JPS62289729A - Karman vortex flow meter - Google Patents

Karman vortex flow meter

Info

Publication number
JPS62289729A
JPS62289729A JP13445586A JP13445586A JPS62289729A JP S62289729 A JPS62289729 A JP S62289729A JP 13445586 A JP13445586 A JP 13445586A JP 13445586 A JP13445586 A JP 13445586A JP S62289729 A JPS62289729 A JP S62289729A
Authority
JP
Japan
Prior art keywords
columnar body
karman vortex
downstream
flow
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13445586A
Other languages
Japanese (ja)
Inventor
Mutsumi Nanun
睦 南雲
Masafumi Machida
町田 雅史
Michihiko Tsuruoka
鶴岡 亨彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13445586A priority Critical patent/JPS62289729A/en
Priority to US07/043,044 priority patent/US4782710A/en
Priority to DE19873714344 priority patent/DE3714344A1/en
Priority to GB8710130A priority patent/GB2191581B/en
Publication of JPS62289729A publication Critical patent/JPS62289729A/en
Priority to GB9000330A priority patent/GB2225638B/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • G01F1/3218Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To take a stable measurement even in the transient state of a flow velocity by forming a downstream columnar body so that its section is shaped almost in a slit circular curved surface and also rounding the edge of the isoceles triangular bottom part of the section of an upstream columnar body. CONSTITUTION:A columnar body 7 put in a flow of fluid at right angles consists of the upstream columnar body 5 and downstream columnar body 8. The upstream columnar body 5 is sectioned almost in an isoceles triangular shape and the downstream columnar body 8 is sectioned almost in the slit circular curved surface shape. The, the columnar bodies 5 and 8 are so arranged that their base parts 9 and 10 which have almost equal length (d) are held parallel at a specific interval (a) in the direction of the flow and cross the flow at the right angles. Further, the vertical angle alpha of the columnar body 5 is almost 90 deg. and the edge of the base part is rounded; and the height (h) of the columnar body 8 is 0.3-0.6d and the radius (r) is <=0.75d. This constitution stabilizes Karman vortexes against a transient change in flow velocity.

Description

【発明の詳細な説明】 3、発明の詳キ11な説明 [発明の属する技術分野] 本発明は、流体の流れの中に垂直に挿入される柱状体の
下流に規則的に発生するカルマン渦列の周波シλから、
流体の流速または流量を計測するカルマン渦流は計に関
する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a Karman vortex that regularly occurs downstream of a columnar body vertically inserted into a fluid flow. From the column frequency λ,
Karman vortex flow meters are related to measuring the flow rate or flow rate of fluids.

[従来技術とその問題点] 第6図は従来のカルマン渦流量計の慨I8構成図を示す
。図において1は管路、2はカルマン渦光生1本でおる
一効1の柱状体、4(−1渦検出部である。
[Prior art and its problems] FIG. 6 shows a schematic diagram of a conventional Karman vortex flow meter. In the figure, 1 is a pipe, 2 is a columnar body with one effect of one Karman vortex light generator, and 4 is a -1 vortex detection section.

この渦検出部4には、上部および下部ハウシング21.
22か設けられ、撮動〒24を保持する。
The vortex detection unit 4 includes upper and lower housings 21.
22 is provided and holds 24 images.

ところで、第7図に示すように柱状体2は、断面かほぼ
二等辺三角形状に形成された上流柱状体5と、断面かは
ぼ等tli1台形状に形成された下流(↑状体6とから
構成され、流れに垂直に挿入される。
By the way, as shown in FIG. 7, the columnar body 2 consists of an upstream columnar body 5 whose cross section is approximately isosceles triangular, and a downstream columnar body (6) whose cross section is approximately trapezoidal. inserted perpendicular to the flow.

この柱状体2により、両側面近1カに発生するカルマン
渦23の圧力変動が開口部3A、3Bを経て渦検出部4
に導入され検出される。ところで、上流および下流柱状
体5,6は底辺部の長さdl。
Due to this columnar body 2, the pressure fluctuation of the Karman vortex 23 generated near both side surfaces passes through the openings 3A and 3B to the vortex detection unit 4.
introduced and detected. By the way, the length of the bottom of the upstream and downstream columnar bodies 5 and 6 is dl.

d2を等しくして一定の間隔aを隔てて管路1の流れ方
向に対して直角に配置されている。このために、この柱
状体2は流体の圧力損失か少なく、しかも広い測定範囲
に口り直線性を有する良い流量特性が得られる。
They are arranged perpendicularly to the flow direction of the conduit 1 with d2 being equal and at a constant interval a. For this reason, this columnar body 2 has a small pressure loss of the fluid and can obtain good flow characteristics with mouth linearity over a wide measurement range.

しかし、柱状体2には次のような問題点があった。すな
わら、流体の低流速域では、等脚台形状に形成された下
流柱状体6から発生するカルマン渦23か下流柱状体6
から離れるため、渦の間隔か不規則となることが可視化
の結果明らかとなり、このため流速が低流速域から高流
速域に増加するという急激な変化、すなわら過渡的状態
では引続ぎ発生するカルマン渦23の成長か妨げられる
ことが考えられ、流量測定が不安定になる恐れがあった
However, the columnar body 2 had the following problems. In other words, in the low flow velocity region of the fluid, the Karman vortex 23 generated from the downstream columnar body 6 formed in the shape of an isosceles trapezoid or the downstream columnar body 6
The visualization results reveal that the spacing of the vortices becomes irregular as they move away from each other, resulting in a rapid change in flow velocity from a low velocity region to a high velocity region, which continues to occur in a transient state. It is thought that the growth of the Karman vortex 23 may be hindered, and there is a possibility that the flow rate measurement may become unstable.

[発明の目的] 本発明は、上述の点に鑑み、従来技術の問題点を有効に
解決し、脈流等の流速の過渡的変化にもカルマン渦の発
生が安定して追随し、その精度か向上し得ると共に、そ
の構成が簡単で、その製作が容易なカルマン渦流量計を
提供することを目的とする。
[Objective of the Invention] In view of the above-mentioned points, the present invention effectively solves the problems of the prior art, and enables the generation of Karman vortices to stably follow transient changes in flow velocity such as pulsating flow, and improves its accuracy. It is an object of the present invention to provide a Karman vortex flowmeter that can improve performance, has a simple configuration, and is easy to manufacture.

[発明の要点] このような目的を達成するために、本発明は、下流柱状
体か、断面にほぼ割円形状の曲面を備えることを特徴と
する。
[Summary of the Invention] In order to achieve the above object, the present invention is characterized in that the downstream columnar body has a curved surface having a substantially split circle shape in cross section.

なお、本発明の一実施態様によれば、下流柱状態は、割
円形状の曲面の高ざhを底辺部の長さdの0.3〜0.
6培程度とし、その半径rを底辺部の長さdの≦0.7
5とする。
According to an embodiment of the present invention, in the downstream column state, the height h of the split circular curved surface is 0.3 to 0.0 of the length d of the base.
The radius r is ≦0.7 of the base length d.
5.

ざらに、本発明の他の実施態様によれば、下流柱状体は
、二等辺三角形状の底辺部のエツジに丸みを設ける。
According to another embodiment of the invention, the downstream column has an isosceles triangular base with rounded edges.

(発明の実施例] 次に、本発明の実施例を図面に基づき、詳細に説明する
(Embodiments of the invention) Next, embodiments of the invention will be described in detail based on the drawings.

第1図は本発明の一実施例の概略構成図を示す。FIG. 1 shows a schematic diagram of an embodiment of the present invention.

図において第7図と同一の機能を有する部分には、同一
の符号が付されている。柱状体7は下流柱状体5と下流
柱状体8とからなる。上流柱状体5は断面かほぼ二等辺
三角形状で、下流柱状体8は断面かほぼ割円形状の曲面
に形成される。また、上流および下流f主状体5,8は
、はぼ等しい長さdを有する底辺部9.10が流体の流
れ方向に対して所定の間隔aを保ち、垂直に挿入され、
互いに平行で、流れ方向に対して直角になるように配置
される。
In the figure, parts having the same functions as those in FIG. 7 are given the same reference numerals. The columnar body 7 includes a downstream columnar body 5 and a downstream columnar body 8. The upstream columnar body 5 has a substantially isosceles triangular cross section, and the downstream columnar body 8 has a curved surface that has a substantially split circular cross section. Further, the upstream and downstream f main bodies 5, 8 are inserted perpendicularly, with the bottom portions 9.10 having approximately equal lengths d maintaining a predetermined distance a with respect to the fluid flow direction,
They are arranged parallel to each other and at right angles to the flow direction.

ところで、断面が二等辺三角形状の下流柱状体5の頂角
をα、下流柱状体8の高さをhおよび曲面の半径をrと
するとぎ、次のように各デメンションを泗定することに
より、圧力損失が少なく、かつ安定したカルマン渦23
を発生することが実験の結果から明らかになった。すな
わら、上流柱状体5の頂角αをほぼ90度とする。また
、下流柱状体8の高さhを0.3〜0.6d、半径rを
r≦0.75dとする。なお、上流および下流柱状体5
.8の間隔aは0.2〜0.3d程度とする。
By the way, assuming that the apex angle of the downstream columnar body 5 having an isosceles triangular cross section is α, the height of the downstream columnar body 8 is h, and the radius of the curved surface is r, by determining each dimension as follows. , a stable Karman vortex with little pressure loss23
The experimental results revealed that this occurs. That is, the apex angle α of the upstream columnar body 5 is approximately 90 degrees. Further, the height h of the downstream columnar body 8 is set to 0.3 to 0.6 d, and the radius r is set to r≦0.75 d. Note that the upstream and downstream columnar bodies 5
.. The interval a of 8 is approximately 0.2 to 0.3 d.

従って、柱状体7により発生するカルマン渦23が、第
7図に示すような下流柱状体8から発生する際の剥離点
が不安定となり、流速が低流速域から急激に変化(増加
)する過渡的状態におけるカルマン渦23の不安定とい
う問題が有効に解決される。
Therefore, the separation point when the Karman vortex 23 generated by the columnar body 7 is generated from the downstream columnar body 8 as shown in FIG. The problem of instability of the Karman vortex 23 in the normal state is effectively solved.

次に、第2図は本発明の伯の実施例の概略構成図を示す
。図において柱状体11の上流柱状体12は底辺部13
のエツジに丸みR力標2けられている。このことは、第
3図に示すように流速が過渡的に変化(増加〉する脈流
か発生する際に、第1図に示す柱状体7においては、割
円状の曲面を有する下部柱状体8からのカルマン渦23
0発生と共に、上流柱状体5の底辺部9のエツジから周
波数の高い小さな渦23Aか発生することが可視化の結
果から確認された。この渦23Aがカルマン渦23の発
生を不安定にするか、本実施例の上流柱状体12では、
底辺部13のエツジの丸みRが渦23Aの発生を弱め、
従って第4図に示すようにカルマン渦23が安定して発
生する。
Next, FIG. 2 shows a schematic diagram of an embodiment of the present invention. In the figure, the upstream columnar body 12 of the columnar body 11 is the bottom part 13.
There are two rounded radius marks on the edges. This means that when a pulsating flow in which the flow velocity transiently changes (increases) occurs as shown in FIG. 3, in the columnar body 7 shown in FIG. Karman vortex 23 from 8
It was confirmed from the visualization results that along with the generation of 0, a small vortex 23A with a high frequency was generated from the edge of the bottom portion 9 of the upstream columnar body 5. In the upstream columnar body 12 of this embodiment, whether this vortex 23A makes the generation of the Karman vortex 23 unstable, or
The roundness R of the edge of the bottom part 13 weakens the generation of the vortex 23A,
Therefore, as shown in FIG. 4, the Karman vortex 23 is stably generated.

次に、第5図は流体が脈流を生じている際のカルマン渦
発生の追随状態を示す特性図を示す。図においてVは脈
動振幅△V1または△2にて脈動する流体の流速、Δp
aは第1図に示した本発明による柱状体7の付近に生じ
るカルマン渦に基づく圧力、△pbは第7図に示した従
来装置における柱状体2の付近に生じるカルマン渦に基
づく圧′ 力でおる。しかして、第3図(△)は流体の
脈動振幅△V1の際のそれぞれの圧力ΔPa、△Pbを
示し、一方、第3図(B)は流体の脈動振幅△2(〉△
V1)の際の同様にそれぞれの圧力へPa。
Next, FIG. 5 shows a characteristic diagram showing the following state of Karman vortex generation when the fluid generates a pulsating flow. In the figure, V is the flow velocity of the fluid pulsating at pulsation amplitude ΔV1 or Δ2, Δp
a is the pressure based on the Karman vortex generated near the columnar body 7 according to the present invention shown in FIG. 1, and Δpb is the pressure ' due to the Karman vortex generated near the columnar body 2 in the conventional device shown in FIG. 7. I'll go. Thus, Fig. 3 (△) shows the respective pressures ΔPa, △Pb during the fluid pulsation amplitude △V1, while Fig. 3 (B) shows the fluid pulsation amplitude △2 (〉△
Pa to each pressure in the same way as in V1).

△pbを示す。Indicates Δpb.

第3図(A)によれば、流体の脈動振幅△V1の際に(
よ、本発明による1性状体7の付近に生じるカルマン渦
に基づく圧力△Paおよび従来装置にあける柱状体2の
付近に生じるカルマン渦に基づく圧力△Pbは、共にか
かる脈動振幅に良好に追随して、良好な圧力変動を生じ
ていることが分る。
According to FIG. 3(A), when the fluid pulsation amplitude ΔV1 is (
Both the pressure △Pa due to the Karman vortex generated near the one-character body 7 according to the present invention and the pressure △Pb based on the Karman vortex generated near the columnar body 2 in the conventional device follow the applied pulsation amplitude well. It can be seen that good pressure fluctuations are occurring.

しかしながら、第3図(B)によれば、流体の脈動振幅
が大ぎくなって△V2(〉△Vl)になると、本発明に
よる柱状体7の付近に生じるカルマン渦に基づく圧力Δ
Paは、かかる脈動振幅△V2に良好に追随して、良好
な圧力変動を生じるか、従来装置における柱状体2の付
近に生じるカルマン渦に基づく圧力△Pbは、一点鎖線
の丸印にて示したように、かかる脈動振幅△V2に追随
しないで、圧力変動か乱れることが実検の結果明らかと
なった。従って、第3図(B)によれば、脈動振幅が大
きくなっても、本発明による柱状体7の場合には、カル
マン渦の発生が安定的に生じることが理解できる。
However, according to FIG. 3(B), when the pulsation amplitude of the fluid becomes large and reaches ΔV2 (>ΔVl), the pressure Δ due to the Karman vortex generated near the columnar body 7 according to the present invention
Pa follows the pulsation amplitude △V2 well and produces good pressure fluctuations, or the pressure △Pb based on the Karman vortex generated near the columnar body 2 in the conventional device is indicated by a dot-dashed circle. As a result of the actual test, it became clear that the pressure fluctuations were disturbed without following the pulsation amplitude ΔV2. Therefore, according to FIG. 3(B), it can be seen that even if the pulsation amplitude becomes large, in the case of the columnar body 7 according to the present invention, the Karman vortex is stably generated.

[発明の効果] 以上に説明するように、本発明は、柱状体を断面かほぼ
二等辺三角形の上流柱状体と、断面かほぼ割円形状の曲
面の下流柱状体とから溝成し、この上流および下流柱状
体の底辺部の長さをほぼ等しくし、しかも平行で所定の
間隔を有し、流れ方向に直角に説け、さらに上流柱状体
の底辺部のエツジに丸みを設けることにより、従来技術
の問題点か有効に解決され、下流柱状体からのカルマン
渦の♀1拙11か早まり、続いて発生するカルマン渦の
生長を妨げないから、流速変化が非常に大ぎい時にも、
これに追随してカルマン渦を発生ざぜることか可能で、
しかもその構成が簡単で、製作が容易で、測定゛情度が
向上する等の効果を有する。
[Effects of the Invention] As described above, the present invention provides a structure in which a columnar body is formed into a groove by an upstream columnar body having an approximately isosceles triangular cross section and a downstream columnar body having a curved surface having a cross section approximately in the shape of a split circle. By making the lengths of the bases of the upstream and downstream columnar bodies approximately equal, parallel to each other, with a predetermined interval, and perpendicular to the flow direction, and further rounding the edges of the bottoms of the upstream columnar bodies, The technical problem has been effectively solved, the Karman vortex from the downstream columnar body is accelerated, and the growth of the subsequent Karman vortex is not hindered, so even when the flow velocity changes are very large,
It is possible to follow this and generate a Karman vortex,
In addition, the structure is simple, manufacturing is easy, and measurement efficiency is improved.

ところで、特公昭54−37511号公報によれば、断
面台形状上民社状体と断面半円形状下流+↑主状体から
なる渦発生体が知られている。ところか、このような渦
発生体の場合、上流柱状体か断面台形状をしているため
に、台形の上底エッチ&[−においては、流れ方向に垂
直な上底で方向を変えられた流れと、本来の流れとか衝
突して乱れを生じ、このために圧力1員失か増加すると
いう問題かおる。
By the way, according to Japanese Patent Publication No. 54-37511, a vortex generating body is known which is composed of a trapezoidal cross-sectional upper civil society-like body and a semicircular cross-sectional downstream +↑ main body. However, in the case of such a vortex generator, since the upstream columnar body has a trapezoidal cross section, the direction can be changed at the upper base perpendicular to the flow direction at the trapezoid's upper base etch &[-. The problem is that the flow collides with the original flow, causing turbulence, resulting in a loss or increase in pressure.

一方、このような公知の渦発生体に比べて本発明にお(
うる渦発生1本では、上流柱状体は断面かほぼ二等辺三
角形に形成されているので、実験の結果、強く安定な渦
が発生され、かつ圧力損失が最も低くなることが判明し
た。しかも、その三角形の頂角か約90度のとき、定常
時および過渡時とも良好な特性が得られることも判明し
ている。
On the other hand, compared to such known vortex generators, the present invention (
When generating a single Uru vortex, the upstream columnar body is formed to have an approximately isosceles triangular cross section, and as a result of experiments it has been found that a strong and stable vortex is generated and the pressure loss is the lowest. Furthermore, it has been found that when the apex angle of the triangle is about 90 degrees, good characteristics can be obtained both in steady state and in transient state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成図、第2図は本発
明の他の実施例の概略構成図、第3図は第1図に示す柱
状体のカルマン渦発生状態図、第4図は第2図に示す柱
状体のカルマン渦発生状態図、第5図は流体か脈流を生
じている際のカルマン渦発生の追随状態を示す持11図
、第6図は従来のカルマン渦流量計の概略構成図、第7
図は第6図の柱状体の概略構成図でおる。 5、″12:上流今主状体、7.11−柱状体、8;下
流柱状体、9.10:底辺部、A:間隔、R:丸み。 特許出願人  富士電機株式会社 +p7”’J 第1 図 ゛) 第3 図 ]
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a schematic diagram of another embodiment of the present invention, and FIG. 3 is a diagram of the Karman vortex generation state of the columnar body shown in FIG. Figure 4 is a state diagram of Karman vortex generation in the columnar body shown in Figure 2, Figure 5 is a diagram showing the following state of Karman vortex generation when fluid or pulsating flow is generated, and Figure 6 is a diagram of the conventional Karman vortex generation state. Schematic diagram of vortex flow meter, No. 7
The figure is a schematic diagram of the columnar body shown in FIG. 6. 5, "12: Upstream main body, 7.11-Column body, 8: Downstream column body, 9.10: Base part, A: Spacing, R: Roundness. Patent applicant Fuji Electric Co., Ltd. + p7"'J Figure 1゛) Figure 3]

Claims (1)

【特許請求の範囲】 1)流体の流れの中に挿入される柱状体の近傍に発生す
るカルマン渦列の周波数から、流速または流量を計測す
るべく前記柱状体を、断面形状がほぼ二等辺三角形状に
形勢された上流柱状体と下流柱状体とから構成され、前
記上流柱状体および下流柱状体の底辺部の長さをほぼ等
しくし、前記底辺部が互いに対向して平行で所定の間隔
を有し、前記流体の流れ方向に直角に配置してなるカル
マン渦流量計において、前記下流柱状体は、断面がほぼ
割円形状の曲面を備えたこことを特徴とするカルマン渦
流量計。 2)特許請求の範囲第1項に記載のカルマン渦流量計に
おいて、下流柱状体は、割円形状の曲面の高されを底辺
部の長さdの0.3〜0.6倍程度とし、その半径rを
前記底辺部の長さの≦0.75とすることを特徴とする
カルマン渦流量計。 3)特許請求の範囲第1項または第2項のいずれかに記
載のカルマン渦流量計おいて、断面かほぼ二等辺三角形
状に形成された上流柱状体は、その底辺部のエッジに丸
みを備えたことを特徴とするカルマン渦流量計。
[Claims] 1) In order to measure the flow velocity or flow rate from the frequency of the Karman vortex street generated in the vicinity of the columnar body inserted into the flow of fluid, the columnar body is constructed so that the cross-sectional shape is approximately an isosceles triangle. It is composed of an upstream columnar body and a downstream columnar body shaped into a shape, the lengths of the bottom sides of the upstream columnar body and the downstream columnar body are approximately equal, and the base sides are parallel to each other and are spaced at a predetermined interval. The Karman vortex flowmeter is arranged perpendicularly to the flow direction of the fluid, wherein the downstream columnar body has a curved surface having a substantially split circular cross section. 2) In the Karman vortex flowmeter according to claim 1, the height of the curved surface of the downstream columnar body is approximately 0.3 to 0.6 times the length d of the base portion; A Karman vortex flowmeter characterized in that its radius r is ≦0.75 of the length of the base portion. 3) In the Karman vortex flowmeter according to claim 1 or 2, the upstream columnar body having a substantially isosceles triangular cross section has a rounded bottom edge. A Karman vortex flow meter characterized by the following features:
JP13445586A 1986-04-30 1986-06-10 Karman vortex flow meter Pending JPS62289729A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13445586A JPS62289729A (en) 1986-06-10 1986-06-10 Karman vortex flow meter
US07/043,044 US4782710A (en) 1986-04-30 1987-04-27 Karman vortex flow meter
DE19873714344 DE3714344A1 (en) 1986-04-30 1987-04-29 KARMAN SWIRL FLOW METER
GB8710130A GB2191581B (en) 1986-04-30 1987-04-29 Karman vortex flow meter
GB9000330A GB2225638B (en) 1986-04-30 1990-01-08 Karman vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13445586A JPS62289729A (en) 1986-06-10 1986-06-10 Karman vortex flow meter

Publications (1)

Publication Number Publication Date
JPS62289729A true JPS62289729A (en) 1987-12-16

Family

ID=15128739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13445586A Pending JPS62289729A (en) 1986-04-30 1986-06-10 Karman vortex flow meter

Country Status (1)

Country Link
JP (1) JPS62289729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015292A (en) * 2004-07-05 2006-01-19 Takasago Thermal Eng Co Ltd Apparatus for diffusing substance and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838867A (en) * 1971-09-21 1973-06-07
JPS5437511A (en) * 1977-08-30 1979-03-20 Nec Corp Conference connection system against incomimg call of junction line
JPS58184512A (en) * 1982-04-22 1983-10-28 Fuji Electric Co Ltd Karman's vortex street flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838867A (en) * 1971-09-21 1973-06-07
JPS5437511A (en) * 1977-08-30 1979-03-20 Nec Corp Conference connection system against incomimg call of junction line
JPS58184512A (en) * 1982-04-22 1983-10-28 Fuji Electric Co Ltd Karman's vortex street flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015292A (en) * 2004-07-05 2006-01-19 Takasago Thermal Eng Co Ltd Apparatus for diffusing substance and air conditioner

Similar Documents

Publication Publication Date Title
JPH0554045B2 (en)
KR920004100B1 (en) The eddy water meter
US4782710A (en) Karman vortex flow meter
JP3100926B2 (en) Eddy current sensor with turbulent grid
JPS62289729A (en) Karman vortex flow meter
JP3197352B2 (en) Vortex flow meter
JP2869054B1 (en) Insertion type vortex flowmeter and method for determining its probe line length
JP2706001B2 (en) Vortex flowmeter with baffle body
JPH01321316A (en) Coupled trap vortex flow rate measuring apparatus and method
JPH0128419Y2 (en)
JP3153752B2 (en) Vortex flow meter
JPS62255819A (en) Karman vortex flow meter
JP3195521B2 (en) Vortex flow meter
JPS6329213Y2 (en)
JP2761122B2 (en) Vortex flow meter
JP3127007B2 (en) Fluidic flow meter
JPH08304134A (en) Flow-rate measuring device
JP4346458B2 (en) Ultrasonic flow meter
JPH0321455Y2 (en)
JP2004191173A (en) Vortex flowmeter
JP2002039824A (en) Flow rate measurement device
JPH11325988A (en) Vortex flowmeter
JPS59132313A (en) Krmn vortex flow speed meter
JPH0499918A (en) Mass flowmeter
JP4798872B2 (en) Fluidic elements, fluidic flow meters, and combined flow meters