JPS62288671A - Method for preventing corrosion of steel stock under hydrogen sulfide environment - Google Patents

Method for preventing corrosion of steel stock under hydrogen sulfide environment

Info

Publication number
JPS62288671A
JPS62288671A JP61130912A JP13091286A JPS62288671A JP S62288671 A JPS62288671 A JP S62288671A JP 61130912 A JP61130912 A JP 61130912A JP 13091286 A JP13091286 A JP 13091286A JP S62288671 A JPS62288671 A JP S62288671A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
steel
corrosion
steel stock
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61130912A
Other languages
Japanese (ja)
Inventor
Tomio Wakamatsu
富夫 若松
Fuminori Mukohara
向原 文典
Takao Kurisu
栗栖 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61130912A priority Critical patent/JPS62288671A/en
Publication of JPS62288671A publication Critical patent/JPS62288671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To prevent corrosion of steel stock under hydrogen sulfide environment, by coating the surface of steel with a resin containing a fixed amount of cupric oxide and having high chemical resistance in fixed thickness of film. CONSTITUTION:A chemical-resistant resin containing 1-70wt% cupric oxide such as epoxy resin, urethane resin, phenolic resin, polyester resin, etc. is applied to the surface of steel stock in 10-1,000mum thickness of film to carry out prevention of corrosion of the steel stock surface.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業トの利用分野〉 本発明は、油井、カス井、地熱井および温泉地等の硫化
水素を含むきわめて腐食しやすい環境ドでの鋼材の防食
方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention <Field of Industrial Application> The present invention is intended for use in highly corrosive environments containing hydrogen sulfide, such as oil wells, gas wells, geothermal wells, and hot spring areas. This relates to a corrosion prevention method.

〈従来技術およびその問題点〉 一般に鋼材は硫化水素または二酸化炭素のJT /Eす
る環境↑−で、応力腐食割れを起こすことがある。この
原因は、硫化水素と鋼材との反応により生じた水素が一
部原f状で鋼材中に拡散侵入して水素脆性を起こすため
と信じられている。
<Prior art and its problems> In general, steel materials may suffer from stress corrosion cracking in an environment of hydrogen sulfide or carbon dioxide. It is believed that the cause of this is that hydrogen generated by the reaction between hydrogen sulfide and the steel material partially diffuses into the steel material in the raw form, causing hydrogen embrittlement.

従来、この水素脆性を防止するためには、塗装およびラ
イニング等の方法により、硫化水素等の腐食性因子を遮
断することが−・般的である。典型的なものとして、塗
料組成物中にガラスフレーク、雲[I、グラファイト等
の硫化水素非反応性の鱗片状顔料を添加する方法がある
Conventionally, in order to prevent this hydrogen embrittlement, it has been common practice to block corrosive factors such as hydrogen sulfide by methods such as painting and lining. A typical method is to add a scaly pigment that is non-reactive to hydrogen sulfide, such as glass flakes, cloud [I], and graphite, to a coating composition.

また、塗料組成物中に硫化水素と反応する金属粉、金属
酸化物、イオン交換樹脂を添加する方法が、例えば特公
昭57−30152号公報等により公知である。
Furthermore, a method of adding metal powder, metal oxide, or ion exchange resin that reacts with hydrogen sulfide to a coating composition is known, for example, from Japanese Patent Publication No. 57-30152.

面者は、鱗片状顔料にて硫化水素等の腐食性物質の鋼面
への到達時間を遅延させることにより、防食期間を延長
させるものであり、?&者は、金属粉、イオン交換樹脂
等にて硫化水素を反応もしくはトラップすることにより
、腐食性物質の鋼面への到達を阻止するものである。
The mask uses scaly pigments to extend the corrosion protection period by delaying the arrival time of corrosive substances such as hydrogen sulfide to the steel surface. & is used to prevent corrosive substances from reaching the steel surface by reacting or trapping hydrogen sulfide with metal powder, ion exchange resin, etc.

しかしながら、11f者における効果は、塗)V装鋼材
のブリスター発生時期を、同じ膜厚の添加剤を含まない
塗覆装系(クリアー系)に比へ、たかだか数倍延長させ
る程度である。また、後者については、その効果は低硫
化水素濃度の環境でのみイ1゛効であり、硫化水素濃度
が高くなるにつれ、その効果は激減し、硫化水素を30
00 ppm含む酢酸0.5%、 NaCff15%水
溶液下では、クリアー系より効果が劣る場合もしばしば
あるという欠点があった。
However, the effect for 11F users is to extend the period of blistering of coated V-coated steel materials by several times at most compared to a coated system (clear system) that does not contain additives with the same film thickness. Regarding the latter, its effect is only effective in an environment with a low hydrogen sulfide concentration, and as the hydrogen sulfide concentration increases, its effect decreases dramatically, and hydrogen sulfide
Under an aqueous solution of 0.5% acetic acid and 15% NaCff containing 0.00 ppm, there was a drawback that the effect was often inferior to that of a clear system.

〈発明の目的〉 本発明はに記事情に鑑みてなされたもので、鋼材の腐食
時期を高濃度の硫化水素Ji2IA下においても飛躍的
に延長させることのできる鋼材の硫化水素環境下での防
食方法を提供することを目的とする。
<Object of the Invention> The present invention was made in view of the above circumstances, and provides a corrosion protection method for steel materials in a hydrogen sulfide environment that can dramatically extend the corrosion period of steel materials even under high concentration hydrogen sulfide Ji2IA. The purpose is to provide a method.

〈問題点を解決するための手段〉 上記[1的を達成するために本発明者らは鋭意検討の結
果、酸化第二銅を1〜70wt%含むエポキシ樹脂、ウ
レタン樹脂、フェノール樹脂、ポリエステル樹脂等の耐
薬品性樹脂をIIA厚10〜1000μm被lvシた鋼
材が、高濃度硫化水素環境下においても非常に防食性の
高いことを見出した。
<Means for Solving the Problems> In order to achieve the above object [1], the present inventors have conducted intensive studies and found that epoxy resins, urethane resins, phenolic resins, and polyester resins containing 1 to 70 wt% of cupric oxide. It has been found that a steel material coated with a chemical-resistant resin such as IIA of 10 to 1000 μm in thickness has extremely high corrosion resistance even in a high concentration hydrogen sulfide environment.

〈発明の構成〉 本発明によれば、鋼表面に酸化第二銅を1〜70wt%
含む耐薬品性の高い樹脂を膜厚10〜1000μl被覆
することを特徴とする鋼材の硫化水素環境Fでの防食方
法が提供される。
<Configuration of the Invention> According to the present invention, 1 to 70 wt% of cupric oxide is added to the steel surface.
A method for preventing corrosion of steel in a hydrogen sulfide environment F is provided, which is characterized by coating a steel material with a highly chemically resistant resin containing a film having a thickness of 10 to 1000 μl.

以下、本発明を好適実施例に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on preferred embodiments.

本発明に用いる耐薬品性の高い樹脂(被覆材)としては
、例えばエポキシ樹脂、ウレタン樹脂、フェノール樹脂
、ポリエステル樹脂等が挙げられる。
Examples of the resin (coating material) with high chemical resistance used in the present invention include epoxy resin, urethane resin, phenol resin, and polyester resin.

本発明に用いる酸化第二銅は、上記のような硫化水素環
境下で安定な被覆材中1〜70wt%、好ましくは、4
〜50胃L%添加するのが望ましい。
The cupric oxide used in the present invention is 1 to 70 wt%, preferably 4 wt%, in the coating material that is stable in the above hydrogen sulfide environment.
It is desirable to add ~50% of stomach L.

酸化第二銅の!Ii量分率が70+vt%を超える場合
は防食効果は減少する。また、1wt、%未満の場合は
ほとんど効果が得られない。
Of cupric oxide! When the Ii amount fraction exceeds 70+vt%, the anticorrosion effect decreases. Moreover, if it is less than 1 wt.%, almost no effect will be obtained.

被覆材の塗布量としては、10〜!000μmの膜厚で
被覆するのが望ましい。膜厚が101.1111未満の
場合はピンホールが発生しやすく、防食効果が減少する
場合が多い。また、膜厚1000μI以Fで十分な防食
性が得られるので、これを超える膜厚の塗布は、いたず
らにコスト高を招くのみである。
The amount of coating material to be applied is 10~! It is desirable to coat with a film thickness of 000 μm. When the film thickness is less than 101.1111, pinholes are likely to occur and the anticorrosion effect is often reduced. Further, since sufficient corrosion protection can be obtained with a film thickness of 1000 μI or less, coating with a film thickness exceeding this will only unnecessarily increase costs.

また、本発明被覆材中に、腐食因子透過抑制効果のある
鱗片状顔料であるガラスフレーク、雲tす、体質顔料で
あるタルク、着色顔料であるチタン白等の添加剤を添加
してもよい。
Additionally, additives such as glass flakes and clouds, which are scale-like pigments that have the effect of suppressing the permeation of corrosion factors, talc, which is an extender pigment, and titanium white, which is a coloring pigment, may be added to the coating material of the present invention. .

鋼材に酸洗、ブラスト等の脱錆処理を施すのが望ましく
、さらにはリン酸塩、クロメート等の化成処理を行なっ
てもよい。被覆方法としては例えば浸漬塗装、ハケ塗り
、スプレー塗装、粉体塗装、ライニング等があげられる
It is desirable to subject the steel material to a derusting treatment such as pickling or blasting, and further chemical conversion treatment such as phosphate or chromate treatment may be performed. Examples of coating methods include dipping coating, brush coating, spray coating, powder coating, and lining.

本発明の方法により被覆材を被覆する鋼材としては、耐
食性の劣る安価な鋼材や、水素脆性に対して感受性の高
い高張力鋼等が挙げられる。
Examples of the steel material to be coated with the coating material by the method of the present invention include inexpensive steel materials with poor corrosion resistance, and high-strength steels that are highly susceptible to hydrogen embrittlement.

本発明において用いる被lW材は、鋼表面での腐食!d
を極端に抑え、腐食反応により生成した原子状水素の講
中への侵入を非常に減少させる。その理由としては、酸
化第一鋼が腐食因r−と鋼材との間で起こる腐食反応に
電気化学的に関与し、腐食の初期に鋼表面に絶縁性の高
い非常に安定な硫化物皮膜を形成し、以後の鉄の腐食を
極端に抑えるためであると思われる。
The material to be subjected to IW used in the present invention is corrosion on the steel surface! d
This greatly reduces the penetration of atomic hydrogen generated by corrosion reactions into the chamber. The reason for this is that Daiichi Steel Oxide electrochemically participates in the corrosion reaction that occurs between the corrosion agent r- and the steel material, and forms a very stable sulfide film with high insulation properties on the steel surface at the early stage of corrosion. It is thought that this is to form and extremely suppress the subsequent corrosion of iron.

〈実施例〉 次に本発明を実施例に基づいて更に詳細に説明する。<Example> Next, the present invention will be explained in more detail based on examples.

[実施例および比較例] SS41aII板(厚さ3mm)をアルミナ#40で脱
錆処理した後、表1に示す条件で酸化第二銅を配合した
エポキシ樹脂(主剤ニジエル化学社製のエピコート82
8、硬化剤:アミン硬化剤のエポメートBOO2)を塗
布し、100℃、15分間硬化させることにより試験片
を作製し、試験を行なった。塗装方法はハケ塗りで行な
った。
[Examples and Comparative Examples] After derusting an SS41aII plate (3 mm thick) with alumina #40, it was treated with an epoxy resin containing cupric oxide (base material Epicoat 82 manufactured by Nisiel Chemical Co., Ltd.) under the conditions shown in Table 1.
8. Curing agent: A test piece was prepared by applying Epomate BOO2), an amine curing agent, and curing at 100° C. for 15 minutes, and then tested. The painting method was done by brushing.

比較のために、酸化第一銅を0.5 wt%、80wt
%含有したもの、および鱗片状添加剤を含有したもの、
金属粉ならびに金属酸化物を含有したエポキシ樹脂につ
いても表1に示す条件でシ(駒片を作製し、試験を行な
った。
For comparison, 0.5 wt% cuprous oxide, 80 wt%
% containing, and those containing scaly additives,
Epoxy resins containing metal powder and metal oxides were also prepared and tested under the conditions shown in Table 1.

腐食環境としては、最も厳しい環境の一つであるいわゆ
るNACE液(Naにff15%、酢酸0.5%、硫化
水素飽和水溶液)で行なった。
The corrosion environment was one of the harshest environments, so-called NACE solution (Na with FF 15%, acetic acid 0.5%, and a saturated hydrogen sulfide aqueous solution).

上記塗覆装鋼板の防食性を評価するため、鋼中侵入水素
を鋼表面でH−+H” +e−の望でイオン化させ、そ
の際のイオン化電流値により侵入水素!計を求める電気
化学的水素透過法により判断した。
In order to evaluate the corrosion resistance of the above-mentioned coated steel sheet, the hydrogen penetrating into the steel is ionized on the steel surface at a temperature of H-+H'' +e-, and the ionization current value at that time is used to calculate the penetrating hydrogen! Judgment was made by transmission method.

評価方法を以下に説明する。The evaluation method will be explained below.

侵入水素晴が顕著に増加しはじめる時期が、目視観察可
能なブリスター発生時期と一致し、その後、急速にブリ
スターが多くなり、侵入水素!1【が増加し、被覆材の
防食効果がなくなることが判明している。このことは、
侵入水素着が顕著に増加しはじめる時期が遅いほど防食
効果が高いことを示している。
The time when the amount of invading hydrogen begins to increase noticeably coincides with the time when visually observable blisters occur, and after that, the number of blisters rapidly increases, indicating that the amount of invading hydrogen is starting to increase! It has been found that the anti-corrosion effect of the coating material is lost due to an increase in the corrosion resistance of the coating material. This means that
This shows that the later the time when the amount of interstitial hydrogen deposition starts to increase significantly, the higher the corrosion prevention effect.

そこで、第1図に示すように、被覆鋼材の鋼中侵入水素
計の経時変化を調べ、侵入水素Mが顕著に増加しはじめ
る時期(言い換えわばブリスター発生時期)、すなわち
図中A点を水素侵入発生時期として、各種被覆鋼材の防
食期間のat価を行なった。評価方法は、同−環境丁に
おける添加剤のないクリアーなエポキシ樹脂の防食期間
を1とし、これに対するそれぞれのJU(間を表1に示
した。
Therefore, as shown in Fig. 1, we investigated the change over time of the hydrogen penetrating meter for coated steel materials, and determined the period when the penetrating hydrogen M begins to increase significantly (in other words, the period when blisters occur), that is, point A in the figure. The at value of various coated steel materials during the corrosion protection period was determined as the time of occurrence of intrusion. In the evaluation method, the corrosion protection period of the clear epoxy resin without additives in the same environmental test was set as 1, and the respective JU (intervals) for this are shown in Table 1.

また、表1のうち、実施例2、比較例7および比較例9
を用いてNACE液(液温60℃)中に浸t1ツシ、こ
れら各被覆鋼材の自然電極電位(VvsSCE)の経時
変化を調へたところ、第2図に示すような結果を1i−
た。1゛「棒電(gが高いほど絶縁性の高い安定な皮膜
が鋼表面に生成していることを示す。
Also, in Table 1, Example 2, Comparative Example 7, and Comparative Example 9
When we investigated the changes in the natural electrode potential (VvsSCE) of each of these coated steel materials over time by immersing them in NACE solution (liquid temperature 60℃), we obtained the results shown in Figure 2.
Ta. 1. The higher the g value, the more stable a film with high insulating properties is formed on the steel surface.

表     1 注1)クリアーなものの防食jll:1を1とする〈発
明の効果〉 以[九l述したように本発明によれば、鋼への被覆材に
酸化第二銅を添加することにより、腐食の初期に鋼表面
に安定な、絶縁性の高い硫化物皮II!2が生成し、以
後の腐食を著しく抑えるので、高濃度の硫化水素環境F
でもきわめて高い防食効果を発揮するという効果がある
Table 1 Note 1) Corrosion protection of clear materials: 1 = 1 <Effects of the invention> As described above, according to the present invention, by adding cupric oxide to the coating material for steel, , a highly insulating sulfide skin II that is stable on the steel surface during the early stages of corrosion! 2 is generated and significantly suppresses subsequent corrosion, so F in a high concentration hydrogen sulfide environment
However, it has the effect of exhibiting an extremely high anti-corrosion effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られた被覆鋼材の鋼中侵入水素
晴の経時変化を示すグラフである。 第2図は、本発明により得られた被覆鋼材の自然電極電
位(VvsSCE)の経時変化を示J−グラフである。 特許出願人  川崎製鉄株式会社 代理人 弁理L:  渡 辺 望 捻 回   弁理士   石  井  陽 FIG、1 浸;を期間 F I G、 2
FIG. 1 is a graph showing the change over time in hydrogen penetration into the steel of the coated steel material obtained according to the present invention. FIG. 2 is a J-graph showing the change over time in the natural electrode potential (VvsSCE) of the coated steel material obtained by the present invention. Patent applicant Kawasaki Steel Co., Ltd. agent Patent attorney L: Nozomi Watanabe, patent attorney Yo Ishii FIG, 1 Immersion period FIG, 2

Claims (1)

【特許請求の範囲】[Claims] (1)鋼表面に酸化第二銅を1〜70wt%含む耐薬品
性の高い樹脂を膜厚10〜1000μm被覆することを
特徴とする鋼材の硫化水素環境下での防食方法。
(1) A method for preventing corrosion of steel materials in a hydrogen sulfide environment, which comprises coating the steel surface with a highly chemically resistant resin containing 1 to 70 wt% of cupric oxide to a thickness of 10 to 1000 μm.
JP61130912A 1986-06-05 1986-06-05 Method for preventing corrosion of steel stock under hydrogen sulfide environment Pending JPS62288671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130912A JPS62288671A (en) 1986-06-05 1986-06-05 Method for preventing corrosion of steel stock under hydrogen sulfide environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130912A JPS62288671A (en) 1986-06-05 1986-06-05 Method for preventing corrosion of steel stock under hydrogen sulfide environment

Publications (1)

Publication Number Publication Date
JPS62288671A true JPS62288671A (en) 1987-12-15

Family

ID=15045641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130912A Pending JPS62288671A (en) 1986-06-05 1986-06-05 Method for preventing corrosion of steel stock under hydrogen sulfide environment

Country Status (1)

Country Link
JP (1) JPS62288671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516119A (en) * 2013-04-10 2016-06-02 ヴァルスパー・ソーシング・インコーポレーテッド Sour gas resistant coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516119A (en) * 2013-04-10 2016-06-02 ヴァルスパー・ソーシング・インコーポレーテッド Sour gas resistant coating

Similar Documents

Publication Publication Date Title
US5192374A (en) Chromium-free method and composition to protect aluminum
Mansfeld et al. Surface modification of Al alloys and Al-based metal matrix composites by chemical passivation
JP4194654B2 (en) Nonchromate corrosion inhibitor for aluminum alloys
US6638369B1 (en) Non-chromate conversion coatings
Treacy et al. Behaviour of molybdate-passivated zinc coated steel exposed to corrosive chloride environments
EP0347420A1 (en) A method of forming a corrosion resistant coating
US5756218A (en) Corrosion protective coating for metallic materials
CN100378246C (en) Composition and process for the treatment of metal surfaces
US4188458A (en) Protective coating on a steel surface
JP3345023B2 (en) Surface treatment agent for steel and surface treated steel
US4563253A (en) Method of making corrosion inhibited metal
JP5309651B2 (en) Surface-treated steel sheet and manufacturing method thereof
EP0074211B1 (en) Coated metal substrate and method of coating a metal substrate
JPS62288671A (en) Method for preventing corrosion of steel stock under hydrogen sulfide environment
US6280535B2 (en) Manufacturing process on chromate-coated lead-containing galvanized steel sheet with anti-black patina property and anti-white rust property
US4681814A (en) Corrosion inhibited metal
US4529664A (en) Method of producing improved metal-filled organic coatings and product thereof
US3703418A (en) Method of preventing rust on steel surface
JPS5928638B2 (en) Method of forming a colored protective film on the surface of magnesium material
US4731295A (en) Coating composition for controlling hydrogen absorption
Fang et al. Preparation of non‐chromium polymer films on zinc for corrosion protection due to a compound effect between silane and cerium salt
US10662338B2 (en) Passive coatings for bulk aluminum and powder pigments
JP2596211B2 (en) Post-treatment method of zinc-coated steel sheet
JPH0575026B2 (en)
Sampath Desirable features of a non-chromate conversion coating process