JPS6228973B2 - - Google Patents

Info

Publication number
JPS6228973B2
JPS6228973B2 JP56206996A JP20699681A JPS6228973B2 JP S6228973 B2 JPS6228973 B2 JP S6228973B2 JP 56206996 A JP56206996 A JP 56206996A JP 20699681 A JP20699681 A JP 20699681A JP S6228973 B2 JPS6228973 B2 JP S6228973B2
Authority
JP
Japan
Prior art keywords
acid
bicycloorthoester
group
compound
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56206996A
Other languages
Japanese (ja)
Other versions
JPS58109534A (en
Inventor
Kyokazu Mizutani
Hitoshi Kato
Yoshihisa Ogasawara
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP20699681A priority Critical patent/JPS58109534A/en
Publication of JPS58109534A publication Critical patent/JPS58109534A/en
Publication of JPS6228973B2 publication Critical patent/JPS6228973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は少なくずも個のビシクロオル゜゚ス
テル基を有するビシクロオル゜゚ステル化合物
以䞋単にビシクロオル゜゚ステルずいうを含
有する硬化甚組成物に関するものであり、硬化の
際に䜓積収瞮率がきわめお小さく、成圢材料、泚
型材料、接着剀等に適する硬化甚組成物を提䟛し
ようずするものである。 䞀般に熱硬化性暹脂は、硬化の際かなりの䜓積
収瞮を䌎うこずは公知である。䟋えば゚ポキシ暹
脂は最も小さいほうであるが、それでも硬化時に
〜皋床の䜓積収瞮率を瀺す。 硬化時の䜓積収瞮が倧きいず、䟋えば成圢材料
ずしお䜿甚した堎合に寞法粟床がでないずか、泚
型材料ずしお䜿甚した堎合にはうめこみ物に収瞮
によるひずみがかかるずか、型ずの接着力の䜎䞋
や隙間が生じるなどの問題がある。たた塗料ずし
お䜿甚した堎合、内郚ひずみによる塗板ずの密着
性の䜎䞋やそりがおこるずか、接着剀ずしお䜿甚
した堎合、内郚ひずみによる接着力の䜎䞋やそ
り、倉圢などの䜿甚䞊の問題を生ずる。 このような理由により、硬化時の䜓積収瞮がき
わめお小さい硬化甚組成物の出珟が匷く芁望され
おいる。 ビシクロオル゜゚ステルに぀いおは、
American Chemical SocietyDivision of
Polymer ChemistryInc21〜1981
等に蚘茉されおいるが、本発明者らは、ビシクロ
オル゜゚ステルの化孊的特性に぀いお皮々怜蚎し
た結果、かかる化合物がカチオン重合觊媒でカチ
オン重合するのみならず、プノヌル系暹脂、有
機倚塩基酞、有機倚塩基酞無氎物およびカルボン
酞型ポリ゚ステルから遞ばれる硬化剀により開環
重合し、しかも硬化による䜓積収瞮が非垞に小さ
いずいう特長を具備しおいるこずを芋出し、本発
明を完成するに至぀た。 本発明組成物を構成するビシクロオル゜゚ステ
ルは、匏〔〕で瀺されるビシクロオル゜゚ステ
ル基を分子䞭に個たたは個以䞊有する化合物
であり、たずえば䞋蚘䞀般匏で衚わされる化合物
がある。
The present invention relates to a curing composition containing a bicycloorthoester compound having at least one bicycloorthoester group (hereinafter simply referred to as bicycloorthoester), which has an extremely small volumetric shrinkage rate during curing and is suitable for molding materials. , a curing composition suitable for casting materials, adhesives, etc. It is generally known that thermosetting resins undergo considerable volumetric shrinkage upon curing. For example, although epoxy resin is the smallest, it still exhibits a volumetric shrinkage rate of about 2 to 6% upon curing. If the volumetric shrinkage during curing is large, for example, when used as a molding material, dimensional accuracy may be lost, when used as a casting material, the filling material may be distorted due to shrinkage, or the adhesive strength with the mold may be reduced. There are problems such as gaps and gaps. Furthermore, when used as a paint, it causes problems in use such as reduced adhesion to the painted plate and warping due to internal strain, and when used as an adhesive, internal strain causes reduced adhesion, warping, and deformation. For these reasons, there is a strong demand for a curable composition that exhibits extremely small volume shrinkage during curing. For bicycloorthoesters,
American Chemical Society, Division of
Polymer Chemistry, Inc., 21 , 4-5 (1981)
As a result of various studies on the chemical properties of bicycloorthoesters, the present inventors found that such compounds not only undergo cationic polymerization with cationic polymerization catalysts, but also can be used for phenolic resins, organic polybasic acids, The present inventors have discovered that ring-opening polymerization is possible with a curing agent selected from organic polybasic acid anhydrides and carboxylic acid type polyesters, and that the volume shrinkage upon curing is extremely small, leading to the completion of the present invention. . The bicycloorthoester constituting the composition of the present invention is a compound having one or more bicycloorthoester groups represented by formula [1] in its molecule, and includes, for example, a compound represented by the following general formula.

【匏】【formula】

【匏】 ただし、䞊蚘䞀般匏における蚘号の意味は぀ぎ
のごずくである。 以䞊の敎数。 R1 氎玠原子アルキル基たずえば炭玠数の
メチル基から炭玠数18のオクタデシル基に至
る盎鎖状たたは分枝状のアルキル基たずえ
ばシクロペンチル、シクロヘキシルおよびシ
クロペンチル等のごずきシクロアルキル基
たずえばベンゞル、プニル゚チル、プニ
ルプロピルおよびプニルむ゜プロピル等の
ごずきアラルキル基たずえばプニル、ビ
プニル、キセニルおよびナフチル等のごず
きアリヌル基トリル、キシリル、゚チルフ
゚ニル、プロピルプニル、む゜プロピルフ
゚ニルおよびブチルプニル等のごずきアル
カリヌル基たずえばヒドロキシメチル等の
ごずきヒドロキシアルキル基たずえばアク
リロむルオキシメチル、メタクリロむルオキ
シメチルおよびビニルベンゞルオキシメチル
基等のごずき䞍飜和基眮換オキシメチル基
たたはたずえば―゚チルカルバモむルオキ
シメチルおよび―プニルカルバモむルオ
キシメチル等のごずきカルバモむルオキシメ
チル基を有するりレタン化合物の残基。 R2氎玠原子䞊蚘R1に関しおそれぞれ具䜓䟋
を䟋瀺したごずきアルキル基、シクロアルキ
ル基、アラルキル基、アリヌル基、アルカリ
ヌル基たずえばヒドロキシメチルからヒド
ロキシオクタデシルに至る盎鎖状たたは分枝
状のモノヒドロキシアルキル基たたはたず
えばビニル、α―メチルビニル、β―メチル
ビニル、α―゚チルビニルおよびプロペニル
からオクタデセニルに至る盎鎖状たたは分枝
状のアルケニル基。 R3䞋蚘の䞀般匏〔〕たたは〔〕で瀺され
るごずき有機基。 〔―NHCOOCH2―〕n 〔〕 〔―CHOHCH2OCH2―〕n 〔〕 ここでは倚䟡む゜シアネヌト化合物たたは
これずポリヒドロキシ化合物の反応物であ぀
お、耇数個のむ゜シアネヌト基を有するりレ
タン化合物から、少なくずも個のむ゜シア
ネヌトを陀いた基。 はポリ゚ポキシ化合物から少なくずも個
の゚ポキシ基を陀いた基。 R4氎玠原子䞊蚘R1に関しおそれぞれ具䜓䟋
を䟋瀺したごずきアルキル基、アラルキル基
たたはアリヌル基。 およびずは互に同じであるかたたは異
なる゚チレン性䞍飜和化合物から遞ばれた重
合䜓構成単䜍。 および重合䜓構成単䜍およびのモル分
率。 䞊蚘に䟋瀺したビシクロオル゜゚ステルは皮々
の方法によ぀お補造される。たずえば䞀般匏
〔〕で瀺されるビシクロオル゜゚ステルに぀い
おは、American Chemical Society、Division
of Polymer ChemistryInc21〜
1981等に蚘茉されおいる方法がある。その䞀
䟋を瀺すず、次匏〔〕で衚わされるトリメチロ
ヌル化合物ず、次匏〔〕で衚わされるトリアル
キルオル゜アシレヌトずの脱アルコヌル反応で補
造され埗る。
[Formula] However, the meanings of the symbols in the above general formula are as follows. m: an integer of 2 or more. R 1 hydrogen atom; alkyl group, such as a linear or branched alkyl group ranging from a methyl group with 1 carbon number to an octadecyl group with 18 carbon atoms; cycloalkyl group, such as cyclopentyl, cyclohexyl, cyclopentyl, etc.;
Aralkyl groups such as benzyl, phenylethyl, phenylpropyl and phenylisopropyl; aryl groups such as phenyl, biphenyl, xenyl and naphthyl; tolyl, xylyl, ethyl phenyl, propylphenyl, isopropylphenyl and butylphenyl. alkaryl group; hydroxyalkyl group such as hydroxymethyl; unsaturated group-substituted oxymethyl group such as acryloyloxymethyl, methacryloyloxymethyl and vinylbenzyloxymethyl group;
or residues of urethane compounds having carbamoyloxymethyl groups, such as N-ethylcarbamoyloxymethyl and N-phenylcarbamoyloxymethyl. R 2 : Hydrogen atom; an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, an alkaryl group, such as the specific examples given for R 1 above; for example, a linear or branched group ranging from hydroxymethyl to hydroxyoctadecyl; Monohydroxyalkyl groups; or linear or branched alkenyl groups such as vinyl, α-methylvinyl, β-methylvinyl, α-ethylvinyl and propenyl to octadecenyl. R 3 : An organic group represented by the following general formula [] or []. Y [-NHCOOCH 2 - ] n [ ] A group obtained by removing at least m isocyanates from a urethane compound having isocyanate groups. X is a group obtained by removing at least m epoxy groups from a polyepoxy compound. R 4 : Hydrogen atom; an alkyl group, an aralkyl group, or an aryl group as exemplified above for R 1 . A and B: A and B are mutually the same or different polymer structural units selected from ethylenically unsaturated compounds. x and y: molar fraction of polymer constitutional units A and B. The bicycloorthoesters exemplified above can be produced by various methods. For example, regarding the bicycloorthoester represented by the general formula [2], American Chemical Society, Division
of Polymer Chemistry, Inc., 21, 4-5
(1981) and others. For example, it can be produced by a dealcoholization reaction between a trimethylol compound represented by the following formula [3] and a trialkyl orthoacylate represented by the following formula [4].

【匏】【formula】

【匏】 ただし、R1およびR2は既述したずおりの原
子たたは有機基を、たたR′はアルキル基を衚わ
す。 この反応を瀺すず以䞋のごずくになる。 たた䞊蚘のビシクロオル゜゚ステルは他の方
法、すなわち䞊匏〔〕で瀺されるトリメチロヌ
ル化合物ず次匏〔〕で瀺されるモノカルボン酞
の盎接゚ステル化反応によ぀おも補造される。 ここでR2は匏〔〕で瀺されるものず同じ
原子たたは有機基を衚わす。 トリメチロヌル化合物ずモノカルボン酞の仕蟌
みモル比は、等モルないし前者を埌者のモル圓量
よりやや過剰ずするのが奜たしい。この反応は次
匏のように衚わされる。 この反応は、酞性觊媒䟋えば―トル゚ンスル
フオン酞、リン酞、ベンれンスルフオン酞等を出
発反応液又は反応物の0.05〜重量存圚させお
行なうのが䞀般的である。第段の反応は溶媒の
存圚䞋又は非存圚䞋に行なうこずができる。溶媒
ずしおはたずえばベンれン、トル゚ン、キシレン
等の芳銙族炭化氎玠ゞ――プロピル゚ヌテ
ル、ゞアミル゚ヌテル、メチルブチル゚ヌテル、
―ゞオキサン、―ゞオキサン等の皮々の゚ヌ
テルノルマル又は皮々の異性䜓のゞブチルケト
ンやゞアミルケトン等のアルキルケトン、メチル
ベンゞルケトン等の皮々のケトン―ヘプタ
ン、ペンタン、オクタン等の盎鎖状又は分枝状の
炭化氎玠等が䜿甚される。 反応終了埌、もし溶媒を䜿甚した堎合はこれを
反応液から陀去し、それから反応物をゆ぀くり枛
圧䞋で蒞留する。蒞留の間にモノ゚ステルからビ
シクロオル゜゚ステルが生成するので、蒞留の間
ビシクロオル゜゚ステル生成速床ず留出速床を適
切にするように内枩及び枛圧床を調敎する。 このようにしお分離されたビシクロオル゜゚ス
テルは、必芁に応じお繰返し蒞留するか、適圓な
溶媒による抜出あるいは再結晶で粟補される。 たた前蚘䞀般匏〔〕においおR1がカルバモ
むルオキシメチル基を有する化合物の残基である
ビシクロオル゜゚ステル、および前蚘䞀般匏
〔2′〕においおR3が䞀般匏〔〕で衚わされるビ
シクロオル゜゚ステルは、䞋蚘䞀般匏のように包
括的に瀺されるが、それらは倚䟡む゜シアネヌト
化合物ずヒドロキシアルキル基保有ビシクロオル
゜゚ステルずを反応させる方法で補造される。 ただし、はむ゜シアネヌトたたはりレタン
化合物残基で、R5は既述したR2たたはR4に同じ
であり、たたは以䞊の敎数である。 ぀ぎに前蚘䞀般匏〔2′〕においおR3が䞀般匏
〔〕で衚わされるビシクロオル゜゚ステルは、
個以䞊の゚ポキシ基を分子䞭に有するポリ゚
ポキシ化合物ずヒドロキシアルキル基保有ビシク
ロオル゜゚ステルずを反応させる方法で補造され
る。 さらに、前蚘䞀般匏〔2″〕たたは〔〕で瀺
されるビシクロオル゜゚ステルは、ラゞカル重合
性の䞍飜和基を有するビシクロオル゜゚ステルた
たはこれず他の゚チレン性䞍飜和化合物ずのラゞ
カル重合により、あるいは官胜基を有する重合䜓
に圓該官胜基ず反応性を持぀官胜基保有ビシクロ
オル゜゚ステルを反応させる高分子反応により、
補造される。たずえばクロルメチル基を有するス
チレンの単独重合䜓たたはかかるスチレンず他の
゚チレン性䞍飜和化合物ずの共重合䜓に、脱塩化
ナトリりム反応を利甚しお、次匏で瀺されるビシ
クロオル゜゚ステルを該反応に関する垞法に埓い
高分子反応させるこずによ぀お、前蚘䞀般匏
〔2″〕のビシクロオル゜゚ステルが補造される。 たた次匏で瀺されるビシクロオル゜゚ステルた
たはこれず他の゚チレン性䞍飜和化合物を、䞀般
的なラゞカル重合手段によ぀お重合させるこずに
よ぀お、前蚘䞀般匏〔〕のビシクロオル゜゚
ステルが補造される。 これらの䞀般匏〔2″〕および〔〕で瀺され
るビシクロオル゜゚ステルにおいお、単䜍を構
成し埗る゚チレン性䞍飜和化合物の具䜓䟋ずしお
は、たずえば酢酞ビニル、アクリロニトリル、メ
チルメタクリレヌト、クロルメチルスチレンたた
はスチレン等の単独あるいはこれらの組合せを挙
げるこずができる。単䜍およびのモル分率で
あるずは任意の倀であり埗るが、重合䜓の物
性および䟡栌などの面から、比は
100〜50100の範囲が奜適である。 䞀方前蚘䞀般匏〔〕で衚わされるりレタン結
合を有するビシクロオル゜゚ステルの補造法に関
しおさらに詳现に説明するず、以䞋の(1)又は(2)の
方法がある。 (1) 有機む゜シアネヌトず䞋匏〔〕で瀺される
ビシクロオル゜゚ステルのりレタン化反応。 (2) 䞋蚘化合物、及びのりレタン化
反応。  む゜シアネヌト基を少なくずも個有する
ポリむ゜シアネヌト化合物の少なくずも
皮。  ヒドロキシル基を少なくずも個有するポ
リヒドロキシ化合物の少なくずも皮。  匏〔〕で瀺されるビシクロオル゜゚ステ
ルの少なくずも皮。 匏〔〕で衚わされる化合物を補造するための
有機む゜シアネヌトを䟋瀺するず、たず有機モノ
む゜シアネヌトずしおは䟋えば、メチルむ゜シア
ネヌト、゚チルむ゜シアネヌト、―プロピルむ
゜シアネヌト、―ブチルむ゜シアネヌト、ヘキ
シルむ゜シアネヌト、クロル゚チルむ゜シアネヌ
ト、クロルプロピルむ゜シアネヌト、クロルヘキ
シルむ゜シアネヌト、クロルブトキシプロピルむ
゜シアネヌト、オクタデシルむ゜シアネヌト等の
脂肪族モノむ゜シアネヌト、プニルむ゜シアネ
ヌト、―、―、および―クロルプニルむ
゜シアネヌト、ベンゞルむ゜シアネヌト、ナフチ
ルむ゜シアネヌト、―、゚チルプニルむ゜シ
アネヌト、ゞクロルプニルむ゜シアネヌト等の
芳銙族モノむ゜シアネヌトがある。たた分子内に
個以䞊のむ゜シアネヌト基を有するポリむ゜シ
アネヌト化合物ずしおは脂肪族、脂環族および芳
銙族の各ポリむ゜シアネヌト䟋えば、テトラメチ
レンゞむ゜シアネヌト、ヘキサメチレンゞむ゜シ
アネヌト、リゞンゞむ゜シアネヌト、―お
よび―トリレンゞむ゜シアネヌト、ゞプ
ニルメタン―4′―ゞむ゜シアネヌト、―お
よび―キシリレンゞむ゜シアネヌト、ゞシクロ
ヘキシルメタン―4′―ゞむ゜シアネヌト、
―および―プニレンゞむ゜シアネヌト、ナフ
タレン、――ゞむ゜シアネヌト、ゞプニ
レン―4′―ゞむ゜シアネヌト、シクロヘキシ
ル――ゞむ゜シアネヌト、む゜ホロンゞむ
゜シアネヌト、4′―ゞむ゜シアネヌトゞプ
ニル゚ヌテル、トリプニルメタン―4′
4″―トリむ゜シアネヌト、―トリむ゜
シアネヌトトル゚ン、ポリメチレンポリプニル
む゜シアネヌト、氎ずヘキサメチレンゞむ゜シア
ネヌトをのモル比で反応させお埗られる生
成物等が挙げられる。 もちろんこれらのポリむ゜シアネヌト化合物の
混合物も䜿甚できる。 たた、他の原料である二぀以䞊の氎酞基をも぀
ポリヒドロキシ化合物ずしお倚䟡アルコヌル、ポ
リ゚ステルポリオヌル、ポリ゚ヌテルポリオヌ
ル、ポリマヌポリオヌルがある。 倚䟡アルコヌルずしおは、脂肪族、脂環族、芳
銙族、芳銙脂肪族に属するもの、ならびに該倚䟡
アルコヌルの皮以䞊が脱氎瞮合した構造の゚ヌ
テル結合を分子内にも぀倚䟡アルコヌルが䜿甚さ
れる。䟋えば゚チレングリコヌル、プロピレング
リコヌル、―、―たたは
―ブタンゞオヌル、ペンタメチレングリコヌ
ル、ヘキサメチレングリコヌル、オクタメチレン
グリコヌル、ノナメチレングリコヌル、デカメチ
レングリコヌル、ネオペンチルグリコヌル、ビス
プノヌル、氎玠化ビスプノヌル、シクロ
ヘキサン――ゞメタノヌル、―および
―キシリデングリコヌル、ゞブロモネオペンチル
グリコヌル、シクロヘキサン――ゞオヌ
ル、クロルプロピレングリコヌル、―゚チルヘ
キサンゞオヌル―たたは―ゞ゚
チレングリコヌル、トリ゚チレングリコヌル、ゞ
プロピレングリコヌル、ビスプノヌルゞオキ
シ゚チル゚ヌテル、ビスプノヌルゞオキシプ
ロピル゚ヌテル、グリセリン、トリメチロヌルプ
ロパン、トリメチロヌル゚タン、トリメチロヌル
メタン、ペンタ゚リスリトヌル、゜ルビルトヌ
ル、゚リスリトヌル等がある。 ポリ゚ステルポリオヌルずしおは、各皮ラクト
ンたずえばβ―プロピオラクトンおよびその眮換
䜓、Ύ―バレロラクトンおよびその眮換䜓、ε―
カプロラクトンおよびその眮換䜓等、四員環、六
員環、䞃員環あるいはそれ以䞊のラクトンを觊媒
存圚䞋、あるいは無觊媒䞋゚チレングリコヌル、
―プロピレングリコヌル等の存圚䞋に開環
重合したものや、たた少なくずも皮の成分すな
わち倚䟡カルボン酞ず倚䟡アルコヌルを反応させ
お補造されるポリ゚ステルポリオヌルがある。そ
れらは前蚘倚䟡アルコヌルず䞋蚘倚䟡カルボン酞
から補造される。䟋えば倚䟡カルボン酞ずしおは
フタル酞、む゜たたはテレフタル酞、テトラ
ヒドロフタル酞、ヘキサヒドロフタル酞、ハむミ
ツク酞、゚ンド酞、テトラクロルフタル酞、テト
ラブロモフタル酞、ヘツト酞、メチルヘキサヒド
ロフタル酞、蓚酞、マロン酞、コハク酞、グルタ
ル酞、アゞピン酞、セバシン酞、ドデカン酞、
マレむン酞、フマヌル酞、むタコン酞、゚チルマ
ロン酞、―シクロヘキセンゞカルボン酞、
α―メチルむタコン酞、―メチルコハク酞、ピ
メリン酞、スベリン酞、アれラむン酞、ハロゲン
化テトラヒドロフタル酞、トリメリツト酞、メチ
ルシクロヘキセントリカルボン酞、アコニツト
酞、ピロメリツト酞等がある。 さらに䞊蚘の各倚䟡カルボン酞の無氎物、アシ
ルハラむド、䜎玚アルキル゚ステルなども、倚䟡
カルボン酞ず同様に反応し䜿甚可胜である。 たたポリ゚ヌテルポリオヌルずしおは䟋えば、
ポリ゚チレングリコヌル、ポリプロピレングリコ
ヌル、ポリテトラメチレングリコヌル、゚チレン
オキシド−プロピレンオキシド共重合䜓等のポリ
アルキレンオキサむド、ビスプノヌル類のアル
キレンオキサむド付加物、氎玠化ビスプノヌル
類のアルキレンオキサむド付加物、ハロゲン化ビ
スプノヌル類のアルキレンオキサむド付加物、
ポリ゚ピクロルヒドリン等があげられる。 たたポリマヌポリオヌルずしおは䟋えば氎酞基
を有するポリブタゞ゚ン、氎酞基を有するブタゞ
゚ン―スチレン共重合䜓、アクリル酞゚ステル―
ヒドロキシアルキルアクリル酞゚ステル共重合
䜓、氎酞基を有するポリブタゞ゚ン・アルキレン
オキサむド付加物、アルキルスチレン・ポリ゚ヌ
テルポリオヌル反応物、アクリロニトリル―ポリ
゚ヌテルポリオヌル反応物、゚ポキシ暹脂―脂肪
族又は脂環族アルコヌル反応物等があげられる。 次に䞊蚘(2)の化合物、およびをり
レタン化反応させるこずによりりレタン基をも぀
ビシクロオル゜゚ステルを補造する方法の䞀䟋を
䟋瀺する。 代衚的な方法は二段反応による補法で、たず第
の工皋で、ポリむ゜シアネヌト化合物ずポリヒ
ドロキシ化合物ずのりレタン化反応により末端お
よびたたは偎鎖にむ゜シアネヌト基を有する郚
分りレタン化物を補造する。このずきのポリヒド
ロキシ化合物の䜿甚量は、ポリヒドロキシ化合物
に含たれる氎酞基圓量に察しお、ポリむ゜シア
ネヌト化合物のむ゜シアネヌト基玄1.1圓量以䞊
の割合である。この圓量比を倉化させるこずによ
り最終の生成組成物の分子量を調節するこずがで
きる。氎酞基圓量に察しお、む゜シアネヌト基
が玄1.1圓量より䜎い割合で䜿甚されたずき、最
終生成組成物の分子量が著しく倧きくなり粘床が
増倧したり、硬化性が充分でない堎合がある。 たた氎酞基に察するむ゜シアネヌト基の圓量比
が倧きくなるず最終生成組成物はポリむ゜シアネ
ヌト化合物のむ゜シアネヌト基が化合物〔〕で
りレタン化された化孊匏〔〕で瀺される化合物
以䞋化合物〔〕ずいう。の割合が倧きくな
る。 ―NH―COO―f 〔〕 ここでは
[Formula] (However, R 1 and R 2 represent atoms or organic groups as described above, and R' represents an alkyl group.) This reaction is shown as follows. The above bicycloorthoester can also be produced by another method, that is, a direct esterification reaction of a trimethylol compound represented by the above formula [3] and a monocarboxylic acid represented by the following formula [5]. (Here, R 2 represents the same atom or organic group as shown in formula [4].) The molar ratio of the trimethylol compound and the monocarboxylic acid to be charged is equal to or slightly in excess of the molar equivalent of the latter. It is preferable to do so. This reaction is expressed as follows. This reaction is generally carried out in the presence of an acidic catalyst such as P-toluenesulfonic acid, phosphoric acid, benzenesulfonic acid, etc. in an amount of 0.05 to 3% by weight of the starting reaction solution or reactants. The first stage reaction can be carried out in the presence or absence of a solvent. Examples of solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; di-n-propyl ether, diamyl ether, methyl butyl ether,
Various ethers such as m-dioxane and P-dioxane; alkyl ketones such as normal or various isomers of dibutyl ketone and diamyl ketone; various ketones such as methylbenzyl ketone; linear such as n-heptane, pentane, octane, etc. Alternatively, branched hydrocarbons and the like are used. After the reaction is complete, the solvent, if used, is removed from the reaction solution, and the reactants are then slowly distilled under reduced pressure. Since bicycloorthoester is produced from the monoester during distillation, the internal temperature and degree of vacuum are adjusted during the distillation to appropriate the bicycloorthoester production rate and distillation rate. The bicycloorthoester thus separated is purified by repeated distillation, extraction with an appropriate solvent, or recrystallization, if necessary. Bicycloorthoesters in which R 1 is a residue of a compound having a carbamoyloxymethyl group in the general formula [2], and bicycloorthoesters in which R 3 in the general formula [2'] is represented by the general formula [] , which are comprehensively represented by the following general formula, are produced by a method of reacting a polyvalent isocyanate compound and a hydroxyalkyl group-containing bicycloorthoester. (However, Q is an isocyanate or urethane compound residue, R 5 is the same as R 2 or R 4 described above, and n is an integer of 1 or more.) Next, in the general formula [2'] above, Bicycloorthoesters in which R 3 is represented by the general formula [ ] are
It is produced by a method of reacting a polyepoxy compound having two or more epoxy groups in one molecule with a bicycloorthoester having a hydroxyalkyl group. Furthermore, the bicycloorthoester represented by the general formula [2″] or [2] can be produced by radical polymerization of a bicycloorthoester having a radically polymerizable unsaturated group or with another ethylenically unsaturated compound, or Through a polymer reaction in which a polymer having a functional group is reacted with a bicycloorthoester having a functional group that is reactive with the functional group,
Manufactured. For example, a bicycloorthoester represented by the following formula is added to a homopolymer of styrene having a chloromethyl group or a copolymer of such styrene and another ethylenically unsaturated compound using a sodium dechlorination reaction, which is the usual method for the reaction. Bicycloorthoester of the general formula [2''] is produced by polymeric reaction according to the method. Furthermore, the bicycloorthoester represented by the general formula [2] can be produced by polymerizing the bicycloorthoester represented by the following formula or another ethylenically unsaturated compound using a general radical polymerization method. Ru. In the bicycloorthoesters represented by the general formulas [2''] and [2], specific examples of ethylenically unsaturated compounds that can constitute the unit A include vinyl acetate, acrylonitrile, methyl methacrylate, chloromethylstyrene, Examples include styrene, etc. alone or in combination.Although x and y, which are the molar fractions of units A and B, can be arbitrary values, from the viewpoint of the physical properties and price of the polymer, y/( x+y) ratio is preferably in the range of 3/100 to 50/100.On the other hand, to explain in more detail the method for producing the bicycloorthoester having a urethane bond represented by the general formula [6], the following (1) Alternatively, there is method (2). (1) Urethane-forming reaction between an organic isocyanate and a bicycloorthoester represented by the following formula [7]. (2) Urethane formation reaction of the following compounds A), B) and C). A At least one polyisocyanate compound having at least two isocyanate groups
seed. B At least one type of polyhydroxy compound having at least two hydroxyl groups. C At least one bicycloorthoester represented by formula [7]. Examples of organic isocyanates for producing the compound represented by formula [6] include organic monoisocyanates such as methyl isocyanate, ethyl isocyanate, n-propylisocyanate, n-butyl isocyanate, hexyl isocyanate, chloroethyl isocyanate, Aliphatic monoisocyanates such as chlorpropyl isocyanate, chlorhexyl isocyanate, chlorbutoxypropyl isocyanate, octadecyl isocyanate, phenyl isocyanate, O-, m-, and P-chlorophenyl isocyanate, benzyl isocyanate, naphthyl isocyanate, O-, ethyl There are aromatic monoisocyanates such as phenyl isocyanate and dichlorophenyl isocyanate. Examples of polyisocyanate compounds having two or more isocyanate groups in the molecule include aliphatic, alicyclic and aromatic polyisocyanates, such as tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, 2,4- and 2-, 6-Tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, m- and p-xylylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, m
- and p-phenylene diisocyanate, naphthalene, -1,5-diisocyanate, diphenylene-4,4'-diisocyanate, cyclohexyl-1,4-diisocyanate, isophorone diisocyanate, 4,4'-diisocyanate diphenyl ether, triphenylmethane -4,4′,
Examples include 4″-triisocyanate, 2,4,6-triisocyanate toluene, polymethylene polyphenyl isocyanate, and products obtained by reacting water and hexamethylene diisocyanate at a molar ratio of 1:3. Mixtures of polyisocyanate compounds can also be used. Other raw materials, polyhydroxy compounds with two or more hydroxyl groups, include polyhydric alcohols, polyester polyols, polyether polyols, and polymer polyols. Polyhydric alcohols include fatty acids. Polyhydric alcohols having an ether bond in the molecule, which has a structure in which one or more of these polyhydric alcohols are dehydrated and condensed, are used.For example, ethylene glycol, Propylene glycol, (1,3-, 1,4- or 2,3
-) Butanediol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, nonamethylene glycol, decamethylene glycol, neopentyl glycol, bisphenol A, hydrogenated bisphenol A, cyclohexane-1,4-dimethanol, m- and p
-Xylidene glycol, dibromoneopentyl glycol, cyclohexane-1,4-diol, chloropropylene glycol, 2-ethylhexanediol (-1,3 or -1,6) diethylene glycol, triethylene glycol, dipropylene glycol, bisphenol Examples include A dioxyethyl ether, bisphenol A dioxypropyl ether, glycerin, trimethylolpropane, trimethylolethane, trimethylolmethane, pentaerythritol, sorbitol, and erythritol. Examples of polyester polyols include various lactones such as β-propiolactone and its substituted products, Ύ-valerolactone and its substituted products, and ε-
Caprolactone and its substituted products, 4-membered ring, 6-membered ring, 7-membered ring or more lactone in the presence of a catalyst or in the absence of a catalyst, ethylene glycol,
There are polyester polyols produced by ring-opening polymerization in the presence of 1,2-propylene glycol and the like, and polyester polyols produced by reacting at least two components, namely a polyhydric carboxylic acid and a polyhydric alcohol. They are produced from the polyhydric alcohols mentioned above and the polyhydric carboxylic acids mentioned below. For example, polyhydric carboxylic acids include phthalic acid, iso (or tere) phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, hymic acid, endo acid, tetrachlorophthalic acid, tetrabromophthalic acid, hettic acid, methylhexahydrophthalic acid, Acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid,
Maleic acid, fumaric acid, itaconic acid, ethylmalonic acid, 1,4-cyclohexenedicarboxylic acid,
Examples include α-methylitaconic acid, 2-methylsuccinic acid, pimelic acid, suberic acid, azelaic acid, halogenated tetrahydrophthalic acid, trimellitic acid, methylcyclohexentricarboxylic acid, aconitic acid, and pyromellitic acid. Furthermore, anhydrides, acyl halides, lower alkyl esters, etc. of each of the above-mentioned polycarboxylic acids can also be used by reacting in the same manner as the polycarboxylic acids. Examples of polyether polyols include:
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyalkylene oxides such as ethylene oxide-propylene oxide copolymers, alkylene oxide adducts of bisphenols, alkylene oxide adducts of hydrogenated bisphenols, and halogenated bisphenols. alkylene oxide adduct,
Examples include polyepichlorohydrin. Polymer polyols include, for example, polybutadiene with hydroxyl groups, butadiene-styrene copolymers with hydroxyl groups, acrylic ester-
Hydroxyalkyl acrylate copolymers, polybutadiene/alkylene oxide adducts with hydroxyl groups, alkylstyrene/polyether polyol reactants, acrylonitrile-polyether polyol reactants, epoxy resins-aliphatic or alicyclic alcohol reactants, etc. can give. Next, an example of a method for producing a bicycloorthoester having a urethane group by subjecting the compounds A), B), and C) of the above (2) to a urethanization reaction will be illustrated. A typical method is a two-step reaction method, in which, in the first step, a partially urethanized product having an isocyanate group at the terminal and/or side chain is produced by a urethanization reaction between a polyisocyanate compound and a polyhydroxy compound. The amount of the polyhydroxy compound used at this time is at least about 1.1 equivalents of isocyanate groups in the polyisocyanate compound per 1 equivalent of hydroxyl groups contained in the polyhydroxy compound. By varying this equivalent ratio, the molecular weight of the final product composition can be controlled. When the isocyanate group is used in a ratio lower than about 1.1 equivalents per equivalent of hydroxyl group, the molecular weight of the final composition may become significantly large, resulting in increased viscosity or insufficient curability. Furthermore, when the equivalent ratio of isocyanate groups to hydroxyl groups increases, the final product composition becomes a compound represented by the chemical formula [8] (hereinafter referred to as compound [8]) in which the isocyanate groups of the polyisocyanate compound are urethanized with compound [7]. The proportion increases. A(-NH-COO-X) f [8] Here, X is

【匏】で瀺され る基を、は䜎玚アルキル基を、はポリむ゜シ
アネヌト残基を、たたはポリむ゜シアネヌト化
合物の䟡数に盞圓する敎数を衚わす。 化合物〔〕は個以䞊のビシクロオル゜゚ス
テル基を有するこずになり、これは倚官胜重合性
化合物であるから最終の生成組成物を硬化させる
ずき、橋かけ結合の生成床を増倧させるのに圹立
぀。 該りレタン化反応は、発熱による急激な枩床䞊
昇をさけるために必芁に応じ、ポリむ゜シアネヌ
ト化合物に、ポリヒドロキシ化合物を分割添加、
たたは滎䞋するこずによ぀お枩床を調節しながら
反応を進める。 次に第の工皋では第の工皋でえられた郚分
りレタン化物の末端およびたたは偎鎖のむ゜シ
アネヌト基に化合物〔〕を反応させ結合させ
る。なお、この皮の郚分りレタン化物のある物は
垂販されおおり、本発明においおはかかる垂販品
を利甚するこずもできる。 この郚分りレタン化物に化合物〔〕を添加す
る割合は、郚分りレタン化物䞭の残存む゜シアネ
ヌト基の圓量数ず化合物〔〕の氎酞基の圓量数
ずが等しくなるようにするのが䞀般的である。目
的により化合物〔〕の割合を圓量数以䞊にする
こずもできる。 該りレタン化反応は発熱による急激な枩床䞊昇
をさけるために郚分りレタン化物に化合物〔〕
を、分割添加たたは滎䞋するこずによ぀お、枩床
を調節しながら反応を進める。 䞊蚘補造方法により補造される生成物は、皮々
の化合物の混合物である。 䟋えば、単玔化のためポリむ゜シアネヌト化合
物ずしおゞむ゜シアネヌト化合物を、たたポリヒ
ドロキシ化合物ずしおゞヒドロキシル化合物を䜿
甚し、反応系の氎酞基ずむ゜シアネヌト基の圓量
数が等しくなるように反応させた堎合を䟋瀺する
ず、生成物は以䞋のような化合物の混合物ずなる
ず掚定される。 ―OOC―NH―A′―NH―COO―
In the group represented by the formula, R represents a lower alkyl group, A represents a polyisocyanate residue, and f represents an integer corresponding to the valence of the polyisocyanate compound. Compound [8] has two or more bicycloorthoester groups, and since it is a polyfunctional polymerizable compound, it increases the degree of cross-linking when curing the final product composition. Helpful. In the urethanization reaction, a polyhydroxy compound is added in portions to the polyisocyanate compound as necessary to avoid a rapid temperature rise due to heat generation.
Alternatively, the reaction proceeds while controlling the temperature by dropping. Next, in the second step, compound [1] is reacted and bonded to the terminal and/or side chain isocyanate groups of the partially urethanized product obtained in the first step. Note that some partially urethanized products of this type are commercially available, and such commercial products can also be used in the present invention. The ratio of adding compound [7] to this partially urethanized product is generally such that the number of equivalents of residual isocyanate groups in the partially urethanized product is equal to the number of equivalents of hydroxyl groups in compound [7]. Depending on the purpose, the proportion of compound [7] can be increased to an equivalent number or more. In the urethanization reaction, the compound [7] is added to the partially urethanized product in order to avoid a rapid temperature rise due to heat generation.
The reaction is allowed to proceed while controlling the temperature by adding or dropping in portions or dropwise. The product produced by the above production method is a mixture of various compounds. For example, for the sake of simplicity, a diisocyanate compound is used as the polyisocyanate compound, and a dihydroxyl compound is used as the polyhydroxy compound, and the reaction is performed so that the number of equivalents of the hydroxyl group and the isocyanate group in the reaction system are equal. It is estimated that the substance is a mixture of the following compounds. X-OOC-NH-A'-NH-COO-X

〔〕 ここでは前蚘化孊匏〔〕で説明したず同じ
基を、A′はゞむ゜シアネヌト化合物の残基を、
はゞヒドロキシ化合物の残基を、たたは以
䞊の敎数を瀺す。 䞊蚘のように第の郚分りレタン化物を補造す
る工皋で氎酞基に察しおむ゜シアネヌト基のモル
圓量数を倧きくするず化孊匏
[9] Here, X is the same group as explained in the above chemical formula [8], A' is the residue of the diisocyanate compound,
B represents a residue of a dihydroxy compound, and n represents an integer of 1 or more. As mentioned above, when the number of molar equivalents of isocyanate groups to hydroxyl groups is increased in the process of producing the first partially urethanized product, the chemical formula

〔〕で瀺される化
合物の割合が増える。䞀方モル圓量数を小さくす
るず化孊匏〔10〕で瀺される化合物の割合が増
え、たた分子量が倧きくなる傟向を瀺す。たたこ
の補法においおは、䞊蚘化孊匏で衚わされる化合
物以倖にも、む゜シアネヌト基ず氎が反応した尿
玠結合を含んだ化合物等も少量含たれるであろ
う。 本発明組成物の他の構成々分である硬化剀ずし
おのプノヌル系暹脂、有機倚塩基酞、有機倚塩
基酞無氎物及びカルボン酞型ポリ゚ステルずしお
は、゚ポキシ化合物の硬化剀ずしお䜿甚されおい
るものを利甚できる。 たずプノヌル系暹脂はプノヌル性氎酞基を
有する暹脂で、䟋えばポリビニルプノヌル、ハ
ロゲン化ポリビニルプノヌルが䜿甚できる他、
通垞のプノヌル暹脂即ち䟋えばプノヌル、オ
ルトたたはパラ・クレゟヌル、パラ・゚チル
プノヌル、パラ―tert―ブチルプノヌル、パ
ラ―sec―ブチルプノヌル、パラ――ブチル
プノヌル、オルトたたはパラ・プニルフ
゚ノヌル、パラ・シクロヘキシルプノヌル、パ
ラ・オクチルプノヌル、パラ・ベンゞルプノ
ヌル、ビスプノヌル等を原料ずしお補造され
るノボラツク圢暹脂、レゟヌル圢暹脂及びその倉
性物䟋えばブチル化物等も䜿甚できる。 ぀ぎに有機倚塩基酞および有機倚塩基酞無氎物
ずしおは、䟋えばコハク酞、メチルコハク酞、ド
デセニルコハク酞、ゞクロルコハク酞、アれラむ
ン酞、セバシン酞、むタコン酞、マレむン酞、シ
トラコン酞、フタル酞、テトラヒドロフタル酞、
メチルテトラヒドロフタル酞、ヘキサヒドロフタ
ル酞、メチルヘキサヒドロフタル酞、゚ンドメチ
レンテトラヒドロフタル酞、メチル゚ンドメチレ
ンテトラヒドロフタル酞、トリカルバリル酞、ト
リメリツト酞、ピロメリツト酞、シクロペンタン
――テトラカルボン酞、ベンゟ
プノン―3′4′―テトラカルボン酞、
及びこれらの酞無氎物。たた、これらの二皮以䞊
を混合したもの、あるいはこれらず䞀塩基酞無氎
物ずの混合物、あるいは無氎マレむン酞のリノレ
むン酞付加物などのように䞊蚘倚塩基酞又はその
酞無氎物から埗られる分子の末端又は偎鎖にカル
ボン酞もしくはその酞無氎物構造を有するこれら
の誘導䜓なども䜿甚できる。 たた぀ぎに、カルボン酞型ポリ゚ステルずしお
は、䟋えば䟡以䞊の倚塩基性酞無氎物又はこれ
ず塩基性酞無氎物からなる酞無氎物ず䟡以䞊
のポリオヌル又はこれずゞオヌルからなるポリオ
ヌルずを反応させお埗られるポリ゚ステルがあ
り、さらに具䜓的には䟋えば䟡以䞊のポリオヌ
ル又はこれずゞオヌルからなるポリオヌルず䟡
以䞊の倚塩基性酞無氎物又はこれず塩基性酞無
氎物からなる酞無氎物を、ポリオヌル䞭の氎酞基
圓量圓り酞無氎物0.7〜1.3モルの割合で反応さ
せお埗たカルボン酞型ポリ゚ステル等がある。 ここで䟡以䞊の倚塩基性酞無氎物ずしおは、
䟋えば無氎トリメリツト酞、無氎ピロメリツト
酞、無氎ヘミメリツト酞、無氎メロフアン酞等が
あり、又䟡以䞊のポリオヌルずしおは䟋えばト
リメチロヌルプロパン、ペンタ゚リスリトヌル、
グリセリン、ゞグリセリン、゜ルビトヌル、マン
ニツト、―ヘキサントリオヌル、トリ
スヌβ―ヒドロキシ゚チルむ゜シアヌレヌト
等がある。これらの䟡以䞊の倚塩基性酞無氎物
又はポリオヌルず所望により䜵甚される塩基性
酞無氎物の代衚䟋は無氎フタル酞等であり、又ゞ
オヌルの代衚䟋はゞ゚チレングリコヌルであり、
カルボン酞型ポリ゚ステルに関する技術分野で䜿
甚されおいる各皮の酞無氎物及びポリオヌルを甚
いるこずができる。 本発明におけるビシクロオル゜゚ステル化合物
ず硬化剀ずの反応䟋を瀺すず、以䞋のごずくであ
る。 プノヌル系暹脂を硬化剀ずする反応䟋。 䞊匏においお、Phはプノヌル系暹脂残
基を瀺す。 有機倚塩基酞無氎物を硬化剀ずする反応䟋。 䞊匏においお、R2は有機倚塩基酞無氎物
残基を瀺す。 カルボン酞型ポリ゚ステルを硬化剀ずする反
応䟋。 䞊匏においお、R3はカルボン酞型ポリ゚
ステル残基を瀺す。 本発明の組成物䞭に配合される硬化剀の最適割
合は、甚いる硬化剀の化孊的性質䞊びに調合され
た硬化甚組成物及びそれが䞎える硬化生成物に芁
求される諞性質に応じお適宜蚭定すれば良い。組
成物䞭のビシクロオル゜゚ステル基圓量圓り、
カルボキシル基たたは酞無氎物基が奜たしくは
0.1〜1.5圓量さらに奜たしくは0.2〜1.3圓量ずな
る量の有機倚塩基酞無氎物、あるいはプノヌル
性氎酞基たたはカルボキシル基が奜たしくは0.2
〜10圓量さらに奜たしくは0.3〜圓量ずなる量
のプノヌル系暹脂たたはカルボン酞型ポリ゚ス
テルを配合するこずが望たしい。組成物に難溶性
ないし䞍溶性の硬化剀は、埮粉末状ずしお配合す
るのが適圓である。 所芁ならば、適圓な硬化促進剀を䜿甚しお、本
発明組成物の硬化時間をさらに短瞮できる。適圓
な硬化促進剀ずしおは、第䞉玚アミン、第四玚ア
ンモニりム塩、酞玠、硫黄、窒玠等の原子を有す
る化合物ずルむス酞ずの配䜍化合物䟋えば䞉フツ
化ホり玠・ピペリゞン錯䜓、むミダゟヌル化合
物、ピリゞン、―トル゚ンスルホン酞モルホリ
ン塩、キレヌト化合物、メタロセン類等をあげる
こずができる。 硬化促進剀の量は䞀般にビシクロオル゜゚ステ
ル及び硬化剀の合蚈100重量郚圓り0.1ないし重
量郚である。硬化枩床に関する制限は特にない
が、通垞宀枩〜250℃で行なわれる。 本発明の組成物には必芁に応じお各皮の添加物
を添加しおもよい。 このような添加物の䟋ずしおは、䟋えばガラス
繊維、炭玠繊維、雲母、石英粉、炭酞カルシり
ム、セルロヌズ、カオリン、タルク、アルミニり
ム粉末、倧きな比衚面積を有するコロむド状シリ
カ、粉末ポリ塩化ビニル、及びポリ゚チレンやポ
リプロピレンのような粉末ポリオレフむン等があ
げられる。 本発明組成物に充填剀䟋えばシリカ、タルク、
炭酞カリりム、アルミナ等を添加するこずにより
䜓積収瞮率をさらに䜎䞋できる。 又、本発明による硬化甚組成物は必芁に応じ
お、非反応性垌釈剀、難燃剀、可撓性付䞎剀、そ
の他の倉性剀を含有しおいおもよい。 䞊蚘難燃剀の䟋ずしおは、ハロゲン系難燃剀
䟋・ヘキサブロムベンれン、無機系難燃剀
䟋・氎和アルミナ、リン酞塩等があげられ
る。 又、䞊蚘非反応性垌釈剀の䟋ずしおはゞブチル
フタレヌト、ゞオクチルフタレヌト、リン酞トリ
クレゞル、タヌル等があげられる。 又、可撓性付䞎剀ずしおは、ポリサルフアむ
ド、ポリアミド、ポリアルキレンポリオヌル、゚
ラストマヌ等があげられる。 本発明の組成物はビシクロオル゜゚ステルを含
有しおおり、その有するビシクロオル゜゚ステル
基の開環反応を利甚しお硬化させたずきの䜓積収
瞮が非垞に小さいずいう特長を有するものであ
る。 䟋えば2.4―トリレンゞむ゜シアネヌト、―
゚チル――ヒドロキシメチル――ト
リオキサビシクロ〔〕オクタン及びポ
リネオペンチルアゞペヌトより補造したりレタン
ビシクロオル゜゚ステル埌蚘のビシクロオル゜
゚ステル〔〕に、ノボラツク型プノヌル暹
脂を硬化剀ずしお配合し硬化させた時の䜓積収瞮
率を求めるず僅か0.5であり、たた同じくビシ
クロオル゜゚ステル〔〕に硬化剀ずしおドデセ
ニル無氎コハク酞を配合し硬化させた時の䜓積収
瞮率は0.8にすぎない。 ここで䜓積収瞮率は〔―硬化前の組
成物の比重硬化物の比重〕×100で衚わされ
る。 䞊蚘のように、本発明組成物の硬化における䜓
積収瞮は、䞀般の熱硬化性暹脂に比范しお非垞に
小さい。その結果本発明の組成物は、成圢材料ず
しお䜿甚した堎合寞法粟床がよく、泚型材料ずし
お甚いる時はうめこみ物の収瞮によるひずみが小
さく又型ずの接着が良奜で、隙間を生じないずい
う特長がある。本発明組成物は硬化時の収瞮が小
さいこずに䌎ない内郚ひずみが非垞に小さい硬化
物を圢成し埗るので、塗料ずしお䜿甚するず塗板
ずの密着性に優れそりが小さい塗装が可胜であ
り、接着剀ずしお利甚すれば倧きな接着力をもた
らす。 かくしお本発明の組成物は、泚型材料、成圢材
料、耇合材料、接着剀、塗料及びその他の各皮分
野で䜿甚される硬化性材料ずしお、極めお優れた
適性を有する組成物である。 以䞋実斜䟋によ぀お、本発明を詳现に説明する
が、各実斜䟋における硬化剀ずしおのプノヌル
系暹脂及びカルボン酞型ポリ゚ステルは埮粉末ず
しお組成物に添加混合した。又各実斜䟋䞭に䜿甚
したビシクロオル゜゚ステル〔〕、〔〕及び
〔〕䞊びに硬化剀であるカルボン酞型ポリ゚ス
テルは以䞋の参考䟋のように補造したものであ
る。 参考䟋  ビシクロオル゜゚ステル〔〕の補造 撹拌機、コンデンサヌ、窒玠吹蟌み口及び滎䞋
ロヌトを備えた぀口200mlフラスコに、む゜ホ
ロンゞむ゜シアネヌト22.20.1モル、脱氎し
たトル゚ンおよび觊媒ずしおゞブチル錫ゞラりレ
ヌト0.01を加えた。 この混合物を油济で70℃に加熱し窒玠気流䞭
で、―゚チル――ヒドロキシメチル―
―トリオキサビシクロ〔〕オ
クタン34.80.2モルをトル゚ン50mlに混合
した溶液を玄30分かけお滎䞋した。この枩床でさ
らに時間反応させた。この反応液の脱溶剀を行
ない䞋匏で瀺される化合物を䞻成分ずする癜色固
䜓状のりレタンビシクロオル゜゚ステルを埗た。
なお生成物の比重は、詊料を融点以䞊に加熱し溶
融脱気埌、密床募配管法型盎読匏比重枬定装眮
柎山科孊噚械補䜜所に投入しお枬定枬定法
した。 ただしは぀ぎの基を衚わす。 䞊蚘化合物の物性倀は以䞋のようである。 Γ 軟化点88〜91℃ Γ 比重25℃1.200枬定法 Γ 赀倖吞収スペクトルKBr錠剀 3330172015301225cm-1りレタン Γ 栞磁気共鳎スペクトルCDC䞭 Ύppm0.6〜1.519H―CH3シクロ
ヘキサン環の―CH2 1.5〜1.96H―CH2―シクロヘキ
サン環の―CH2、 2.8〜3.02H―CH2、 3.5〜4.117H―CHCOO―CH2
―CH2、 4.6〜5.12H― 参考䟋  ビシクロオル゜゚ステル〔〕の補造 参考䟋ず同様なフラスコに―トリレン
ゞむ゜シアネヌト17.40.1モル及びゞブチ
ルスズゞラりレヌト0.01を加えた。このフラス
コを油济で70℃に加熱し、窒玠気流䞭で末端にヒ
ドロキシル基を持぀ポリネオペンチルアゞペヌト
平均分子量800400.05モルを玄30分かけ
お滎䞋した。 さらにこの枩床で時間半撹拌し、぀いで―
゚チル――ヒドロキシメチル――ト
リオキサビシクロ〔〕オクタン17.4
0.1モルを玄30分かけお滎䞋し、さらに時間
反応させ垞枩で半固䜓状の生成物を埗た。生成物
の70℃における粘床は48䞇センチポむズであ぀
た。 参考䟋  ビシクロオル゜゚ステル〔〕の補造 参考䟋ず同様な装眮に、ヘキサメチレンゞむ
゜シアネヌト12.70.08モル及びゞブチル錫
ゞラりレヌト0.01を加えた。この混合物を油济
で70℃に加熱し、窒玠気流䞭で、ビスプノヌル
のプロピレンオキサむド付加物平均分子量
90036.00.04モルを30分かけお添加し
た。さらに時間撹拌した埌、―゚チル――
ヒドロキシメチル――トリオキサビシ
クロ〔〕オクタン13.90.08モル
を玄30分かけお滎䞋し、さらに時間反応させ
お、粘皠な生成物を埗た。この反応生成物の粘床
は50℃においお7.3䞇センチポむズであり、たた
比重25℃は1.107であ぀た。 参考䟋  ビシクロオル゜゚ステル〔〕 参考䟋ず同様な装眮に゚ピコヌト828〔シ゚
ル化孊(æ ª)補商品名〕19.0゚ポキシ基0.10圓
量、―ヒドロキシメチル――トリ
オキサビシクロ〔〕オクタン17.4
0.10モル、ゞメチルアニリン0.18及びテトラ
――ブチルアンモニりムブロマむド0.18を加
えた。この混合物を油济で100℃に加熱し時間
撹拌し、さらに110℃で時間撹拌しお反応させ
た。 この反応物は垞枩で淡黄色の透明固䜓であり、
25℃における比重は1.22であり、屈折率は1.55で
あ぀た。たた赀倖吞収スペクトルIR分析よ
り1730cm-1の゚ステルピヌクは認められず、ビシ
クロオル゜゚ステル基は開環がおこ぀おいないこ
ずが確認された。 参考䟋  カルボン酞型ポリ゚ステル〔〕の補造 撹拌機及び還流冷华噚を付けた反応噚に無氎ト
リメリツト酞5182.7モル、無氎フタル酞44
0.3モル及びトリメチロヌルプロパン134
1.0モルを仕蟌み、180℃にお20分反応させ、
垞枩固䜓のポリ゚ステルを埗た。このポリ゚ステ
ルの酞䟡は玄7.5〔meq〕であ぀た。 実斜䟋  ―゚チル――ヒドロキシメチル―
―トリオキサビシクロ〔〕オクタン
100郚重量郚。以䞋同じに、硬化剀ずしおド
デセニル無氎コハク酞153郚及び硬化促進剀ずし
お―トリスゞメチルアミノメチル
プノヌル郚を加え、120℃においお時間、
぀いで150℃においお時間加熱し重合させおや
わらかい重合物を埗た。 25℃における重合前の組成物の比重及び重合物
の比重から求めた重合による䜓積収瞮率はわずか
0.6であ぀た。 実斜䟋  1.4―ゞ゚チル――トリオキサビシ
クロ〔〕オクタン100郚に、硬化剀ず
しおメチルシクロペンタゞ゚ンの無氎マレむン酞
付加物86郚及び硬化促進剀ずしお―シアノ゚チ
ル――メチルむミダゟヌル郚を加え、実斜䟋
ず同様に重合させお軟かい重合物を埗た。 この重合による䜓積収瞮率はわずか1.1であ
぀た。 実斜䟋  1.4―ゞメチル――トリオキサビシ
クロ〔〕オクタン100郚に、硬化剀ず
しおポリ――ビニルプノヌル「レゞン―」
〔䞞善石油(æ ª)補商品名〕70郚及び硬化促進剀ずし
お䞉フツ化ホり玠・ピペリゞン錯䜓0.9郚を加
え、実斜䟋ず同様に加熱し重合させおやわらか
い重合物を埗た。 この重合による䜓積収瞮率はほがであ぀た。 実斜䟋  ―゚チル――ヒドロキシメチル―
―トリオキサビシクロ〔〕オクタン
100郚に、硬化剀ずしおブロム化ポリ――ビニ
ルプノヌル「レゞン―MB」〔䞞善石油(æ ª)補商
品名〕135郚及び硬化促進剀ずしお、䞉フツ化ホ
り玠・ピペリゞン錯䜓1.2郚を加え、実斜䟋ず
同様に加熱し重合させおやわらかい重合物を埗
た。 この重合による䜓積収瞮率は0.3であ぀た。 実斜䟋  ビシクロオル゜゚ステル〔〕100郚に硬化剀
ずしおポリ――ビニルプノヌル「レゞン―
」〔䞞善石油(æ ª)補商品名〕42郚及び硬化促進剀
ずしお䞉フツ化ホり玠・ピペリゞン錯䜓0.7郚を
加え、150℃においお時間぀いで180℃においお
時間加熱し硬化させお重合物を埗た。 この重合物のシペア硬床は―70であ぀た。 たた硬化による䜓積収瞮率はであ぀た。 実斜䟋  ビシクロオル゜゚ステル〔〕100郚に硬化剀
ずしおドデセニル無氎コハク酞25郚及び硬化促進
剀ずしお―シアノ゚チル――メチルむミダゟ
ヌル0.6郚を加え、実斜䟋ず同様に加熱しお重
合物を埗た。 この重合物のシペア硬床は―57であ぀た。 たた硬化による䜓積収瞮率は0.8であ぀た。 実斜䟋  ビシクロオル゜゚ステル〔〕100郚に硬化剀
ずしおプノヌル暹脂「CKM―2103」〔昭和ナニ
オン合成(æ ª)補商品名〕10郚及び硬化促進剀ずしお
ゞメチルベンゞルアミン郚を加え、実斜䟋ず
同様に加熱しお重合物を埗た。 この重合物のシペア硬床は―65であ぀た。 たた硬化による䜓積収瞮率は0.5であ぀た。 実斜䟋  埌蚘に衚瀺される組成の組成物を接着剀ずしお
甚い、鉄の接着を行ない、匕匵り剪断接着匷床を
枬定した。接着は組成物を適甚埌120℃で時間
぀いで150℃で時間硬化させるこずにより行な
い、JIS  6850―1977の方法に準じお匕匵り剪
断匷床を枬定した。なお詊隓片の鉄はアルミナ
100を甚いたサンドブラストで衚面凊理したも
のを甚いた。
The proportion of the compound represented by [9] increases. On the other hand, as the number of molar equivalents decreases, the proportion of the compound represented by the chemical formula [10] increases, and the molecular weight tends to increase. In addition to the compound represented by the above chemical formula, this production method will also contain a small amount of a compound containing a urea bond resulting from the reaction of an isocyanate group with water. The phenolic resin, organic polybasic acid, organic polybasic acid anhydride, and carboxylic acid type polyester used as a curing agent, which are other components of the composition of the present invention, are those used as a curing agent for epoxy compounds. can be used. First, phenolic resins are resins that have phenolic hydroxyl groups, such as polyvinylphenol, halogenated polyvinylphenol, and
Common phenolic resins, such as phenol, ortho (or para) cresol, para ethylphenol, para-tert-butylphenol, para-sec-butylphenol, para-n-butylphenol, ortho (or para) phenyl Novolak type resins, resol type resins, and modified products thereof such as butylated products, which are produced using phenol, para-cyclohexylphenol, para-octylphenol, para-benzylphenol, bisphenol A, etc., as raw materials can also be used. Next, examples of organic polybasic acids and organic polybasic acid anhydrides include succinic acid, methylsuccinic acid, dodecenylsuccinic acid, dichlorosuccinic acid, azelaic acid, sebacic acid, itaconic acid, maleic acid, citraconic acid, phthalic acid, and tetrahydrophthalic acid. ,
Methyltetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, tricarballylic acid, trimellitic acid, pyromellitic acid, cyclopentane-1,2,3,4, -tetracarboxylic acid, benzophenone-3,3',4,4'-tetracarboxylic acid,
and acid anhydrides thereof. Also, mixtures of two or more of these, mixtures of these with monobasic acid anhydrides, or molecules obtained from the above polybasic acids or their acid anhydrides, such as linoleic acid adducts of maleic anhydride. Derivatives thereof having a carboxylic acid or its acid anhydride structure at the terminal or side chain can also be used. Next, as the carboxylic acid type polyester, for example, a trivalent or higher polybasic acid anhydride, an acid anhydride consisting of this and a dibasic acid anhydride, a trivalent or higher polyol, or a polyol consisting of this and a diol. There are polyesters obtained by reacting, and more specifically, for example, polyols with a valence of 3 or more, or polyols consisting of this and a diol, and polybasic acid anhydrides with a valence of 3 or more, or polybasic acid anhydrides with this and a dibasic acid anhydride. There are carboxylic acid type polyesters obtained by reacting acid anhydrides at a ratio of 0.7 to 1.3 moles of acid anhydride per equivalent of hydroxyl group in the polyol. Here, as trivalent or higher polybasic acid anhydrides,
Examples include trimellitic anhydride, pyromellitic anhydride, hemimellitic anhydride, merophanic anhydride, etc., and examples of trivalent or higher polyols include trimethylolpropane, pentaerythritol,
Examples include glycerin, diglycerin, sorbitol, mannitol, 1,2,6-hexanetriol, tris(β-hydroxyethyl)isocyanurate, and the like. Typical examples of dibasic acid anhydrides used in combination with these trivalent or higher polybasic acid anhydrides or polyols are phthalic anhydride, etc., and diethylene glycol is a typical example of diols.
Various acid anhydrides and polyols used in the technical field related to carboxylic acid type polyesters can be used. An example of the reaction between the bicycloorthoester compound and the curing agent in the present invention is as follows. An example of a reaction using phenolic resin as a curing agent. (In the above formula, Ph represents a phenolic resin residue.) An example of a reaction using an organic polybasic acid anhydride as a curing agent. (In the above formula, R 2 represents an organic polybasic acid anhydride residue.) A reaction example using a carboxylic acid type polyester as a curing agent. (In the above formula, R 3 represents a carboxylic acid type polyester residue.) The optimum ratio of the curing agent to be blended into the composition of the present invention is determined by the chemical properties of the curing agent used and the prepared curing composition. It may be set as appropriate depending on the properties required for the cured product provided by the cured product. per equivalent of bicycloorthoester group in the composition,
Carboxyl group or acid anhydride group is preferred
Organic polybasic acid anhydride in an amount of 0.1 to 1.5 equivalents, more preferably 0.2 to 1.3 equivalents, or phenolic hydroxyl or carboxyl groups, preferably 0.2
It is desirable to blend the phenolic resin or carboxylic acid type polyester in an amount of ~10 equivalents, more preferably 0.3 to 5 equivalents. The curing agent that is sparingly soluble or insoluble in the composition is suitably blended in the form of fine powder. If desired, suitable curing accelerators can be used to further shorten the curing time of the compositions of the invention. Suitable curing accelerators include tertiary amines, quaternary ammonium salts, coordination compounds of Lewis acids and compounds having atoms such as oxygen, sulfur, and nitrogen, such as boron trifluoride/piperidine complexes, imidazole compounds, Examples include pyridine, P-toluenesulfonic acid morpholine salt, chelate compounds, and metallocenes. The amount of curing accelerator is generally from 0.1 to 3 parts by weight per 100 parts by weight of bicycloorthoester and curing agent. There are no particular restrictions on the curing temperature, but curing is usually carried out at room temperature to 250°C. Various additives may be added to the composition of the present invention as necessary. Examples of such additives include, for example, glass fibers, carbon fibers, mica, quartz powder, calcium carbonate, cellulose, kaolin, talc, aluminum powder, colloidal silica with a large specific surface area, powdered polyvinyl chloride, and polyethylene. and powdered polyolefins such as polypropylene. Fillers such as silica, talc,
Volume shrinkage can be further reduced by adding potassium carbonate, alumina, etc. Further, the curable composition according to the present invention may contain a non-reactive diluent, a flame retardant, a flexibility imparting agent, and other modifiers, if necessary. Examples of the above-mentioned flame retardants include halogen flame retardants (eg, hexabromobenzene), inorganic flame retardants (eg, hydrated alumina, phosphates), and the like. Further, examples of the non-reactive diluent include dibutyl phthalate, dioctyl phthalate, tricresyl phosphate, tar, and the like. Examples of the flexibility imparting agent include polysulfide, polyamide, polyalkylene polyol, and elastomer. The composition of the present invention contains a bicycloorthoester and is characterized by very small volumetric shrinkage when cured by utilizing the ring-opening reaction of the bicycloorthoester group contained therein. For example, 2.4-tolylene diisocyanate, 1-
A novolac-type urethane bicycloorthoester (bicycloorthoester [B] described later) produced from ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo[2,2,2]octane and polyneopentyl adipate The volume shrinkage rate when phenolic resin is blended as a curing agent and cured is only 0.5%, and the volume when dodecenyl succinic anhydride is blended and cured with bicycloorthoester [B] as a curing agent. The shrinkage rate is only 0.8%. Here, the volume shrinkage rate (%) is expressed as [1-(specific gravity of composition before curing/specific gravity of cured product)]×100. As mentioned above, the volumetric shrinkage of the composition of the present invention during curing is extremely small compared to general thermosetting resins. As a result, the composition of the present invention has good dimensional accuracy when used as a molding material, and when used as a casting material, there is little distortion due to shrinkage of the filling material, and it has good adhesion to the mold without forming gaps. It has its features. The composition of the present invention can form a cured product with very small internal strain due to its small shrinkage during curing, so when used as a paint, it can be applied with excellent adhesion to the coated plate with little warpage, and it has good adhesion. When used as an agent, it provides great adhesive strength. Thus, the composition of the present invention has excellent suitability as a curable material used in casting materials, molding materials, composite materials, adhesives, coatings, and other various fields. The present invention will be described in detail with reference to Examples below. In each Example, the phenolic resin and carboxylic acid type polyester as a curing agent were added and mixed in the form of fine powder to the composition. Further, the bicycloorthoesters [A], [B] and [C] used in each example and the carboxylic acid type polyester as a curing agent were produced as in the following reference examples. Reference Example 1 Production of bicycloorthoester [A]; In a 4-necked 200 ml flask equipped with a stirrer, condenser, nitrogen inlet, and dropping funnel, 22.2 g (0.1 mol) of isophorone diisocyanate, dehydrated toluene, and dibutyl as a catalyst were placed. 0.01 g of tin dilaurate was added. This mixture was heated to 70°C in an oil bath and heated to 1-ethyl-4-hydroxymethyl-2,
A solution of 34.8 g (0.2 mol) of 6,7-trioxabicyclo[2,2,2]octane mixed in 50 ml of toluene was added dropwise over about 30 minutes. The reaction was continued at this temperature for an additional 3 hours. The reaction solution was desolvented to obtain a white solid urethane bicycloorthoester containing the compound represented by the following formula as a main component.
The specific gravity of the product was measured by heating the sample above its melting point, melting and degassing, and then putting it into a density gradient tube method B type direct reading specific gravity measuring device (Shibayama Scientific Instruments Manufacturing Co., Ltd.) (Measurement method B). However, Q represents the following group. The physical properties of the above compound are as follows. Γ Softening point; 88-91℃ Γ Specific gravity (25℃); 1.200 (Measurement method B) Γ Infrared absorption spectrum (KBr tablet) 3330, 1720, 1530, 1225cm -1 (urethane) Γ Nuclear magnetic resonance spectrum (CDC 3) Medium) ή (ppm); 0.6-1.5 (19H, -CH 3 , -CH 2 of the cyclohexane ring) 1.5-1.9 (6H, C-CH 2 -C, -CH 2 of the cyclohexane ring), 2.8-3.0 (2H , N-CH 2 ), 3.5-4.1 (17H, N-CH, COO-CH 2 , O
-CH 2 ), 4.6-5.1 (2H, N-H) Reference Example 2 Production of bicycloorthoester [B]; In a flask similar to Reference Example 1, 17.4 g (0.1 mol) of 2,4-tolylene diisocyanate and dibutyltin were added. 0.01 g of dilaurate was added. This flask was heated to 70° C. in an oil bath, and 40 g (0.05 mol) of polyneopentyl adipate (average molecular weight 800) having a hydroxyl group at the end was added dropwise over about 30 minutes in a nitrogen stream. Stir further at this temperature for 2 and a half hours, then 1-
Ethyl-4-hydroxymethyl-2,6,7-trioxabicyclo[2,2,2]octane 17.4g
(0.1 mol) was added dropwise over about 30 minutes, and the reaction was continued for an additional 3 hours to obtain a semi-solid product at room temperature. The viscosity of the product at 70°C was 480,000 centipoise. Reference Example 3 Production of bicycloorthoester [C]; To the same apparatus as in Reference Example 1, 12.7 g (0.08 mol) of hexamethylene diisocyanate and 0.01 g of dibutyltin dilaurate were added. This mixture was heated to 70°C in an oil bath, and in a nitrogen stream, a propylene oxide adduct of bisphenol A (average molecular weight
900) 36.0 g (0.04 mol) was added over 30 minutes. After stirring for another 2 hours, 1-ethyl-4-
Hydroxymethyl-2,6,7-trioxabicyclo[2,2,2]octane 13.9g (0.08mol)
was added dropwise over about 30 minutes, and the reaction was continued for an additional 3 hours to obtain a viscous product. The viscosity of this reaction product was 73,000 centipoise at 50°C, and the specific gravity (25°C) was 1.107. Reference Example 4 Bicycloorthoester [D] In a device similar to Reference Example 1, 19.0 g of Epicote 828 (trade name manufactured by Ciel Chemical Co., Ltd.) (0.10 equivalent of epoxy group) and 4-hydroxymethyl-2,6,7-trio were added. Kisabicyclo[2,2,2]octane 17.4g
(0.10 mol), 0.18 g of dimethylaniline and 0.18 g of tetra-n-butylammonium bromide were added. This mixture was heated to 100°C in an oil bath, stirred for 7 hours, and further stirred at 110°C for 7 hours to react. This reaction product is a pale yellow transparent solid at room temperature.
The specific gravity at 25°C was 1.22 and the refractive index was 1.55. Further, infrared absorption spectrum (IR) analysis showed that no ester peak at 1730 cm -1 was observed, confirming that no ring opening occurred in the bicycloorthoester group. Reference Example 5 Production of carboxylic acid type polyester [A]; 518 g (2.7 mol) of trimellitic anhydride and 44 g of phthalic anhydride were placed in a reactor equipped with a stirrer and a reflux condenser.
g (0.3 mol) and 134 g of trimethylolpropane
(1.0 mol) and reacted at 180℃ for 20 minutes,
A polyester that is solid at room temperature was obtained. The acid value of this polyester was approximately 7.5 [meq/g]. Example 1 1-ethyl-4-hydroxymethyl-2,6,
7-trioxabicyclo[2,2,2]octane
100 parts (parts by weight, same hereinafter), 153 parts of dodecenyl succinic anhydride as a curing agent and 2,4,6-tris(dimethylaminomethyl) as a curing accelerator.
Add 2 parts of phenol and heat at 120°C for 2 hours.
The mixture was then heated at 150° C. for 2 hours to polymerize and obtain a soft polymer. The volume shrinkage rate due to polymerization determined from the specific gravity of the composition before polymerization and the specific gravity of the polymerized product at 25℃ is small.
It was 0.6%. Example 2 100 parts of 1,4-diethyl-2,6,7-trioxabicyclo[2,2,2]octane, 86 parts of a maleic anhydride adduct of methylcyclopentadiene as a curing agent, and N-cyanoethyl as a curing accelerator. 2 parts of -2-methylimidazole was added and polymerized in the same manner as in Example 1 to obtain a soft polymer. The volume shrinkage rate due to this polymerization was only 1.1%. Example 3 100 parts of 1,4-dimethyl-2,6,7-trioxabicyclo[2,2,2]octane and poly-p-vinylphenol "Resin-M" as a curing agent
70 parts (trade name, manufactured by Maruzen Oil Co., Ltd.) and 0.9 parts of boron trifluoride/piperidine complex as a curing accelerator were added, and the mixture was heated and polymerized in the same manner as in Example 1 to obtain a soft polymer. The volume shrinkage rate due to this polymerization was approximately 0. Example 4 1-ethyl-4-hydroxymethyl-2,6,
7-trioxabicyclo[2,2,2]octane
To 100 parts, add 135 parts of brominated poly-p-vinylphenol "Resin-MB" (trade name, manufactured by Maruzen Sekiyu Co., Ltd.) as a curing agent and 1.2 parts of boron trifluoride/piperidine complex as a curing accelerator. The mixture was heated and polymerized in the same manner as in Example 1 to obtain a soft polymer. The volume shrinkage rate due to this polymerization was 0.3%. Example 5 Poly-p-vinylphenol "resin" was added to 100 parts of bicycloorthoester [A] as a curing agent.
42 parts of "M" [trade name manufactured by Maruzen Oil Co., Ltd.] and 0.7 parts of boron trifluoride/piperidine complex as a curing accelerator were added, and the mixture was heated at 150°C for 1 hour and then at 180°C for 1 hour to cure the polymer. Obtained. The Shore hardness of this polymer was D-70. Further, the volume shrinkage rate due to curing was 0. Example 6 25 parts of dodecenyl succinic anhydride as a curing agent and 0.6 parts of N-cyanoethyl-2-methylimidazole as a curing accelerator were added to 100 parts of bicycloorthoester [B], and heated in the same manner as in Example 5 to form a polymer. I got it. The Shore hardness of this polymer was D-57. The volumetric shrinkage rate due to curing was 0.8%. Example 7 To 100 parts of bicycloorthoester [B], 10 parts of phenolic resin "CKM-2103" (trade name, manufactured by Showa Union Gosei Co., Ltd.) as a curing agent and 1 part of dimethylbenzylamine as a curing accelerator were added. A polymer was obtained by heating in the same manner as in 5. The Shore hardness of this polymer was D-65. The volume shrinkage rate due to curing was 0.5%. Example 8 A composition having the composition shown below was used as an adhesive to bond iron, and the tensile shear adhesive strength was measured. Adhesion was performed by applying the composition and curing it at 120°C for 2 hours and then at 150°C for 2 hours, and the tensile shear strength was measured according to the method of JIS K 6850-1977. The iron of the test piece was surface-treated by sandblasting using alumina #100.

【衚】【table】

【衚】 実斜䟋  ビシクロオル゜゚ステル〔〕に硬化剀ずしお
前蚘「レゞン―」及び硬化促進剀ずしお䞉フツ
化ホり玠・ピペリゞン錯䜓を配合しお䞋衚蚘茉の
組成物を調補し、実斜䟋ず同様に加熱しお硬化
させ、埗られた重合物のシペア硬床及び硬化によ
る䜓積収瞮率を枬定した。結果は䞋衚のずおりで
あ぀た。
[Table] Example 9 The compositions shown in the table below were prepared by blending the above-mentioned "Resin-M" as a curing agent and the boron trifluoride/piperidine complex as a curing accelerator with bicycloorthoester [B]. The polymer was cured by heating in the same manner as in Example 5, and the Shore hardness and volume shrinkage rate due to curing of the obtained polymer were measured. The results were as shown in the table below.

【衚】  配合圓量比は、組成物䞭のビシクロオル
゜゚ステル基圓量数に察する組成物䞭のフ
゚ノヌル暹脂の氎酞基圓量数で瀺される。
実斜䟋 10 ビシクロオル゜゚ステル〔〕100郚に硬化剀
ずしお無氎ヘキサヒドロフタル酞42郚、及び硬化
促進剀ずしお―シアノ゚チル――メチルむミ
ダゟヌル郚を加え、150℃においお時間加熱
し重合物を埗た。 この重合物は硬い淡黄色透明固䜓であり、シペ
ア硬床は―79であ぀た。 この重合による䜓積収瞮率は玄1.0であ぀
た。
[Table] * The blending equivalent ratio is indicated by the number of equivalents of hydroxyl groups of the phenolic resin in the composition to the number of equivalents of bicycloorthoester groups in the composition.
Example 10 42 parts of hexahydrophthalic anhydride as a curing agent and 1 part of N-cyanoethyl-2-methylimidazole as a curing accelerator were added to 100 parts of bicycloorthoester [D], and the mixture was heated at 150°C for 3 hours to form a polymer. I got it. This polymer was a hard pale yellow transparent solid with a Shore hardness of D-79. The volume shrinkage rate due to this polymerization was approximately 1.0%.

Claims (1)

【特蚱請求の範囲】  䞋匏〔〕で瀺されるビシクロオル゜゚ステ
ル基を分子䞭に少なくずも個以䞊有するビシ
クロオル゜゚ステル化合物の少なくずも皮ず、
プノヌル系暹脂、有機倚塩基酞、有機倚塩基酞
無氎物およびカルボン酞型ポリ゚ステルからなる
矀から遞ばれる硬化剀の少なくずも皮からなる
硬化甚組成物。
[Scope of Claims] 1. At least one bicycloorthoester compound having at least one bicycloorthoester group represented by the following formula [1] in one molecule;
A curing composition comprising at least one curing agent selected from the group consisting of a phenolic resin, an organic polybasic acid, an organic polybasic acid anhydride, and a carboxylic acid type polyester.
JP20699681A 1981-12-23 1981-12-23 Curable composition Granted JPS58109534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20699681A JPS58109534A (en) 1981-12-23 1981-12-23 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20699681A JPS58109534A (en) 1981-12-23 1981-12-23 Curable composition

Publications (2)

Publication Number Publication Date
JPS58109534A JPS58109534A (en) 1983-06-29
JPS6228973B2 true JPS6228973B2 (en) 1987-06-23

Family

ID=16532455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20699681A Granted JPS58109534A (en) 1981-12-23 1981-12-23 Curable composition

Country Status (1)

Country Link
JP (1) JPS58109534A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127359A (en) * 1983-12-14 1985-07-08 Matsushita Electric Ind Co Ltd Resin composition
JP2000248975A (en) 1999-03-01 2000-09-12 Komatsu Ltd Engine speed control device for working vehicle
US20050020723A1 (en) * 2003-07-24 2005-01-27 Chia-Hung Chen Stabilized phenolic resole resin compositions and their use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108793A (en) * 1980-02-04 1981-08-28 Toagosei Chem Ind Co Ltd 1-vinyl-4-alkyl-2,6,7-trioxabicyclo 2,2,2 octane
JPS56108792A (en) * 1980-02-04 1981-08-28 Toagosei Chem Ind Co Ltd 1-alkyl-4-hydroxymethyl-2,6,7-trioxabicyclo 2,2,2 octane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108793A (en) * 1980-02-04 1981-08-28 Toagosei Chem Ind Co Ltd 1-vinyl-4-alkyl-2,6,7-trioxabicyclo 2,2,2 octane
JPS56108792A (en) * 1980-02-04 1981-08-28 Toagosei Chem Ind Co Ltd 1-alkyl-4-hydroxymethyl-2,6,7-trioxabicyclo 2,2,2 octane

Also Published As

Publication number Publication date
JPS58109534A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
JP2559094B2 (en) Molded article manufacturing method
US3415901A (en) Epoxyoxazolidinones
US3501421A (en) Polymers containing aminoalkyl-phosphonates
JP2002538162A (en) Phosphorus-containing materials, their production and use
US4111909A (en) Controlled reactivity epoxy resin compositions
KR890003002B1 (en) Compositions for forming poly (ozazolidone/urethane) thermosets
US5138016A (en) Isocyanurate-free oxazolidone compound made from epoxy and a hindered isocyanate compound and a novel catalyst for their production
US3624178A (en) Epoxy terminated polyurethanes
US4338240A (en) Curable material and process for production thereof
JPS6228973B2 (en)
DE2344843C3 (en) Polymerizable mixtures with high reactivity under the action of ionizing rays
US3836492A (en) Polymerizable unsaturated reaction product of a diisocyanate and an unsaturated product of a dicarboxylic acid anhydride and an unsaturated monoglycidyl monomer
US4163096A (en) Epoxy resin mixture for the production of flexible moulded articles
US2999827A (en) Epoxy coating compositions
JP2572020B2 (en) Flame retardant for thermosetting resin
JPH0526807B2 (en)
KR102223386B1 (en) Epoxy resin compositions containing phosphorus-based polyols, one-component type epoxy-based adhesive and manufacturing method thereof
US3875190A (en) Glycidylurethane compounds, processes for their manufacture and their use
JP2788982B2 (en) Polyglycidyl polyether resin
JPS58134113A (en) Curable composition
JP2021084950A (en) Curable composition, cured product and adhesive
US4346214A (en) Process for the production of polyester amide silicate resinous products
JPS5845970B2 (en) Epoxy resin safe material Polyester material
US4368317A (en) Mixtures for the preparation of nitrogen-containing polyadducts
JPS61231019A (en) Polyol resin