JPS62289173A - Culture apparatus having gas atmosphere controlling means - Google Patents

Culture apparatus having gas atmosphere controlling means

Info

Publication number
JPS62289173A
JPS62289173A JP13321786A JP13321786A JPS62289173A JP S62289173 A JPS62289173 A JP S62289173A JP 13321786 A JP13321786 A JP 13321786A JP 13321786 A JP13321786 A JP 13321786A JP S62289173 A JPS62289173 A JP S62289173A
Authority
JP
Japan
Prior art keywords
culture
gas
gas atmosphere
cultured
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13321786A
Other languages
Japanese (ja)
Other versions
JPH0427832B2 (en
Inventor
Masaru Shibata
勝 柴田
Kazuya Ito
一弥 伊藤
Hiroaki Watake
輪竹 宏昭
Seiji Yamaguchi
山口 征治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
New Oji Paper Co Ltd
Original Assignee
Toshiba Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Oji Paper Co Ltd filed Critical Toshiba Corp
Priority to JP13321786A priority Critical patent/JPS62289173A/en
Publication of JPS62289173A publication Critical patent/JPS62289173A/en
Publication of JPH0427832B2 publication Critical patent/JPH0427832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • C12M27/12Roller bottles; Roller tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To carry out culture in the same apparatus consistently from a material to be cultivated to histodifferentiation, by adjusting an angle of inclination of a culture medium, the intensity of irradiation, etc., and a gas atmosphere composition by a gas atmosphere controlling means to optimum conditions depending upon each process of culture. CONSTITUTION:A culture device 13 having plural culture tubes 14 is set rotatably by a rotary drive motor 15 and can be laid at any angle of inclination from a horizontal state to a slant state on a rotary table 12 in a constant temperature tank 11 laid in a culture apparatus 10 and an optical system 16 equipped with plural lamps 17 which are fixed in each group unit to control the intensity of irradiation is set. Then a material to be cultivated and a culture solution are put in the culture tubes 14, temperature, illuminance, an angle of inclina tion of the culture medium 13 and number of revolutions are adjusted to optimum states depending upon each process of culture. An air feed source 22, an N2 gas feed source 23 and a CO2 gas fed source 24 are connected through lines L1-3, respectively, to a piping storing part 21b of a control device 21, the air feed source is connected to a joint terminal 26, the N2 gas feed source and the CO2 gas feed source are connected to solenoid valves 28 and 29 and from a common line L4 to a joint terminal 27. On the other hand, the solenoid valves 28 and 29 are connected through a common line L5 to a control part 21a and feed of gases are controlled through a gas sensor in the constant temperature bath tank 11 to adjust a gas atmosphere composition to optimum condition.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) この発明は、細胞(7”ロトグラストを含む)、組織等
の被培養物を培養するための装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) This invention provides a method for culturing cultured materials such as cells (including 7” rotograsts) and tissues. Regarding equipment.

(従来の技術) 細胞、組織等の培養・増殖は、バイオテクノロジーの基
礎研究に重要でおるばかシでなく、植物にあっては優良
個体の大量繁殖に利用できるものとして知られている。
(Prior Art) Cultivation and propagation of cells, tissues, etc. are not only important for basic research in biotechnology, but are also known to be useful for mass propagation of superior plants.

植物細胞2例にとると、そのプロトゲラストを培養液に
浸漬し、増殖させるとカルス(不定形細胞塊)が形成さ
れ、培養液の宮 組成を変えることによってカルスから各種器Wが分化す
る。ところで、カルスが形成されるまでの培養とその後
の培養とは、培養液の組成を変えるばかりでなく、物理
的条件をも変えることが必要である。例えば、細胞壁が
形成されるまでは、静置培養をおこない、細胞壁形成後
は傾斜回転培養をおこなうなどである。また、被培養物
の発育過程において培養雰囲気ガス組成を変えることが
必要となることもある。
Taking two examples of plant cells, when the protogellasts are immersed in a culture solution and allowed to proliferate, a callus (amorphous cell mass) is formed, and by changing the cell composition of the culture solution, various organs W are differentiated from the callus. . By the way, culture until callus formation and subsequent culture require not only changing the composition of the culture solution but also changing the physical conditions. For example, static culture may be performed until cell walls are formed, and after cell wall formation, tilted rotation culture may be performed. Furthermore, it may be necessary to change the culture atmosphere gas composition during the growth process of the cultured material.

従来、細胞、組織等の培養にインキ−ベータ等各種機器
が用いられているが、それらはいずれも固定された一定
の培養条件の下でのみしか使用できない。
Conventionally, various devices such as incubators have been used for culturing cells, tissues, etc., but all of them can only be used under certain fixed culture conditions.

(発明が解決しようとする問題点) 従来の培養機器は、固定された培養条件下のみでしか使
用できないため、それら機器単独では被培養物の発育過
程で生ずる各種の培養条件を設定することはできない。
(Problems to be Solved by the Invention) Conventional culture equipment can only be used under fixed culture conditions, so it is not possible to set various culture conditions that occur during the growth process of the cultured material using these equipment alone. Can not.

特に従来の培養機器にあっては、培養雰囲気を被培養物
の成長過程に応じて制御することができない。したがっ
て、それに対処するためには、使用する機器数を多くし
、さらには培養の各段階における培養条件の制御を複雑
にする必要がある。すなわち、被培養物の発育過程にお
いては培養条件がかなシ異なるため、従来の培養機器を
用いた場合はそれ単独では被培養物の発育過程に応じた
一貫した培養?おこなうことはできない。
In particular, with conventional culture equipment, it is not possible to control the culture atmosphere according to the growth process of the cultured object. Therefore, in order to cope with this problem, it is necessary to increase the number of devices used and furthermore to complicate the control of culture conditions at each stage of culture. In other words, since the culture conditions vary considerably during the growth process of the cultured object, when using conventional culture equipment, it is difficult to achieve consistent culture according to the growth process of the cultured object. It cannot be done.

従って、この発明の目的は、被培養物から組織分化まで
一貫した培養を達成できる培養装置を提供することにあ
る。
Therefore, an object of the present invention is to provide a culture device that can achieve consistent culture from the cultured material to tissue differentiation.

[発明の構成] (問題点を解決するための手段) この発明の培養装置にあっては、内部温度を任意に設定
できる恒温槽内に、培養管?収納するた。
[Structure of the Invention] (Means for Solving the Problems) In the culture apparatus of the present invention, a culture tube is placed in a constant temperature bath whose internal temperature can be arbitrarily set. I had to store it.

めの回転可能な培養器と、被培養物の成長に必要な光を
照射するための照射光量および波長を調節可能な光学系
とを設置するとともに、培養器を水平状態から傾斜状態
までその傾斜角度を任意に設定できるようにしている。
In addition to installing a rotatable incubator and an optical system that can adjust the amount and wavelength of irradiation light to irradiate the light necessary for the growth of the cultured material, the incubator can be tilted from a horizontal state to an inclined state. The angle can be set arbitrarily.

加えて、恒温槽内のガス雰囲気組成(酸素濃度、炭酸ガ
ス濃度、および必要に応じて湿度)を制御するための手
段を配設している。
In addition, means for controlling the gas atmosphere composition (oxygen concentration, carbon dioxide concentration, and humidity if necessary) in the thermostatic chamber is provided.

(作 用) 恒温槽内は、培養の各段階に適した所望の温度に設定さ
れるとともにガス雰囲気制御手段によって培養の各段階
に適したガス組成が提供される。
(Function) The inside of the constant temperature bath is set at a desired temperature suitable for each stage of culture, and the gas atmosphere control means provides a gas composition suitable for each stage of culture.

また、傾斜培養が必要な培養段階においては培養器を傾
斜させる。光学系は、培養の各段階に応じた明暗条件を
設定できるとともに必要な照射量の光を、被培養物を培
養液とともに収容する培養管に照射する。
In addition, the incubator is tilted in the culture stage where tilted culture is required. The optical system can set brightness and darkness conditions according to each stage of culture, and irradiates the culture tube containing the cultured material together with the culture solution with a necessary amount of light.

(実施例) 以下、この発明の一実施例を図面に沿って詳しく説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に示すように、この発明に従り培養装置10は、
恒温槽11およびこれに付設された制御装置2ノを備え
ている。恒温槽11は、その内部温度を被培養物の培養
の各段階に応じて任意に設定・維持できるものである。
As shown in FIG. 1, a culture device 10 according to the present invention includes:
It is equipped with a constant temperature bath 11 and a control device 2 attached thereto. The thermostatic chamber 11 can arbitrarily set and maintain its internal temperature according to each stage of culturing the cultured material.

恒温槽11の内部には、支持台12およびその上に支持
された回転培養器13が設置されている・この回転培養
器13は、培養すべき被培養物を培養液とともに収容す
る複数本例えば26本までの培養管14を収納している
。回転培養器13は、水平状態(図中、破線で示す)に
おいては、培養管14をほぼ垂直に支持している。また
、回転培養器13は、図示のように、被培養物の成長過
程に応じて水平状態から傾斜状態(例えば85°まで)
まで任意に傾斜角度を設定できるとともに、回転駆動モ
ータ15により回転させることができる。
A support stand 12 and a rotary incubator 13 supported on the support stand 12 are installed inside the constant temperature bath 11. This rotary incubator 13 is made up of a plurality of tubes, for example, which accommodate a culture material to be cultured together with a culture solution. It accommodates up to 26 culture tubes 14. The rotating culture vessel 13 supports the culture tube 14 almost vertically in a horizontal state (indicated by a broken line in the figure). Further, as shown in the figure, the rotating incubator 13 can be moved from a horizontal state to an inclined state (for example, up to 85 degrees) depending on the growth process of the cultured object.
The inclination angle can be arbitrarily set up to 100 degrees, and it can be rotated by the rotary drive motor 15.

この回転速度は10 rpmまで調節でき、また回転方
向も左右いづれの方向でもおこなうことができる。傾斜
回転培養は、細胞、カルス等を無極状態に置いて器官を
分化させる際に必要となることがあるが、この発明の培
養装置においては培養器13を回転可能としかつ傾斜角
度を調節可能としているのはこれに対応するためである
The rotation speed can be adjusted up to 10 rpm, and the rotation direction can be either left or right. Inclined rotation culture is sometimes necessary when cells, callus, etc. are placed in a nonpolar state to differentiate organs, but in the culture device of the present invention, the incubator 13 is rotatable and the inclination angle is adjustable. The reason for this is to accommodate this.

また、恒温槽11内には、回転培養器13の上方に、被
培養物の成長に必要な光を培養管14に照射するための
光学系16が設置されている。この光学系16は、例え
ば複数個のランプ17からなり、これらランプ17は個
々独立にあるいはいくつかの群単位毎にその照射光量を
調節することができる構成となっている。これにより、
培養の各段階に応じて回転培養器13全面における照度
を等しくしたシ、位置によって照度を変えたシ、あるい
は昼夜の明暗状態?出現させることができる。また、回
転培養器13を傾斜させたとき、その上部と下部とで1
万ルック工程度の照度差ともたせることもできる。
Further, in the constant temperature bath 11, an optical system 16 is installed above the rotating incubator 13 to irradiate the culture tube 14 with light necessary for the growth of the cultured object. This optical system 16 is composed of, for example, a plurality of lamps 17, and these lamps 17 have a configuration in which the amount of irradiation light can be adjusted individually or in units of several groups. This results in
Is the illuminance equalized over the entire surface of the rotating incubator 13 according to each stage of culture, is the illuminance changed depending on the position, or is it bright and dark during the day and night? can be made to appear. Moreover, when the rotary incubator 13 is tilted, the upper and lower parts of the rotary incubator 13 are 1
It can also be combined with an illuminance difference of 10,000 look steps.

なお、光学系16の照射光量の制御については、恒温槽
11内に回転培養器I3上の照度を検出するための照度
センサーを設置し、このセンサーと光学系と連動させる
ことができる。さらに、照度が所定の設定値から変動し
た場合に警報を発するように指示器を設けることもでき
る。これらの制御は、恒温槽11に付設された制御部M
21によっておこなうことができる。
Regarding the control of the amount of light irradiated by the optical system 16, an illuminance sensor for detecting the illuminance on the rotating incubator I3 can be installed in the constant temperature bath 11, and this sensor can be linked with the optical system. Additionally, an indicator may be provided to issue an alarm if the illuminance varies from a predetermined set value. These controls are performed by a control unit M attached to the constant temperature bath 11.
21.

さて、恒温槽11内の培養ガス雰囲気は大気雰囲気をベ
ースとするものであシ、通常大気雰囲気下にあるが、被
培養物の成長過程に応じてこのガス雰囲気組成(酸素濃
度、炭酸ガス濃度等)を制御するために、恒温槽11の
外部に、空気供給源22、窒素ガス供給源23および炭
酸ガス供給源24が設置されている。空気供給源22は
、空気清浄器25を介してラインL1によって制御装置
21の配管収容部21bに接続端子26において接続し
ている。また、窒素ガス供給源23および炭酸ガス供給
源24は、それぞれラインL2およびL3により電磁弁
28および29に接続し、これらラインは共通ラインL
4を介して配管収容部21bに接続端子22において接
続している。電磁弁28および29は共通制御ラインL
5′fC介して制御装置2ノの制御部21&に接続して
いる。
Now, the culture gas atmosphere in the thermostatic chamber 11 is based on the atmospheric atmosphere, and is normally under the atmospheric atmosphere, but the composition of this gas atmosphere (oxygen concentration, carbon dioxide concentration, etc.), an air supply source 22, a nitrogen gas supply source 23, and a carbon dioxide gas supply source 24 are installed outside the constant temperature bath 11. The air supply source 22 is connected to the piping housing portion 21b of the control device 21 at a connecting terminal 26 via an air purifier 25 and a line L1. Further, the nitrogen gas supply source 23 and the carbon dioxide gas supply source 24 are connected to solenoid valves 28 and 29 through lines L2 and L3, respectively, and these lines are connected to a common line L.
The connecting terminal 22 is connected to the pipe accommodating portion 21b via the connecting terminal 22. Solenoid valves 28 and 29 are connected to the common control line L
It is connected to the control section 21& of the control device 2 through the terminal 5'fC.

次に、ガス雰囲気組成の制御系を第2図を参照してさら
に詳しく説明する。図示の例は、恒湛檜lj!:4台(
1z−1,xz−z、 11−sおよび1l−4)連設
し、これを制御装置21で制御する機構を示している。
Next, the control system for the gas atmosphere composition will be explained in more detail with reference to FIG. The illustrated example is Tsunetan Hinoki lj! :4 units (
1z-1, xz-z, 11-s and 1l-4) are installed in series and are controlled by a control device 21.

空気供給源22は、エアコングレッサーによって構成さ
れ、窒素供給源23および炭酸ガス供給源24は、それ
らガス?それぞれ収容するがスゴンペからなる。また、
空気清浄器25はエアフィルタ25&、ミストセパレー
タ25bおよびマイクロミストモ/4’レータ25cに
よって構成されている。
The air supply source 22 is constituted by an air ingressor, and the nitrogen supply source 23 and the carbon dioxide supply source 24 are composed of these gases. Each house is made up of Sugonpe. Also,
The air cleaner 25 is composed of an air filter 25&, a mist separator 25b, and a micro-mist/4'lator 25c.

空気供給ラインL1は、配管収容部2Ib内にンL6に
接続している。調圧弁30と電磁弁31との間には圧力
計32が接続されている。また、窒素ガス供給源23お
よび炭酸ガス供給源24の共通接続ラインL4は、配管
収容部21b内において、調圧弁33および電磁弁34
と介し、電磁弁31と三方電磁弁36との間で空気供給
ラインLIに接続している。調圧弁33と電磁弁34と
の間には圧力計35が接続している。
The air supply line L1 is connected to a line L6 inside the pipe housing section 2Ib. A pressure gauge 32 is connected between the pressure regulating valve 30 and the solenoid valve 31. Further, the common connection line L4 of the nitrogen gas supply source 23 and the carbon dioxide gas supply source 24 is connected to the pressure regulating valve 33 and the electromagnetic valve 34 in the piping accommodation portion 21b.
The solenoid valve 31 and the three-way solenoid valve 36 are connected to the air supply line LI through the solenoid valve 31 and the three-way solenoid valve 36. A pressure gauge 35 is connected between the pressure regulating valve 33 and the solenoid valve 34.

共通供給ラインL6は、それぞれ電磁弁37a。The common supply line L6 each has a solenoid valve 37a.

37b、37aおよび、?7dを介して恒温槽11−1
゜11−2.11−3および11−4に接続している。
37b, 37a and ? Temperature bath 11-1 via 7d
゜11-2. Connected to 11-3 and 11-4.

電磁弁28および295接続する制御ラインL5は、制
御部21b内に設置されたガス濃度制御部38に接続し
ている。X磁弁31はラインL7i介して制御部38に
接続し、また電磁弁34はラインL8?介して制御部3
8に接続している。さらに、三方電磁弁36はラインL
9f介してラインL8に接続している。なお、制御部3
8は、各恒温槽11−1.11−2.11−3゜11−
4からのサンプリングガスの濃度を検出するがスセンサ
ーを内装し、各ガスセンサーからの情報に基づいて駆動
されるコントローラーの信号により各電磁弁の開閉が制
御される。
A control line L5 connecting the electromagnetic valves 28 and 295 is connected to a gas concentration control section 38 installed in the control section 21b. The X solenoid valve 31 is connected to the control unit 38 via line L7i, and the solenoid valve 34 is connected to line L8? Control unit 3 through
It is connected to 8. Furthermore, the three-way solenoid valve 36 is connected to the line L.
It is connected to line L8 via 9f. Note that the control unit 3
8 is each constant temperature bath 11-1.11-2.11-3゜11-
A gas sensor is installed to detect the concentration of the sampling gas from gas sensor 4, and the opening and closing of each electromagnetic valve is controlled by signals from a controller driven based on information from each gas sensor.

さらに、各恒温槽は、恒温槽内の雰囲気ガスを制御部3
8にサンプリングするための共通ラインL12を有する
Furthermore, each thermostatic oven has a control unit 3 that controls the atmospheric gas inside the thermostatic oven.
It has a common line L12 for sampling 8 times.

これらに加えて、恒温槽内雰囲気の湿度上調節す6ため
に、湿度調節機構を設置してもよい。第2図に示すよう
に、この湿度調節機構は、貯水容器(水蒸気源)39を
有し、その内部に収容された水中に、三方電磁弁36に
接続されニアコンプレッサー22からの空気を吹込むラ
インLIOが挿入されている。この空気吹込みにより所
定の水蒸気を含む空気は、ドレインセ・ヤレータ41お
よびラインLllfJ:介してラインL6に供給される
In addition to these, a humidity control mechanism may be installed to control the humidity of the atmosphere within the thermostatic chamber. As shown in FIG. 2, this humidity control mechanism has a water storage container (steam source) 39, which is connected to a three-way solenoid valve 36 and blows air from the near compressor 22 into the water contained therein. Line LIO is inserted. Air containing a predetermined amount of water vapor by this air blowing is supplied to the line L6 via the drain generator 41 and the line LllfJ:.

貯水容器39の底部にはポン7’40を介して給水NI
42が設置され、またドレインセノやレータ41の底部
にはドレイン水収容容器43が設置されている。
Water is supplied to the bottom of the water storage container 39 via a pump 7'40.
42 is installed, and a drain water storage container 43 is installed at the bottom of the drain sensor or rater 41.

各ガス供給源および水蒸気源39は、恒温槽11内にお
いて組成を変化させることが必要となるガスの種類に応
じて適宜切換えることができる。
Each gas supply source and water vapor source 39 can be switched as appropriate depending on the type of gas whose composition needs to be changed in the thermostatic chamber 11.

培養は、通常大気雰囲気下でおこなうこともできるが、
例えばその酸素濃度、炭酸ガス濃度、湿度等分培養の各
段階に応じて窒素ガス、炭酸ガス、水蒸気を恒温槽11
内に導入して適宜調節することが好ましい。
Cultivation can also be carried out under normal atmospheric conditions,
For example, nitrogen gas, carbon dioxide gas, and water vapor are added to the constant temperature chamber 11 according to each stage of culture, with equal amounts of oxygen concentration, carbon dioxide concentration, and humidity.
It is preferable to introduce it into the interior and adjust it appropriately.

例えば、恒温槽11内の酸素濃度を低下させる場合には
、窒素源を用いて酸素濃度を稀釈する。
For example, when lowering the oxygen concentration in the constant temperature bath 11, the oxygen concentration is diluted using a nitrogen source.

すなわち、窒素ガスポンベ23からの窒素ガスは。That is, the nitrogen gas from the nitrogen gas pump 23.

調圧弁33で減圧され、制御部38の駆動により開放さ
れた電磁弁2g、34.3B、37および44(44&
、44b、44e、44ti)f介して恒温槽11内か
ら外部へ流れる。その際、恒温槽11内の酸素ガス濃度
は、制御部38内の酸素ガスセンサーで検出され、それ
に応答した制御部38内のコントローラーからの信号に
よp W磁弁34が制御される。酸素ガス濃度が設定値
に近くなると、電磁弁34の開度が自動的に絞られると
ともに電磁弁37および44も閉塞され窒素ガスが過剰
に供給されることが防止される。
The pressure is reduced by the pressure regulating valve 33, and the solenoid valves 2g, 34.3B, 37 and 44 (44&
, 44b, 44e, 44ti)f from inside the thermostatic chamber 11 to the outside. At this time, the oxygen gas concentration in the thermostatic chamber 11 is detected by an oxygen gas sensor in the control section 38, and the pW magnetic valve 34 is controlled in response to a signal from the controller in the control section 38. When the oxygen gas concentration approaches the set value, the opening degree of the electromagnetic valve 34 is automatically reduced, and the electromagnetic valves 37 and 44 are also closed to prevent excessive supply of nitrogen gas.

酸素ガス濃度を高める場合には、ニアコンプレッサ−2
2からの空気を空気清浄器25で清浄化し、窒素ガスの
供給と同様にして、ラインL1を介して各恒温槽11内
に供給する。
When increasing the oxygen gas concentration, near compressor 2
2 is purified by an air purifier 25, and is supplied into each thermostatic chamber 11 via line L1 in the same manner as the supply of nitrogen gas.

炭酸ガス濃度を高める場合には、炭酸ガスデンペ24か
らの炭酸ガスをラインL3を通じ、電磁弁29、調圧弁
33、電磁弁34、三方電磁弁36を介しラインL6を
通して電磁弁37から各恒温槽11内に炭酸ガスを供給
する。なお、炭酸ガス濃度を高める別法として、炭酸ガ
ス濃度はs o o o ppm以下で充分であるので
、酸素ガス濃度を上記手法により所定濃度に設定した後
、各恒温槽に設置されたアダプター45&、45be4
5cおよび45tlから、がスシリ7ノを用いて一定量
の炭酸ガスを注入するようにしてもより0さらに、恒温
槽内の湿度を高めるためには、三方電磁弁36を水蒸気
源39の方向に切シ変え、加湿された空気を伴送された
水滴をドレインセノやレータ41で除去した後、ライン
LllおよびラインL6を介して各恒温槽11内に供給
する。
When increasing the carbon dioxide concentration, the carbon dioxide gas from the carbon dioxide gas pump 24 is passed through the line L3, the solenoid valve 29, the pressure regulating valve 33, the solenoid valve 34, and the three-way solenoid valve 36, and then through the line L6 from the solenoid valve 37 to each constant temperature bath 11. Supply carbon dioxide gas inside. As another method for increasing the carbon dioxide concentration, since it is sufficient for the carbon dioxide concentration to be less than s o o o ppm, after setting the oxygen gas concentration to a predetermined concentration using the above method, the adapter 45 & ,45be4
5c and 45tl, even if a certain amount of carbon dioxide gas is injected using a sushiri 7, the three-way solenoid valve 36 should be moved in the direction of the water vapor source 39 in order to increase the humidity in the thermostatic chamber. After changing the cut and removing the water droplets entrained with humidified air using a drain sensor or a rotor 41, the water is supplied into each thermostatic chamber 11 via line Lll and line L6.

以上により恒温槽内ガス豚囲気組成が、被培賽物の成長
過程に要求される雰囲気組成に応じて制御される。
As described above, the composition of the gas surrounding the thermostatic chamber is controlled according to the atmospheric composition required for the growth process of the cultured specimen.

この発明の培養装置により、培養される破培養物として
は、動・植物の細胞および組織、微生物を挙げることが
できる。好ましくは、ハブロパッガス、タバコ、ペチュ
ニア、イネ、トウモロコシ、ニンジン、ジャガイモ、コ
ムギ、オオムギ、サトウキビ、メイズ等草本性植物、お
よびマツ、ユーカリ、ポプラ、コーヒー、ノ9ラコ9ム
、ブドウ、ニレ、リンゴ等木本性植物の細胞および組織
を例示することができる。また、培養される細胞(76
0トゲラス)Th含む)、組織、器官としては、葉肉細
胞、各種組織から誘導された培養細胞などの細胞、圧盤
、胚、葉肉、皮層、髄などの組織、茎頂。
Examples of the disrupted culture that can be cultured using the culture apparatus of the present invention include animal and plant cells and tissues, and microorganisms. Preferably, herbaceous plants such as habropagus, tobacco, petunia, rice, corn, carrot, potato, wheat, barley, sugar cane, and maize, as well as pine, eucalyptus, poplar, coffee, grape, elm, apple, etc. Examples include cells and tissues of woody plants. In addition, the cells to be cultured (76
Tissues and organs include mesophyll cells, cells such as cultured cells derived from various tissues, platens, embryos, mesophyll, cortex, tissues such as pith, and shoot tips.

機端などの分裂組織、並びに茎、葉、駒、根、花などの
器官を例示することができる。
Examples include meristems such as the end of the body, and organs such as stems, leaves, pieces, roots, and flowers.

この発明の培養装置を用いて、例えば植物細胞を培養す
るためには、0〜30℃の温度、O〜20.000ルツ
クスの照度、2〜20チの酸素濃度、0〜50%の炭酸
ガス濃度、回転培養器の傾斜角度O〜85°で植物細胞
、組織をがンボーグB5の基本培地(Gamborg 
@t ml、 1968 )、ムラシダ・スクーグのM
S基本培地(Murashlge、Skoog 196
2)等の液体培地中に懸濁させて静置培養、回転培養す
ることもできるし、上記培地を寒天などで固めた培地中
に載置して静置培養、回転培養をおこなうこともできる
。なお、用いる培地に添加する植物成長ホルモンとして
は、ナフタレンh 酸(NAA)、2,4−ジクロロフ
ェノキシ酢酸(2,4−D)、 インドール−3−酢酸
(IAA )、インドール−3−グロビオン酸(IPA
 )、インドール−3−酪酸(I BA)%フェニル酢
酸(FAA ) 、ベンゾフラン−3−酢酸(BFA 
)、フェニル酪酸(PBA )等のオーキシン類および
KT−30(協和発酵(株)製)、6−ベンジルアミノ
プリン(BA)、ゼアチン(2)、カイネチン等のサイ
トカイニン類を使用し得る。
For example, in order to culture plant cells using the culturing apparatus of the present invention, the temperature is 0 to 30°C, the illuminance is 0 to 20,000 lux, the oxygen concentration is 2 to 20 degrees, and the carbon dioxide gas is 0 to 50%. Plant cells and tissues were grown in Gamborg B5 basal medium (Gamborg
@t ml, 1968), Murashida Skoog's M
S basal medium (Murashlge, Skoog 196
2) It is also possible to perform static culture or rotational culture by suspending it in a liquid medium such as the above, or it is also possible to perform static culture or rotational culture by placing the above medium in a medium solidified with agar or the like. . The plant growth hormones added to the medium used include naphthalene acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and indole-3-globionic acid. (I.P.A.
), indole-3-butyric acid (IBA)% phenylacetic acid (FAA), benzofuran-3-acetic acid (BFA)
), auxins such as phenylbutyric acid (PBA), and cytokinins such as KT-30 (manufactured by Kyowa Hakko Co., Ltd.), 6-benzylaminopurine (BA), zeatin (2), and kinetin.

以下、この発明の培養装置を用いた培養実験例を記載す
る。
Examples of culture experiments using the culture apparatus of the present invention will be described below.

実験例1 一年生植物ハグロパッグス(Haplopappusg
racillm)の生長点を殺菌後切シ取シ、ガン〆一
グB5の基本培地に2 mg/Lの6−ベンジルアミノ
プリン(BA)および炭素源として30,000 ra
t/ tのシ曹糖?加えた改変培地(pH5,6)に懸
濁し、この発明の装置を用いて傾斜(回転培養器傾斜角
度65°)回転培養した。培養条件は、温度28℃、照
度2,000〜12,000ルツクス、培養雰囲気中の
酸素濃度15%、回転数3 rpmであった。
Experimental Example 1 Annual plant Haplopappusg
racilm) was sterilized, cut out, and added to Ganshiki B5 basal medium with 2 mg/L of 6-benzylaminopurine (BA) and 30,000 ra as a carbon source.
t/t of soda sugar? The cells were suspended in a modified medium (pH 5, 6) and cultured in a tilted manner (rotating incubator tilt angle 65°) using the apparatus of the present invention. The culture conditions were a temperature of 28° C., an illuminance of 2,000 to 12,000 lux, an oxygen concentration of 15% in the culture atmosphere, and a rotation speed of 3 rpm.

その結果、培養開始5週間で、従来傾斜角度o0では得
られなかった淡緑色の苗条原基集塊が得られた。
As a result, 5 weeks after the start of culture, light green shoot primordium aggregates, which could not be obtained conventionally with the tilt angle o0, were obtained.

実験例2 アカマツ(Pinus d@naiflora )の種
子を殺菌後圧を摘出し、がンボーグB5の基本培地に2
mg/lのナフタレン酢酸(NAA )、4 mvtの
BAおよび炭素源として30.OOOmL/lのシ!$
1加えさらに寒天で固めた培地(寒天濃度0.8%;p
H5,6)上に置床し、この発明の培養装置を用いて静
置培養した(傾斜角度0°)。培養条件は温度28℃、
照度3000ルツクス、培養雰囲気中の酸素濃度5%で
あった。この条件の下で1ヶ月靜置培養し、胚よシ形成
されたカルスを同一組成の液体培地(寒天未添加)に懸
濁し、連続して同装置で傾斜(傾斜角度600)回転培
養することによって、均一でしかも旺盛な増殖を示す淡
緑色の培養細胞を多数作出することに成功した。
Experimental Example 2 After sterilizing the seeds of Japanese red pine (Pinus d@naiflora), the seeds were removed and placed in the basal medium of Gunborg B5.
mg/l naphthaleneacetic acid (NAA), 4 mvt BA and 30.0 mg/l as carbon source. OOOmL/l of shi! $
1 and a medium solidified with agar (agar concentration 0.8%; p
H5, 6) and cultured stationary using the culture apparatus of the present invention (tilt angle 0°). The culture conditions were a temperature of 28°C;
The illuminance was 3000 lux, and the oxygen concentration in the culture atmosphere was 5%. After culturing for one month under these conditions, the callus formed by embryos is suspended in a liquid medium of the same composition (no agar added), and continuously cultured in the same apparatus with rotation (tilt angle: 600). By this method, they succeeded in producing a large number of pale green cultured cells that were uniform and proliferated vigorously.

比較として、同条件で1ヶ月静it培養をおこたい、同
一培地に継代しさらに静置培養t−継続したが、この区
では、増殖率は、上記回転培養に切り替えた区の50%
程度であった。
For comparison, static culture was carried out for one month under the same conditions, subcultured on the same medium, and then static culture continued for 20 minutes. In this group, the proliferation rate was 50% of that in the group switched to rotary culture.
It was about.

[発明の効果コ 以上述べたよりに、この発明の培養装置にありては、恒
温槽内に回転可能な培養器および照射光量調節可能な光
学系を設置するとともに、恒温槽内ガス雰囲気組成を制
御する手段を配設しているとともに、特に回転培養器の
培養管保持体の傾斜角度を任意に設定できるので、培養
器の傾斜角度、照射光量、培養ガス雰囲気組成を培養の
各段階に応じてそれに最適な状態に調節できる。したか
って、細胞等の全成長過程における培養条件の制御を同
一装置内で一貫しておこなうことができる。
[Effects of the Invention] As described above, in the culture apparatus of the present invention, a rotatable incubator and an optical system capable of adjusting the amount of irradiation light are installed in a thermostatic chamber, and the gas atmosphere composition within the thermostatic chamber is controlled. In addition, the inclination angle of the culture tube holder of the rotary incubator can be set arbitrarily, so the inclination angle of the incubator, the amount of irradiation light, and the culture gas atmosphere composition can be adjusted according to each stage of culture. It can be adjusted to the optimum condition. Therefore, the culture conditions during the entire growth process of cells etc. can be consistently controlled within the same apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の培養装置の一実施例を示す正面図
、第2図は、この発明の培養装置のガス系 濃度制御計の回路図。 11・・・恒温槽、13・・・回転培養器、14・・・
培養管、16・・・光学系、17・・・ランプ、21・
・・制御装置、22,23,24,39・・・ガス供給
源、38・・・ガス濃度制御部。
FIG. 1 is a front view showing an embodiment of the culture device of the present invention, and FIG. 2 is a circuit diagram of a gas-based concentration controller of the culture device of the present invention. 11... Constant temperature bath, 13... Rotary incubator, 14...
Culture tube, 16... Optical system, 17... Lamp, 21.
. . . Control device, 22, 23, 24, 39 . . . Gas supply source, 38 . . . Gas concentration control unit.

Claims (3)

【特許請求の範囲】[Claims] (1)内部温度を被培養物の成長過程に適した所望の温
度に設定・維持し得る恒温槽と、前記恒温槽内に設置さ
れかつ培養すべき被培養物を培養液とともに収容する培
養管を収納するための回転可能な培養器であって被培養
物の成長過程に応じて水平状態から傾斜状態まで傾斜角
度を任意に設定可能な培養器と、前記恒温槽内に設置さ
れかつ被培養物の成長に必要な光を該培養管に照射する
ための照射光量調節可能な光学系と、前記恒温槽内のガ
ス雰囲気組成を被培養物の成長過程に応じて制御するた
めのガス雰囲気制御手段とを備えた培養装置であって、
前記ガス雰囲気制御手段は、前記恒温槽へ供給されるべ
き酸素ガス、窒素ガスおよび炭酸ガスの供給源を含むガ
ス供給源を有し、該ガス供給源からの恒温槽へのガス供
給を制御する制御機構を備えたことを特徴とする、ガス
雰囲気制御手段を有する培養装置。
(1) A constant temperature bath that can set and maintain the internal temperature at a desired temperature suitable for the growth process of the cultured material, and a culture tube installed in the constant temperature bath and containing the cultured material to be cultured together with the culture solution. A rotatable incubator for accommodating a culture medium, the inclination angle of which can be set arbitrarily from a horizontal state to an inclined state according to the growth process of the cultured material; An optical system capable of adjusting the amount of irradiation light for irradiating the culture tube with the light necessary for the growth of the object, and a gas atmosphere control for controlling the gas atmosphere composition in the thermostatic chamber according to the growth process of the object to be cultured. A culture device comprising means,
The gas atmosphere control means has a gas supply source including a supply source of oxygen gas, nitrogen gas, and carbon dioxide gas to be supplied to the thermostatic oven, and controls gas supply from the gas supply source to the thermostatic oven. A culture apparatus having a gas atmosphere control means, characterized in that it is equipped with a control mechanism.
(2)前記ガス供給源が水蒸気供給源を含む特許請求の
範囲第1項記載のガス雰囲気雰制手段を有する培養装置
(2) A culture apparatus having a gas atmosphere atmosphere means according to claim 1, wherein the gas supply source includes a water vapor supply source.
(3)前記制御機構が、恒温槽内のガス濃度を検出する
ガスセンサーを有し、該ガスセンサーからの信号により
ガス供給を制御する特許請求の範囲第1項または第2項
記載のガス雰囲気制御手段を有する培養装置。
(3) The gas atmosphere according to claim 1 or 2, wherein the control mechanism has a gas sensor that detects the gas concentration in the thermostatic chamber, and controls gas supply based on a signal from the gas sensor. A culture device having control means.
JP13321786A 1986-06-09 1986-06-09 Culture apparatus having gas atmosphere controlling means Granted JPS62289173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13321786A JPS62289173A (en) 1986-06-09 1986-06-09 Culture apparatus having gas atmosphere controlling means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13321786A JPS62289173A (en) 1986-06-09 1986-06-09 Culture apparatus having gas atmosphere controlling means

Publications (2)

Publication Number Publication Date
JPS62289173A true JPS62289173A (en) 1987-12-16
JPH0427832B2 JPH0427832B2 (en) 1992-05-12

Family

ID=15099467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13321786A Granted JPS62289173A (en) 1986-06-09 1986-06-09 Culture apparatus having gas atmosphere controlling means

Country Status (1)

Country Link
JP (1) JPS62289173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316227A (en) * 2014-07-28 2016-02-10 温州医科大学附属第二医院 Multifunctional cell simulation cabin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316227A (en) * 2014-07-28 2016-02-10 温州医科大学附属第二医院 Multifunctional cell simulation cabin

Also Published As

Publication number Publication date
JPH0427832B2 (en) 1992-05-12

Similar Documents

Publication Publication Date Title
Etienne et al. Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique
CN210856157U (en) Cell biology experiment sample culture equipment
CA2372488C (en) Scalable bioreactor culture process and system for the maturation of conifer somatic embryos
JPS62289173A (en) Culture apparatus having gas atmosphere controlling means
KR101960860B1 (en) Microponic Acclimatization System
JPS62289174A (en) Culture apparatus having optical system
JPS62289176A (en) Culture apparatus having rotary culture device and means for controlling gaseous atmosphere
JPS62289175A (en) Culture apparatus having rotary culture device
CA2244441C (en) Ultra-high carbon dioxide and light quality and quantity in woody plant propagation
US20080206860A1 (en) Vessel and Culture System Including
JPS62289171A (en) Culture apparatus
Nagae et al. In vitro shoot development of Eucalyptus citriodora on rockwool in the film culture vessel under CO 2 enrichment
CN113575418A (en) Device and culture method for drying treatment of Pinus sylvestris in vitro embryos
Tsuji et al. Promotion of the growth of carrot plantlets in vitro by controlling environmental conditions in culture vessels
JPS62289172A (en) Container for culture
CN109321461A (en) A kind of cell engineering cell culture apparatus convenient for adjusting
WO2010082071A2 (en) Micropropagation method and apparatus
CN214257333U (en) Forestry seedling culture device of conveniently transplanting
CN219507939U (en) Stem cell constant temperature control incubator
Reynolds et al. [41] Plant cell lines
Shigeta Germination and growth of encapsulated somatic embryos of carrot for mass propagation
CN218999011U (en) Salt tolerance breeding device of rice variety
KR20030022430A (en) The method and the apparatus for production of transplants using microhydroponic culture system
JP2732184B2 (en) Culture method of plant tissue culture seedling
Kim et al. Application of bioreactor culture for large scale production of Chrysanthemum transplants