGS. 1 and 2, the temperature-sensitive resistance element 1 is manufactured by scattering carbon particles having a diameter of about 300 to 600 Å in an epoxy resin as a binder and using a hardening agent to form the base 2 or the base 2. It is formed by hardening and adhering the first to fourth lead wire foils 3A to 3D so as to cover them.

本発明のかかる構成の感温抵抗素子1は、ベー
ス2上の第1〜第4のリード線箔3A〜3Dおよ
び感温抵抗材料4を剥離させることなく全体とし
て良好な可撓性を呈し、例えば、直約約5mmの丸
棒の彎曲表面上に常温硬化型の接着剤で無理なく
接着固定できる。
The temperature-sensitive resistance element 1 having such a configuration according to the present invention exhibits good flexibility as a whole without peeling off the first to fourth lead wire foils 3A to 3D on the base 2 and the temperature-sensitive resistance material 4, For example, it can be easily adhesively fixed onto the curved surface of a round bar with a diameter of approximately 5 mm using a room temperature curing adhesive.

以下実施例により本発明の構成および効果をよ
り具体的に説明する。
EXAMPLES The structure and effects of the present invention will be explained in more detail with reference to Examples below.

実施例 1 感温抵抗素子の製造 アセチレンを燃焼させてその煤を採集して得た
直径が300〜600Åのアセチレンカーボン紛沫14.3
重量%を、溶剤としてのメチルエチルケトン22.0
重量%が加えられたエポキシ樹脂60.8重量%中に
硬化剤ジアミノジフエニルメタン2.9重量%と共
に混合させ、ペースト状の感温抵抗原料を製造す
る。
Example 1 Manufacture of temperature-sensitive resistance element Acetylene carbon powder with a diameter of 300 to 600 Å obtained by burning acetylene and collecting the soot 14.3
22.0% by weight, methyl ethyl ketone as solvent
A paste-like temperature-sensitive resistance raw material is produced by mixing 60.8% by weight of an epoxy resin with 2.9% by weight of a curing agent diaminodiphenylmethane.

一方ガラス繊維にフエノール樹脂を含浸させた
フイルム状ベースを用意し、その表面に接着剤に
よつてCu−Ni系金属材料から成る厚さ5μmの
金属箔を接着し、化学的エツチングによつてリー
ド線箔を形成する。このようにして得たリード線
箔の左端部分へ上述のペースト状感温抵抗原料
を、網板を介してローラにて転着させた。その後
100℃乃至ガラス転位温度(200〜250℃位)で1
時間焼付けることによつて感温抵抗素子が製造さ
れた。
On the other hand, a film-like base made of glass fiber impregnated with phenolic resin is prepared, and a 5 μm thick metal foil made of Cu-Ni metal material is adhered to the surface of the base using an adhesive, and a lead is formed by chemical etching. Form wire foil. The above-mentioned paste-like temperature-sensitive resistance raw material was transferred to the left end portion of the lead wire foil obtained in this way using a roller through a mesh plate. after that
1 at 100℃ to glass transition temperature (about 200 to 250℃)
Temperature sensitive resistive elements were manufactured by time baking.

尚、実施例1ではカーボン紛沫を14.3重量%使
用したがカーボン紛沫の量は、5〜10重量%程度
の範囲で増減させることができ、かくして必要に
応じて感温感度を調節することができる。しかし
カーボン紛沫の含有量が余り多くなると感温抵抗
材料としての粘度が低下し過ぎ、ベースないしリ
ード線箔から剥離し易くなるので望ましくない。
またバインダとしてのエポキシ樹脂は60.8重量%
使用しているがその含有量が増すに従つて感温抵
抗材料としての比抵抗が大きくなり感温感度が低
下する。また溶剤としての使用しているメチルエ
チルケトンは、蒸発性が良く、この点においてト
ルエンより優れている。因みに蒸発性が悪いと溶
剤が感温抵抗材料中に残留し、その比抵抗を悪化
させる原因になる。
In Example 1, 14.3% by weight of carbon dust was used, but the amount of carbon dust can be increased or decreased within a range of about 5 to 10% by weight, and thus the temperature sensitivity can be adjusted as necessary. Can be done. However, if the content of carbon particles is too large, the viscosity as a temperature-sensitive resistance material decreases too much, and it becomes easy to peel off from the base or lead wire foil, which is not desirable.
In addition, epoxy resin as a binder is 60.8% by weight.
However, as the content increases, the specific resistance as a temperature-sensitive resistance material increases and the temperature sensitivity decreases. Furthermore, methyl ethyl ketone, which is used as a solvent, has good evaporability and is superior to toluene in this respect. Incidentally, if the evaporability is poor, the solvent will remain in the temperature-sensitive resistance material, causing a deterioration of its specific resistance.

また硬化剤としては、ジアミノジフエニルメタ
ンを使用しているが、その他アニリン−ホルマリ
ン低分子縮合物、m−フエニレンジアミンなどの
芳香族ポリアミン、ジエチレントリアミン、トリ
エチレンテトラミンなどの脂肪族ポリアミン、キ
シレンジアミン、イソポロンジアミンなどの脂環
族ポリアミン、ジメチルアミノメチルフエノー
ル、トリス(ジメチル)アミノメチルフエノール
などの第三アミン等のアミン系硬化剤またはメチ
ルテトラヒドロ無水フタル酸、無水メチルナジツ
ク酸、メチルヘキサヒドロ無水フタル酸、ヘキサ
ヒドロ無水フタル酸、ドデセニルサクシニツク酸
無水物、無水トリメリツト酸、エチルグリコール
ビストリメリテート、等酸無水物系硬化剤が使用
され得る。又、ペースト状感温抵抗原料をリード
線箔にローラにて転着させたが、これは筆のスプ
レー吹き付け等の任意の方法で塗布してもよい。
Diaminodiphenylmethane is used as a curing agent, but other aniline-formalin low-molecular condensates, aromatic polyamines such as m-phenylenediamine, aliphatic polyamines such as diethylenetriamine and triethylenetetramine, and xylenediamine , alicyclic polyamines such as isoporonediamine, amine curing agents such as tertiary amines such as dimethylaminomethylphenol, tris(dimethyl)aminomethylphenol, or methyltetrahydrophthalic anhydride, methylnadic anhydride, methylhexahydrophthalic anhydride. Anhydride hardeners such as acids, hexahydrophthalic anhydride, dodecenylsuccinic anhydride, trimellitic anhydride, ethyl glycol bistrimelitate, etc. may be used. Further, although the paste-like temperature-sensitive resistance material was transferred to the lead wire foil using a roller, it may be applied by any method such as spraying with a brush.

実施例 2 実施例1で製造した感温抵抗素子を用いて3個
のサンプルの極低温状態を2サイクルずつ測定し
た。その結果を極低温温度計として従来の使用さ
れている白金−コバルト合金抵抗温度計で得た結
果と対比して第4図に示した。第4図は測定結果
の範囲を各温度における縦線で表わしている。ま
た縦軸の抵抗比は、温度4.2〔K〕における抵抗
T=4.2に対する各温度における抵抗RTの比を
とつて示したものである。
Example 2 Using the temperature sensitive resistance element manufactured in Example 1, the cryogenic state of three samples was measured in two cycles each. The results are shown in FIG. 4 in comparison with the results obtained with a platinum-cobalt alloy resistance thermometer conventionally used as a cryogenic thermometer. FIG. 4 shows the range of measurement results by vertical lines at each temperature. The resistance ratio on the vertical axis is the ratio of the resistance R T at each temperature to the resistance R T =4.2 at a temperature of 4.2 [K].

図において本発明の感温抵抗素子で得た曲線
W1は寅温度変化4.2〜20〔K〕に対して少し下方
に彎曲した温度特性曲線を描き、この曲線W1
は、曲線W2で示す従来の極低温温度計として用
いられていた白金−コバルト合金抵抗温度計より
感度の良い温度特性曲線を得ることができた。
In the figure, the curve obtained with the temperature-sensitive resistance element of the present invention
W 1 draws a temperature characteristic curve that curves slightly downward for a temperature change of 4.2 to 20 [K], and this curve W 1
was able to obtain a temperature characteristic curve shown by curve W2 that was more sensitive than the platinum-cobalt alloy resistance thermometer used as a conventional cryogenic thermometer.

従つて、上述した本発明の感温抵抗素子は、極
低温温度計の感温素子として用いることができる
ことが明らかである。
Therefore, it is clear that the above-described temperature-sensitive resistance element of the present invention can be used as a temperature-sensitive element of a cryogenic thermometer.

実施例 3 実施例1で製造した感温抵抗素子を磁界強度を
0〜8〔T〕と変化させた磁場においてその抵抗
値の変化を測定した。その結果を従来のゲルマニ
ウム温度計で得た結果と対比させて第5図に示
す。第5図において、縦軸は、磁界強度0〔T〕
における抵抗値Rに対する各磁界強度における抵
抗変化ΔRの比を示している。本発明の感温抵抗
素子1は、第5図において曲線X1で示す如く、
磁界強度を0〜8〔T〕と変化させた磁場におい
たところほとんど抵抗値の変化を示さないことが
明らかである。因みに、曲線X2は、従来のゲル
マニウム温度計についての磁界強度特性曲線であ
るが、この曲線X2と比較して曲線X1は、格段的
に安定な性質をもつていることがわかる。
Example 3 Changes in the resistance value of the temperature-sensitive resistance element manufactured in Example 1 were measured in a magnetic field where the magnetic field strength was varied from 0 to 8 [T]. The results are shown in FIG. 5 in comparison with the results obtained with a conventional germanium thermometer. In Fig. 5, the vertical axis is the magnetic field strength 0 [T]
The ratio of the resistance change ΔR at each magnetic field strength to the resistance value R at is shown. The temperature-sensitive resistance element 1 of the present invention has the following characteristics, as shown by the curve X1 in FIG.
It is clear that the resistance value shows almost no change when exposed to a magnetic field with the magnetic field strength varied from 0 to 8 [T]. Incidentally, curve X 2 is a magnetic field strength characteristic curve for a conventional germanium thermometer, and it can be seen that curve X 1 has much more stable properties than curve X 2 .

上述のように本発明によれば、4.2〜20〔K〕
程度の極低温を測定し得る温度計を製造できる感
温抵抗素子を容易に作ることができ、かくて全体
としてシート形状に形成することにより、測定対
象物の表面の形態が平面、球面、筒面、凹凸面等
であつても、確実に添着し得る程度の可撓性を与
えることができると共に、測定対象物の温度変化
に対して感極抵抗材料の熱平衡を一段と速めるこ
とができる。更に磁界強度に対する安定性として
従来のものに比し格段に優れたものを実現でき、
従つて例えば超電導状態における強磁界内での極
低温の測定に適用し得る好適な温度計を得ること
ができる、
As mentioned above, according to the present invention, 4.2 to 20 [K]
It is possible to easily manufacture a temperature-sensitive resistance element that can be used to manufacture a thermometer that can measure extremely low temperatures, and by forming the entire sheet shape, the surface shape of the object to be measured can be changed to a flat, spherical, or cylindrical shape. It is possible to provide sufficient flexibility to reliably adhere even a surface, an uneven surface, etc., and further accelerate the thermal equilibrium of the electrode sensitive resistor material with respect to temperature changes of the object to be measured. Furthermore, it has achieved much better stability against magnetic field strength than conventional products.
Therefore, it is possible to obtain a suitable thermometer that can be applied, for example, to the measurement of extremely low temperatures in a strong magnetic field in a superconducting state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明による極低温温
度計の感温抵抗素子の一様態を示す平面、および
正面図である。第3図は、その実装上の使用状態
を示す略線図である。第4図および第5図は、
夫々本発明の感温抵抗素子および従来の極低温温
度計の温度特性および磁界強度特性を示すグラフ
である。 1……感温抵抗素子、2……ベース、3A〜3
D……リード線箔、4……感温抵抗材料、5A〜
5D……外部端子、6……半田、7A〜7D……
外部リード線、11……測定対象物、12……端
子板、13……シールド線、14……計測器、1
5……端子。
1 and 2 are a plan view and a front view showing one embodiment of a temperature-sensitive resistance element of a cryogenic thermometer according to the present invention. FIG. 3 is a schematic diagram showing the state of use in its implementation. Figures 4 and 5 are
2 is a graph showing the temperature characteristics and magnetic field strength characteristics of a temperature-sensitive resistance element of the present invention and a conventional cryogenic thermometer, respectively. 1...Temperature-sensitive resistance element, 2...Base, 3A~3
D...Lead wire foil, 4...Temperature-sensitive resistance material, 5A~
5D...External terminal, 6...Solder, 7A~7D...
External lead wire, 11...Measurement object, 12...Terminal board, 13...Shield wire, 14...Measuring instrument, 1
5...Terminal.

Claims (1)

【特許請求の範囲】 1 a;フエノール樹脂含浸ガラス繊維またはポ
リイミド、ポリウレタン、ポリアミド等の高分
子材料からなるベースフイルムと、 b;前記ベースフイルム上に互いに平行に設けら
れた4本の金属箔リード線と、 c;前記リード線の一端に設けられた外部端子
と、 d;前記リード線の他端を横断して、カーボン粉
末を溶剤が配合されたエポキシ樹脂中に硬化剤
とともに混在させて得られたペースト状感温抵
抗原料を焼付けることによつて得られた感温抵
抗材料と、 から構成された、前記リード線の最外側の2本を
電源電流用として使用し、前記リード線の内側の
2本を検出電圧出力用として使用する極低温温度
計の感温抵抗素子。 2 前記ベースフイルムの厚さが10−25μmであ
る特許請求の範囲第1項の極低温温度計の感温抵
抗素子。 3 フエノール樹脂含浸ガラス繊維またはポリイ
ミド、ポリウレタン、ポリアミド等の高分子材料
からなるベースフイルム上に4本の金属箔リード
線を互いに平行に付着させ、前記リード線の一端
を横断して、カーボン粉末を溶剤が配合されたエ
ポキシ樹脂中に硬化剤とともに混在させることに
よつて得られたペースト状感温抵抗原料を、塗布
した後に焼付ける工程からなる極低温温度計の感
温抵抗素子の製造方法。
[Scope of Claims] 1 a; A base film made of phenolic resin-impregnated glass fiber or a polymeric material such as polyimide, polyurethane, polyamide, etc.; b; Four metal foil leads provided in parallel to each other on the base film. c; an external terminal provided at one end of the lead wire; and d; crossing the other end of the lead wire, a carbon powder obtained by mixing carbon powder with a curing agent in an epoxy resin mixed with a solvent. The outermost two of the lead wires are used for power supply current, and the outermost two of the lead wires are used for power supply current. A temperature-sensitive resistance element for a cryogenic thermometer whose two inner wires are used to output detection voltage. 2. The temperature-sensitive resistance element for a cryogenic thermometer according to claim 1, wherein the base film has a thickness of 10-25 μm. 3. Four metal foil lead wires are attached in parallel to each other on a base film made of phenol resin-impregnated glass fiber or a polymeric material such as polyimide, polyurethane, polyamide, etc., and carbon powder is applied across one end of the lead wires. A method for manufacturing a temperature-sensitive resistance element for a cryogenic thermometer, which comprises a step of applying and baking a paste-like temperature-sensitive resistance raw material obtained by mixing a hardening agent into an epoxy resin containing a solvent.
JP931581A 1981-01-24 1981-01-24 Temperature sensitive resistance element of cryogenic thermometer and its production Granted JPS57124221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP931581A JPS57124221A (en) 1981-01-24 1981-01-24 Temperature sensitive resistance element of cryogenic thermometer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP931581A JPS57124221A (en) 1981-01-24 1981-01-24 Temperature sensitive resistance element of cryogenic thermometer and its production

Publications (2)

Publication Number Publication Date
JPS57124221A JPS57124221A (en) 1982-08-03
JPS6229004B2 true JPS6229004B2 (en) 1987-06-24

Family

ID=11717030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP931581A Granted JPS57124221A (en) 1981-01-24 1981-01-24 Temperature sensitive resistance element of cryogenic thermometer and its production

Country Status (1)

Country Link
JP (1) JPS57124221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216947B1 (en) * 2012-10-19 2013-06-19 株式会社岡崎製作所 RTD element for cryogenic use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587799B1 (en) * 1985-09-20 1987-10-30 Charbonnages De France THERMAL SENSOR FOR THE DETECTION OF THE PASSAGE OF A THERMAL FRONT, SEE THE MEASUREMENT OF ITS PROPAGATION SPEED
JPH02269925A (en) * 1989-04-11 1990-11-05 Nhk Spring Co Ltd Temperature sensor
JP3167559B2 (en) * 1994-12-13 2001-05-21 アルプス電気株式会社 Temperature sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266476A (en) * 1975-11-28 1977-06-01 Hitachi Ltd Temperature sensor
JPS5389957A (en) * 1977-01-17 1978-08-08 Engelhard Min & Chem Thick film resistance thermometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266476A (en) * 1975-11-28 1977-06-01 Hitachi Ltd Temperature sensor
JPS5389957A (en) * 1977-01-17 1978-08-08 Engelhard Min & Chem Thick film resistance thermometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216947B1 (en) * 2012-10-19 2013-06-19 株式会社岡崎製作所 RTD element for cryogenic use
WO2014061069A1 (en) * 2012-10-19 2014-04-24 株式会社岡崎製作所 Cryogenic temperature measurement resistor element

Also Published As

Publication number Publication date
JPS57124221A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US4588456A (en) Method of making adhesive electrical interconnecting means
US4396899A (en) Platinum thin film resistance element and production method therefor
US4642421A (en) Adhesive electrical interconnecting means
EP0065419A1 (en) Strain gauge
SE463176B (en) Battery tester having layers of liq. crystal and conducting materials
JPH06506411A (en) Sensors based on nanostructured composite films
CA1100781A (en) Directional heat loss anemometer transducer
US7573365B2 (en) Humidity sensor
JP2001159569A (en) Pressure sensor
SE461177B (en) DEVICE FOR Saturation of thermal properties of a test substance
WO1995011956A1 (en) Electrorheological fluid composite structures
JPS6229004B2 (en)
JPH03268302A (en) Resistance element
US3247478A (en) Electrical hygrometer
US5189910A (en) Fluid speed measuring probe
JPS5897607A (en) Strain gauge
Andretta et al. Simple heat flux meter
EP0038078A1 (en) Gas sensor
CN219321122U (en) Precision resistor
JPH03251704A (en) Manufacture of strain gauge
JPH0645892Y2 (en) Fluid measurement probe
JPS58193483A (en) Differential thermal expansion device, which can be heated electrically, and/or manufacture of said thermal expansion device and/of device using said thermal expansion device
JP2861361B2 (en) Sensor
JPS5678148A (en) Resistance temperature compensation circuit
JPS5927049Y2 (en) CR composite parts