JPS62288185A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JPS62288185A
JPS62288185A JP12982786A JP12982786A JPS62288185A JP S62288185 A JPS62288185 A JP S62288185A JP 12982786 A JP12982786 A JP 12982786A JP 12982786 A JP12982786 A JP 12982786A JP S62288185 A JPS62288185 A JP S62288185A
Authority
JP
Japan
Prior art keywords
temperature
ampul
crystal
ampoule
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12982786A
Other languages
Japanese (ja)
Inventor
Tetsuo Saito
哲男 齊藤
Shigeki Hamashima
濱嶋 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12982786A priority Critical patent/JPS62288185A/en
Publication of JPS62288185A publication Critical patent/JPS62288185A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to produce compound semiconductor crystal having a uniform composition and to add an impurity having large segregation to the crystal uniformly, by producing the crystal by a combined method of a zone melting method and recrystallization method. CONSTITUTION:An ampul 21 is inserted into a fixed position in a furnace 23 in a state wherein an alloy ingot 22 is set at the upper part in the ampul 21. Temperature is raised in such a way that the temperature of the furnace 23 is >= liquid phase formation temperature TL between point P and point Q. Then, the ampul 21 is lowered in direction B. The ingot 22 is melted from a lower end part 22A, melt drops 25 thereof are solidified at a bottom part 21A of the ampul 21 to give crystal, which is formed toward the top part. When the top end part of the ampul 21 reaches the point Q, drop of the ampul 21 is stopped, the temperature of the furnace 24 is adjusted in such a way that the temperature of the whole ampul 21 is a temperature lower than solid phase formation temperature Ts, the ampul is kept in the state for about 30 days and the material is recrystallized. Compound semiconductor crystal having a uniform composition is formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 水銀・カドミウム・テルル(Hg l−X Cd x 
T e )のような多元化合物半導体結晶を組成が均一
に、かつ該結晶に偏析係数が大きい不純物材料を添加し
た場合でも該結晶中に均一な状態で添加されるようにし
た結晶成長方法であって、化合物半導体結晶形成材料を
充填したアンプルを該形成材料の液相化温度より高い温
度領域で融液とし、該形成された融液を液滴の状態で、
該材料の固相化温度より低い領域に滴下して急冷凝固さ
せた後、更に固相化温度直下の温度領域で再結晶させる
ようにする。
[Detailed description of the invention] 3. Detailed description of the invention [Summary] Mercury, cadmium, tellurium (Hg l-X Cd x
A method for growing a multi-compound semiconductor crystal such as T e ) with a uniform composition, and even when an impurity material with a large segregation coefficient is added to the crystal, it is added in a uniform state into the crystal. Then, the ampoule filled with the compound semiconductor crystal forming material is made into a melt in a temperature range higher than the liquidus temperature of the forming material, and the formed melt is in the form of droplets,
After dropping the material dropwise into a region lower than the solidus temperature to rapidly solidify it, it is further recrystallized in a temperature region just below the solidus temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体結晶の製造方法に係り、特に組成
が均一な、かつ偏析係数が大きい不純物を添加した場合
でも、均一に結晶内に添加されるようにした製造方法に
関する。
The present invention relates to a method of manufacturing a compound semiconductor crystal, and more particularly to a method of manufacturing a compound semiconductor crystal in which even when an impurity having a uniform composition and a large segregation coefficient is added, the impurity is uniformly added into the crystal.

赤外線検知素子の形成材料としてはエネルギーバンドギ
ャップの狭い、光電変換効率の良い水銀・カドミウム・
テルル(HgうCd、Te)のような多元化合物半導体
結晶が用いられている。
Mercury, cadmium,
Multi-compound semiconductor crystals such as tellurium (Hg, Cd, Te) are used.

このような化合物半導体結晶に於りては、赤外線検知素
子の作製上、組成が均一で、かつ砒素(As) 、或い
はアンチモン(Sb)等のこの化合物半導体結晶に対し
て偏析係数が大きい元素を添加する必要が起こることが
あり、その場合でもこの不純物原子が均一な濃度で結晶
内に添加されることが望まれている。
In such a compound semiconductor crystal, an element having a uniform composition and a large segregation coefficient with respect to the compound semiconductor crystal, such as arsenic (As) or antimony (Sb), is used to fabricate an infrared sensing element. In some cases, it may be necessary to add impurity atoms, and even in that case, it is desired that the impurity atoms be added to the crystal at a uniform concentration.

〔従来の技術〕[Conventional technology]

従来、Hg+−xCdxTeのような多元化合物半導体
結晶の製造方法としては、第3図に示すようにHg +
−x Cd X T e結晶形成材料の水銀、カドミウ
ム、テルルをそれぞれ別個に秤量した後、該形成材料1
を先端の尖ったアンプル2中に封入し、該アンプル2を
加熱炉3内に挿入し、該形成材料を溶融後、アンプル2
を加熱炉3内で矢印A方向に沿って降下させながら形成
材料の融液を先端部より固化させてHgうCdxTeの
単結晶4を得るブリッジマン方法がある。
Conventionally, as a method for manufacturing a multicomponent semiconductor crystal such as Hg+-xCdxTe, as shown in FIG.
-x Cd
is sealed in an ampoule 2 with a sharp tip, the ampoule 2 is inserted into a heating furnace 3, and after melting the forming material, the ampoule 2 is sealed.
There is a Bridgman method in which the melt of the forming material is solidified from the tip while descending in the heating furnace 3 along the direction of arrow A to obtain the Hg-CdxTe single crystal 4.

また該形成材料を充填した容器を加熱して、該形成材料
の融液を形成後、該融液を急冷凝固させた後、該凝固し
た材料を形成材料の固相化温度まで加熱して該材料を再
結晶化させる再結晶化法がある。
Further, a container filled with the forming material is heated to form a melt of the forming material, the melt is rapidly solidified, and the solidified material is heated to the solidus temperature of the forming material to form a melt of the forming material. There is a recrystallization method that recrystallizes materials.

更に第4図に示すように、結晶の形成材料11をアンプ
ル12内に封入し、該アンプル12を形成材料の溶融温
度以上の高温領域を有する加熱炉13内に挿入してこの
形成材料の一部に溶融帯14を形成し、このアンプル1
2を矢印B方向に沿って下降させることで、この溶融帯
14を一端部より他端部に移動させて単結晶とするゾー
ンメルティング法がある。
Further, as shown in FIG. 4, a crystal forming material 11 is sealed in an ampoule 12, and the ampoule 12 is inserted into a heating furnace 13 having a high temperature region higher than the melting temperature of the forming material. A molten zone 14 is formed in the ampoule 1.
There is a zone melting method in which the melted zone 14 is moved from one end to the other end by moving the melted zone 14 downward along the direction of the arrow B to form a single crystal.

更にこのゾーンメルティング法の変形例として、例えば
Hg+うCdXTeの単結晶を形成する際、融点の低い
テルルの溶融点近傍の温度で、Hg +−xCdXTe
の結晶形成材料のうち、テルルのみを溶融してテルルの
溶媒を形成し、この溶媒をアンプルを下降させることで
形成材料の一端部より他端部蝉移動させて、単結晶を得
るトラベリングヒーターメソッド(TMM)法がある。
Furthermore, as a modification of this zone melting method, for example, when forming a single crystal of Hg + -xCdXTe, Hg + -xCdXTe is formed at a temperature near the melting point of tellurium, which has a low melting point.
A traveling heater method in which only tellurium among the crystal forming materials is melted to form a tellurium solvent, and this solvent is moved from one end of the forming material to the other by lowering an ampoule to obtain a single crystal. There is a (TMM) law.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでHg *−x Cd x T eの結晶の状態
図は、液相線と固相線との間隔が大きく、このような状
態図を有する結晶では、融液を凝固させて結晶を成長さ
せる時、結晶形成材料を溶融した直後の融液の組成と、
この融液より結晶を成長させた残りの融液の組成との間
では、融液の組成変動が大きい偏析の現象が生じる。
By the way, in the phase diagram of a crystal of Hg*-x Cd , the composition of the melt immediately after melting the crystal-forming material,
A phenomenon of segregation occurs in which the composition of the melt varies greatly between the composition of the remaining melt in which crystals are grown from this melt.

そのため従来のゾーンメルティング法や、ブリッジマン
法で成長した結晶は、結晶の成長軸方向に対して組成が
変動しやすく、組成の均一な結晶が得られない問題が生
じる。
Therefore, in crystals grown by the conventional zone melting method or Bridgman method, the composition tends to fluctuate in the direction of the crystal growth axis, resulting in the problem that crystals with uniform composition cannot be obtained.

またこのような方法では、結晶形成材料に対して偏析が
大きい砒素(As)原子を添加した時、形成された単結
晶内に均一な濃度で添加されない問題がある。
Further, in this method, when arsenic (As) atoms, which are highly segregated, are added to the crystal forming material, there is a problem that they are not added at a uniform concentration within the formed single crystal.

また前記した再結晶法では、形成材料を溶融して凝固し
て形成材料の合金を形成する前工程の段階に於いて、溶
融した材料を急冷した場合は形成される凝固物のインゴ
ットの半径方向に沿って組成の変動が生じ、溶融した材
料を徐冷した場合はインゴットの成長軸方向に沿って組
成変動が生じる。そしてこの組成変動した材料を固相化
温度まで加熱して再結晶させた場合でも組成の不均一な
点は修正されない問題点がある。
In addition, in the above-mentioned recrystallization method, in the pre-process step of melting and solidifying the forming material to form an alloy of the forming material, if the molten material is rapidly cooled, the solidified material ingot is formed in the radial direction. When the molten material is gradually cooled, compositional fluctuations occur along the growth axis of the ingot. There is a problem in that even if the material whose composition has been varied is heated to the solidus temperature and recrystallized, the non-uniformity of the composition is not corrected.

本発明は上記した問題点を解決し、組成変動が生じない
、かつ結晶形成材料に対して偏析の大きい不純物を添加
した場合でも、形成される結晶内に均一な濃度で添加さ
れるようにした化合物半導体結晶の製造方法の提供を目
的とする。
The present invention solves the above-mentioned problems, and even when impurities that do not cause compositional fluctuations and are highly segregated to the crystal forming material are added, they are added at a uniform concentration within the formed crystal. The purpose of this invention is to provide a method for manufacturing compound semiconductor crystals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化合物半導体結晶の製造方法は、化合物半導体
結晶形成材料を封入したアンプルを該形成材料の液相化
温度以上の温度領域、並びに該形成材料の固相化温度領
域以下の温度領域を有する加熱炉内に挿入し、該アンプ
ル内の材料を液相化温度以上の温度領域で溶融させた後
、該形成された融液を、該アンプル内で、固相化温度領
域以下の低温領域に滴下させて凝固させた後、該凝固せ
る形成材料を固相化温度以下の温度領域で再結晶させる
The method for manufacturing a compound semiconductor crystal of the present invention includes preparing an ampoule containing a compound semiconductor crystal forming material in a temperature range above the liquid phase temperature of the forming material and below a solid phase temperature range of the forming material. After inserting it into a heating furnace and melting the material in the ampoule in a temperature range above the liquidus temperature, the formed melt is transferred in the ampoule to a low temperature range below the solidus temperature range. After being dropped and solidified, the solidified forming material is recrystallized in a temperature range below the solidus temperature.

〔作用〕[Effect]

本発明の化合物半導体結晶の製造方法は、前記した再結
晶法とゾーンメルティング法とを組合せ、化合物半導体
結晶の形成材料を溶融後、急冷凝固させて成長軸方向に
組成が均一なアロイを形成し、このアロイをゾーンメル
ティング法により一端より溶融させ、該形成された融液
を固相化温度より低い領域に滴下させて急冷凝固させた
後、固相化温度直下で長時間経過させて再結晶化させ、
単結晶とすることで組成変動が生じない、かつ偏析係数
の大きい不純物が均一に添加できるようにする。
The method for manufacturing a compound semiconductor crystal of the present invention combines the above-described recrystallization method and zone melting method, melts the material for forming the compound semiconductor crystal, and then rapidly solidifies it to form an alloy with a uniform composition in the direction of the growth axis. Then, this alloy is melted from one end by the zone melting method, and the formed melt is dropped into an area lower than the solidus temperature to rapidly solidify it, and then left just below the solidus temperature for a long time. recrystallize,
By making it a single crystal, compositional fluctuations do not occur, and impurities with a large segregation coefficient can be added uniformly.

〔実施例〕〔Example〕

第1図(a)は本発明の化合物半導体結晶の製造方法の
一実施例を示す説明図で、第1回申)は、本発明の方法
に用いる加熱炉の温度分布図を示す。
FIG. 1(a) is an explanatory diagram showing one embodiment of the method for manufacturing a compound semiconductor crystal of the present invention, and FIG. 1(a) shows a temperature distribution diagram of a heating furnace used in the method of the present invention.

第1図(a)、および第1回申)に示すように先端が尖
った石英製のアンプル21内の上部に急冷凝固によって
形成されたアロイインゴット22が設置される状態にし
て、該アンプル21を加熱炉23内に挿入する。
As shown in FIG. 1(a) and the first report, an alloy ingot 22 formed by rapid solidification is placed in the upper part of a quartz ampoule 21 with a sharp tip. is inserted into the heating furnace 23.

このアロイインゴットの形成方法は水銀、カドミウム、
テルルををそれぞれ別個に秤量した後、充填し、アンプ
ル21内を真空に排気してその一端を封止する。
This alloy ingot is formed using mercury, cadmium,
After separately weighing and filling the ampoule with tellurium, the inside of the ampoule 21 is evacuated and one end thereof is sealed.

ここで水銀、カドミウム、テルルは、それぞれFIg+
−xCdxTeに於いてx =0.2の値となるように
秤量する。
Here, mercury, cadmium, and tellurium are each FIG+
-xCdxTe, weigh so that x = 0.2.

次いで該アンプル21をロッキング炉(図示せず)中に
挿入し、該ロッキング炉を830℃の温度に設定し、4
0時間の間シーソのように振動させることで、アンプル
21内の結晶材料を充分均一になるように混合溶融する
The ampoule 21 was then inserted into a rocking furnace (not shown) and the rocking furnace was set at a temperature of 830°C.
By vibrating like a see-saw for 0 hours, the crystal material in the ampoule 21 is mixed and melted sufficiently uniformly.

次いでこのアンプル21を垂直に立てて、周囲より高圧
空気を吹きつけて溶融した結晶形成材料の融液を急冷凝
固させる。この急冷凝固によってアンプル21の管軸方
向に組成変動を生じない結晶形成材料のアロイインゴッ
ト22が形成される。
Next, this ampoule 21 is stood vertically, and high pressure air is blown from the surrounding area to rapidly cool and solidify the melted crystal forming material. By this rapid cooling and solidification, an alloy ingot 22 of a crystal-forming material that does not cause compositional fluctuation in the tube axis direction of the ampoule 21 is formed.

ここで、第1図(a)、第1回申)に示すように、アロ
イインゴット22の下端部22Aが、固相化温度Ts(
706℃)以下である加熱炉23内のP点の位置に、ま
たアンプル21の下端部21Aが固相化温度Ts以下で
ある加熱炉23内のQ点の位置に、位置するようにアン
プル21を設置する。
Here, as shown in FIG. 1(a), the lower end portion 22A of the alloy ingot 22 is at the solidus temperature Ts (
706° C.) or lower in the heating furnace 23, and the lower end 21A of the ampoule 21 is located at a point Q in the heating furnace 23 where the temperature is lower than the solidus temperature Ts. Set up.

アンプル21を加熱炉23内で設置した後、加熱炉23
の温度がP点とQ点の間で液相化温度TL (796℃
)以上となり、第1回申)の2図の温度分布曲線24に
沿った温度となるように上昇させる。
After installing the ampoule 21 in the heating furnace 23,
When the temperature of is between point P and point Q, the liquidus temperature TL (796℃
), and the temperature is raised so as to follow the temperature distribution curve 24 in Figure 2 of the first test).

次いで第2図(a)に示すようにアンプル21を5w/
hrの速度で矢印B方向に沿って降下させる。
Next, as shown in FIG. 2(a), the ampoule 21 was
It is lowered along the direction of arrow B at a speed of hr.

このようにすると、アンプル21内のアロイインゴット
22がその下端部22Aより順次上部の方向に向かって
熔解し、その溶解したアロイインゴット22の液滴25
がアンプル21の底部に向かって滴下しアンプル21の
底部21Aで固化し、その固化した結晶が上部に向かっ
て形成される。
In this way, the alloy ingot 22 in the ampoule 21 is sequentially melted upward from its lower end 22A, and droplets 25 of the melted alloy ingot 22 are formed.
drops toward the bottom of the ampoule 21 and solidifies at the bottom 21A of the ampoule 21, and solidified crystals are formed toward the top.

そしてこの状態を継続させた後、アンプル21の上端部
21BがQ点の位置に到達した段階でアンプル21の降
下を停止し、アンプル21の全体が固相化温度Tsの直
下の温度(固相化温度Tsより約10℃低温)となるよ
うに、加熱炉24の温度を調節し、約30日間その侭の
状態で保持し、再結晶化させる。
After continuing this state, the lowering of the ampoule 21 is stopped when the upper end 21B of the ampoule 21 reaches the position of point Q, and the entire ampoule 21 is at a temperature just below the solidus temperature Ts (solidus The temperature of the heating furnace 24 is adjusted so that the temperature is about 10° C. lower than the crystallization temperature Ts, and the temperature is maintained in that state for about 30 days for recrystallization.

このような本発明の方法によれば、形成されたHg+−
xCd)cTeの単結晶に於いて、単結晶の成長軸方向
、および半径方向に沿ってX値が0.2±0.02の均
一な組成の化合物半導体結晶が得られた。
According to the method of the present invention, the formed Hg+-
xCd) In the cTe single crystal, a compound semiconductor crystal having a uniform composition with an X value of 0.2±0.02 along the growth axis direction and the radial direction of the single crystal was obtained.

また本発明の方法によれば、Hg+−xcdXTeの結
晶に対して偏析係数が大きいAs、金(Au)、鉄(F
e)、sb、等の不純物が均一に添加されている状態が
、該結晶のキャリア濃度を成長軸方向、および半径方向
に沿って測定することで確認された。
Furthermore, according to the method of the present invention, As, gold (Au), and iron (F), which have large segregation coefficients for Hg+-xcdXTe crystals,
The state in which impurities such as e) and sb were uniformly added was confirmed by measuring the carrier concentration of the crystal along the growth axis direction and the radial direction.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によれば、形成される
単結晶の成長軸方向、および半径方向に沿った方向で組
成の均一な化合物半導体結晶が形成でき、従来この化合
物半導体結晶に対して偏析が大きいために該結晶に添加
できなかったAs等の不純物原子も均一に添加すること
ができ、本発明の方法で形成した単結晶で赤外線検知素
子のような半導体素子を形成すれば、高性能な半導体装
置が形成できる効果がある。
As described above, according to the method of the present invention, a compound semiconductor crystal having a uniform composition in the growth axis direction and the radial direction of the single crystal to be formed can be formed, which is different from conventional compound semiconductor crystals. Impurity atoms such as As, which could not be added to the crystal due to large segregation, can be added uniformly, and if a semiconductor device such as an infrared sensing device is formed using the single crystal formed by the method of the present invention, This has the effect of making it possible to form a high-performance semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の方法の一実施例の説明図、第1
図回申は本禿明の方法に用いる加熱炉の温度分布曲線、 第2図(a)は本発明の方法に於ける単結晶形成工程図
、 第2図(blは本発明の方法に用いる加熱炉の温度分布
曲線、 第3図、および第4図は従来の方法の説明図を示す。 図に於いて、 21はアンプル、21Aはアンプルの下端部、21Bは
アンプルの上端部、22はアロイインゴット、22Aは
アロイインゴットの下端部、Tsは固相化温度、TLは
液相化温度、P、Qは加熱炉の位置を示す。 (耀rmrseH> 第1図(Q)    第1図+b) 第2図(Q)    第2図tbJ 第3図 ftB−ケシの説明U 第4図
FIG. 1(a) is an explanatory diagram of one embodiment of the method of the present invention.
Figure 2 shows the temperature distribution curve of the heating furnace used in the method of this invention; Figure 2 (a) shows the single crystal formation process diagram in the method of the present invention; The temperature distribution curve of the heating furnace, FIGS. 3 and 4 are explanatory diagrams of the conventional method. In the figure, 21 is an ampoule, 21A is the lower end of the ampoule, 21B is the upper end of the ampoule, and 22 is an ampoule. Alloy ingot, 22A is the lower end of the alloy ingot, Ts is the solidus temperature, TL is the liquidus temperature, P and Q are the positions of the heating furnace. ) Figure 2 (Q) Figure 2 tbJ Figure 3 ftB - Explanation of poppies U Figure 4

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体結晶形成材料(22)を封入したアンプル
(21)を該形成材料(22)の液相化温度以上の温度
領域、並びに該形成材料(22)の固相化温度領域以下
の温度領域を有する加熱炉(23)内に挿入し、該アン
プル(21)内の材料を液相化温度以上の温度領域で溶
融させた後、該形成された融液を、該アンプル内で、固
相化温度領域以下の低温領域に滴下させて凝固させた後
、該凝固せる形成材料を固相化温度以下の温度領域で再
結晶させることを特徴とする化合物半導体結晶の製造方
法。
An ampoule (21) enclosing a compound semiconductor crystal forming material (22) is placed in a temperature range above the liquid phase temperature of the forming material (22) and below a solid phase temperature range of the forming material (22). After the material in the ampoule (21) is melted in a temperature range equal to or higher than the liquidus temperature, the formed melt is solidified in the ampoule. 1. A method for producing a compound semiconductor crystal, which comprises dropping the material dropwise into a low temperature range below a temperature range to solidify it, and then recrystallizing the solidified forming material in a temperature range below a solidus temperature.
JP12982786A 1986-06-03 1986-06-03 Production of compound semiconductor crystal Pending JPS62288185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12982786A JPS62288185A (en) 1986-06-03 1986-06-03 Production of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12982786A JPS62288185A (en) 1986-06-03 1986-06-03 Production of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS62288185A true JPS62288185A (en) 1987-12-15

Family

ID=15019204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12982786A Pending JPS62288185A (en) 1986-06-03 1986-06-03 Production of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS62288185A (en)

Similar Documents

Publication Publication Date Title
Koohpayeh Single crystal growth by the traveling solvent technique: A review
CA1301034C (en) Process for growing a multi-component crystal
US3272591A (en) Production of single crystals from incongruently melting material
JPS62288185A (en) Production of compound semiconductor crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
US4765863A (en) Method of preparing a crystalline ingot of Hg1-x.sbsb.o Cdx.sbsb.o Te
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JPH0329039B2 (en)
JP2814657B2 (en) Method for growing compound semiconductor single crystal
JPH0848592A (en) Production of compound semiconductor crystal
JPS6256394A (en) Method for growing compound semiconductor single crystal
JP4239065B2 (en) Method for producing solid solution single crystal
JPS59141488A (en) Device for growing single crystal
JPH10297999A (en) Production of gallium-rsenic single crystal
JP4557192B2 (en) Method for producing material having required concentration distribution
JPS61146783A (en) Method for growing compound semiconductor single crystal
JP2005075688A (en) Growing method for garnet-type single crystal
JP2001072488A (en) Method for producing solid solution single crystal
JPH05139884A (en) Production of single crystal
JP3633212B2 (en) Single crystal growth method
JPH0769773A (en) Production of single crystal
JPS6374990A (en) Production of single crystal of compound semiconductor and production device therefor
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPS60204692A (en) Preparation of cdte crystal
JPS60204700A (en) Preparation of single crystal