JPS62288133A - Production of magnetic head - Google Patents

Production of magnetic head

Info

Publication number
JPS62288133A
JPS62288133A JP12966086A JP12966086A JPS62288133A JP S62288133 A JPS62288133 A JP S62288133A JP 12966086 A JP12966086 A JP 12966086A JP 12966086 A JP12966086 A JP 12966086A JP S62288133 A JPS62288133 A JP S62288133A
Authority
JP
Japan
Prior art keywords
glass
magnetic head
magnetic
gap
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12966086A
Other languages
Japanese (ja)
Inventor
Masato Yamashita
山下 真郷
Ryuzo Higashihara
隆三 東原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12966086A priority Critical patent/JPS62288133A/en
Publication of JPS62288133A publication Critical patent/JPS62288133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a magnetic head, having improved environmental resistance and hardly deteriorating magnetic characteristic, by melting and permeating a glass composition, consisting essentially of Bi2O3, SiO2 and B2O3 of specific composition for joining magnetic heads into a magnetic head gap part. CONSTITUTION:A glass rod 3 is obtained from a glass composition containing a principal component, consisting of (A) 3-30mol% Bi2O3, (B) 1-30mol% PbO, (C) 30-50mol% SiO2 and (D) 1-20mol% B2O3 and satisfying the relationship of >20mol% total of the components (A) and (B), >45mol% total of the components (C) and (D) and >2 molar ratio (C/D) and (E) one or more of 1-20mol% Li2O, 1-18mol% Na2O, 1-10mol% K2O or 1-7mol% ZnO and used for joining magnetic heads. The above-mentioned glass rod 3 is then placed in each gap groove 4 of a cut part 2 machined to form a given magnetic pas sage in a ferrite block 1 and melted while heating at a temperature to give 10<2.5>-10<3>P glass viscosity thereof and then melted, permeated and adhered to the gap groove 4. The resultant magnetic head member 10 is then cut at each part of a chain line 5 to give a magnetic head front core part 6, which is then bonded to a back core 7, ground and finished to a position of a chain line 8.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は磁気ヘッドの製造方法に関するものである。[Detailed description of the invention] 3. Detailed description of the invention Industrial applications The present invention relates to a method of manufacturing a magnetic head.

従来の技術 フェライト磁気ヘッドのギャップ部に用いる非磁性スペ
ーサーとしては、媒体との摺動に際してギャップ近傍に
機械的(ずれが生じたり、ヘッドコアの摩耗度合に比し
て極度にギャップが摩耗するといういわゆる偏摩耗が生
じないように、硬度が高く耐摩耗性に優れたガラス材を
用いることが広く行われている。このカラスギャップ形
成法には、浸透法の他にスパッタ法、焼付法等が知られ
ているが、交流消去ヘッドのごとくギャップ幅が数十μ
m以上も必要とされる場合は、浸透法を用いるのが通例
である。
Conventional technology A non-magnetic spacer used in the gap of a ferrite magnetic head has a so-called "mechanical misalignment" that occurs near the gap when it slides with the medium, or that the gap wears out to an extreme degree compared to the degree of wear of the head core. In order to prevent uneven wear, it is widely used to use glass materials with high hardness and excellent wear resistance.In addition to the infiltration method, sputtering methods, baking methods, etc. are known methods for forming this crow gap. However, like AC erasing heads, the gap width is several tens of microns.
If more than m is required, it is customary to use the infiltration method.

ところで、通常行われている浸透法による消去ヘッドの
ガラスギャップ形成法は、第1図及び第2図に示したご
とくフェライトブロック1を所定の形状に加工し切り込
み部2を設け、更にこの部分に所望の寸法のギャップ溝
4を入れ、その溝4の上にギヤツブ用ガラス捧3を設置
して溶融、浸透させることによりガラスギャップを形成
するといったちのであった。
By the way, the commonly used method of forming a glass gap in an erasing head using a penetrating method is to process a ferrite block 1 into a predetermined shape, provide a notch 2 in this part, and then cut the ferrite block 1 into a predetermined shape as shown in FIGS. 1 and 2. A gap groove 4 of a desired size was formed, a gear glass plate 3 was placed on top of the groove 4, and the glass gap was formed by melting and infiltrating the gap groove 4.

その際、用いられるガラスは熱膨張係数がフェライトと
ほぼ同一のものを選択しないと、接着部の界面近傍にガ
ラス固着後歪が残り磁気特性を劣化させたり、甚だしい
場合は、ガラスあるいはフェライトにクラックが入り破
壊されてしまうことがある。
At this time, if the glass used is not selected to have a coefficient of thermal expansion that is almost the same as that of the ferrite, distortion may remain in the vicinity of the bonding interface after the glass is fixed, degrading the magnetic properties, or, in extreme cases, causing cracks in the glass or ferrite. may enter and be destroyed.

また磁気記録に用いられる記録媒体は近年の高密度記録
技術の進展に伴い高保磁力化してきており、これら高保
磁力媒体を消磁する消去ヘッドに於いては大きな交流消
去磁界を発生させねばならないため、交流での渦電流損
失の少ない、換言すれば、電気抵抗が高いフェライトそ
れも飽和磁束密度が比較的大きいMn−Zn系のものが
用いられている。そして一般に知られているように、M
n−Znフェライトで飽和磁束密度を太き(するような
組成を選択すると熱膨張係数は大きくなる。
In addition, recording media used for magnetic recording have become higher in coercive force due to the recent progress in high-density recording technology, and erasing heads that demagnetize these high-coercive-force media must generate a large alternating current erasing magnetic field. Ferrite with low eddy current loss in alternating current, in other words, high electrical resistance, and Mn-Zn type ferrite with relatively high saturation magnetic flux density are used. And as is commonly known, M
If a composition of n-Zn ferrite with a large saturation magnetic flux density is selected, the coefficient of thermal expansion will become large.

従って、高飽和磁束音度を持つフェライトに熱膨張係数
を合わせるため、消去ヘットのギャップはPbOを大量
に含有するアルカリ珪酸塩ガラス(PbO−31o2−
R20)で形成する方法が広く用いられている。
Therefore, in order to match the thermal expansion coefficient to ferrite, which has a high saturation magnetic flux sonicity, the erase head gap is made of alkali silicate glass (PbO-31o2-
R20) is widely used.

発明が解決しようとする問題点 しかしながらPbOを大量に含有するガラスでギャップ
を形成したヘッドを、湿度の高い環境下に放置した場合
、ギャップ部が腐食(風化)し始め、接着強度を低下さ
せるのみならず、腐食により発生した突起物により記録
媒体を損傷させたり、腐食物が剥離して出来た空孔部分
に媒体の磁性粉が付着しノイズを発生させたりするとい
う問題点があった。さらにPbOを大量に含有するガラ
スは低融点、低粘度で拡散係数が大きいため、ガラス作
業温度で溶融ガラスがフェライト粒界へ拡散し磁気特性
を劣化させるおそれがあった。
Problems to be Solved by the Invention However, if a head with a gap made of glass containing a large amount of PbO is left in a humid environment, the gap will begin to corrode (weather), which will only reduce the adhesive strength. However, there are problems in that the recording medium is damaged by protrusions generated by corrosion, and magnetic powder from the medium adheres to the voids formed by peeling off the corroded substances, causing noise. Furthermore, since glass containing a large amount of PbO has a low melting point, low viscosity, and a large diffusion coefficient, there is a risk that the molten glass will diffuse into the ferrite grain boundaries at glass working temperatures, deteriorating the magnetic properties.

そこで本発明は、耐環境性の優れた、特性劣化の少ない
磁気ヘッドを提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetic head with excellent environmental resistance and less deterioration of characteristics.

問題点を解決するための手段 上記した従来の問題点を解決するため、本発明はBi 
203.PbO,S i02.B2O3の4成分を主成
分とし、且つそれぞれを Bi2O3:  3〜30(m02%)Pb0    
 1〜30(m02%)SiO2:  30〜50(m
02%)B203   ・  1〜20(m02%)の
範囲内で、しかも Bi203B1203(%)+Pb○(mol%)>2
0(mog%) Si02(mog%)+B2O3(mol%)>45(
mo  9%) Si  ○2 <m02%)/B 203(m02%)
〉2 なる関係式を満足するよう含有し、また残部にLi 2
0.Na 2O、K2O、ZnOのうち少なくとも1種
をそれぞれ Li2O:  1〜20(moi!%)Na20 : 
1〜18(mOQ、%)K2O: 1〜10(m02%
) ZnO:  1〜7(moi!%) の範囲で含有するガラス組成物を用いて、しかも2.5 そのガラス組成物の粘度が10  ポイズから103ボ
イズとなる温度範囲内で磁気ギャップ部に溶融、浸透さ
せて磁気ヘッドを製造する。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention
203. PbO,S i02. The four components of B2O3 are the main components, and each of them is Bi2O3: 3 to 30 (m02%) Pb0
1-30 (m02%) SiO2: 30-50 (m02%)
02%) B203 ・ Within the range of 1 to 20 (m02%), and Bi203B1203 (%) + Pb○ (mol%)>2
0 (mog%) Si02 (mog%) + B2O3 (mol%) > 45 (
mo 9%) Si ○2 <m02%)/B 203 (m02%)
〉2 Contains so as to satisfy the relational expression, and the remainder contains Li 2
0. Li2O: 1 to 20 (moi!%) Na20: at least one of Na2O, K2O, and ZnO:
1-18 (mOQ, %) K2O: 1-10 (m02%
) ZnO: Using a glass composition containing ZnO in the range of 1 to 7 (moi!%), and melting in the magnetic gap part within the temperature range where the viscosity of the glass composition is from 10 poise to 103 poise. , to manufacture magnetic heads.

なお上記ガラス組成物において、Bi2B1253(%
)+PbO(moi!%)>20(m。
In addition, in the above glass composition, Bi2B1253 (%
)+PbO(moi!%)>20(m.

9%)としたのは、20moQ%より少なくすると作業
温度が700℃より高くなるため、コア材であるMn−
Znフェライトに磁気特性を悪くするα−Fe203が
析出しやすくなるからである。またBi2O3を3〜3
0mog%としたのは3moe%より少なくすると、作
業温度が高くなり、しかも化学的耐久性が劣化するため
で、また30mo+!%より多くすると溶融、浸透させ
る際に結晶化しやすくなるためである。モしてPbOを
1〜30moi!%としたのはBi2O3と併せて融点
を低下させるためであり、30moe%より多くすると
化学的耐久性が劣化するからである。さらに5i02を
30〜50mo!!%としたのは、30moe%より少
なくするとガラスが失透しやすく耐久性が劣化するため
で、また50m02%より多(すると作業温度が700
℃より高くなる上に熱膨張係数が小さくなり過ぎMn−
Znフェライトの熱膨張係数と合わなくなるためである
。更にB2O3を1〜20moe%としたのは1moe
%より少な(すると温度−粘度曲線の勾配が穏やかにな
り作業温度が700℃より高くなるためで、また20m
02%より多(すると耐候性が劣化し且つ熱膨張係数が
小さくなり過ぎるためである。
The reason why the core material Mn-
This is because α-Fe203, which deteriorates magnetic properties, tends to precipitate in Zn ferrite. Also, add 3 to 3 Bi2O3
The reason why we set it to 0mog% is because if it is less than 3moe%, the working temperature will increase and chemical durability will deteriorate, and 30mo+! This is because if the amount is more than %, crystallization tends to occur during melting and infiltration. Add 1 to 30 moi of PbO! % to lower the melting point together with Bi2O3, and if it is more than 30 moe%, the chemical durability will deteriorate. Furthermore, 5i02 is 30-50mo! ! % because if it is less than 30 moe%, the glass tends to devitrify and its durability deteriorates.
℃, and the coefficient of thermal expansion becomes too small.
This is because the coefficient of thermal expansion does not match that of Zn ferrite. Furthermore, B2O3 was set to 1 to 20 moe% at 1 moe.
% (this is because the slope of the temperature-viscosity curve becomes gentle and the working temperature becomes higher than 700°C, and 20 m
0.02% (this is because the weather resistance deteriorates and the coefficient of thermal expansion becomes too small).

ところでZnO及びL i 20. Na 20. K
 20のうち少なくとち1成分を含有させるのは作業温
度を低(するためであり、特にL i 20. Na2
O、に20成分を複合させれ−ば、いわゆる混合アルカ
リ効果が起こり融点を低下させると共に化学的耐久性を
向上させることが出来るからである。
By the way, ZnO and Li 20. Na 20. K
The reason why at least one component of 20 is contained is to lower the working temperature, especially L i 20. Na2
This is because if 20 components are combined with O, a so-called mixed alkali effect occurs, lowering the melting point and improving chemical durability.

またギャップ形成の作業温度をキャップガラス2.5 の粘度が10  ボイズから10 ボイスとなる範囲に
したのは粘度が10“ ボイスより小さくなるほど作業
温度を高くすると、融点カラスがフェライト粒界に拡散
しやすくなり、逆に粘度が103ポイズより大きくなる
ほど作業温度を低くするとガラスが流れにくくなり、作
業性が低下し、ガラス内に気孔が残ったりするからであ
る。
In addition, the working temperature for forming the gap was set in a range where the viscosity of the cap glass 2.5 was from 10 to 10 voices.If the working temperature is raised as the viscosity becomes smaller than 10 voices, the melting point glass will diffuse into the ferrite grain boundaries. On the other hand, if the working temperature is lowered as the viscosity becomes higher than 103 poise, the glass becomes difficult to flow, reducing workability and leaving pores in the glass.

作  用 上記のガラス組成物、作業条件によりギャップを形成し
た、本発明の磁気ヘッドは耐環境性に優れた特性劣化の
少ないものとなる。
Function: The magnetic head of the present invention in which a gap is formed using the above-mentioned glass composition and working conditions has excellent environmental resistance and less deterioration of characteristics.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

まず第1図に示したごとき、所定の磁路を形成せしめる
ように切込み部2及びギャップ溝4を加工したフェライ
トブロック1にあらかじめ準備した第1表に示す組成・
、特性のガラス棒3を第1図に示すごとくギャップ溝4
の上部に設置し、各ガ2.5 ラスの粘度が10  ボイズから10 ボイズになる作
業温度で各ガラスを溶解しギャップ溝に浸透固着させた
。このようにしてギャップ形成した第2図1の磁気ヘッ
ド部材10を鎖線5の部分より個々に切断したものを磁
気ヘッドのフロントコア部6として、第3図に示したご
と(、別に加工したバックコア7と接着し鎖線8で示す
位置まで研摩仕上げしたものをサンプルとした。なお第
1表のガラスのうちNol〜No6は本発明の範囲内の
組成でありX N o 7〜No9は比較のために準備
した従来のガラスであり、コア材としては熱膨張係数が
25℃〜300℃の温度範囲で120×107℃のMn
−Znフェライトを用いた。
First, as shown in FIG. 1, a ferrite block 1 with a notch 2 and a gap groove 4 formed thereon so as to form a predetermined magnetic path was prepared in advance with a composition shown in Table 1.
, the characteristic glass rod 3 is inserted into the gap groove 4 as shown in FIG.
Each glass was melted at a working temperature that brought the viscosity of each glass from 10 to 10 voids to infiltrate and fix in the gap groove. The magnetic head member 10 of FIG. 2 1 with gaps formed in this way is cut individually from the chain line 5 as the front core part 6 of the magnetic head, as shown in FIG. The samples were those that were bonded to the core 7 and polished to the position indicated by the chain line 8.Of the glasses in Table 1, No. 1 to No. 6 had compositions within the scope of the present invention, and X No. 7 to No. 9 had compositions within the scope of the present invention. It is a conventional glass prepared for
-Zn ferrite was used.

次に本実施例にて作製した磁気ヘッドに於いてギャップ
形成の売主じるガラスのフェライトに対する拡散度を調
べるために第3図に示す接着部界面9を中心としてX線
による分析を行った。
Next, in order to investigate the degree of diffusion of the glass, which is responsible for forming the gap, into the ferrite in the magnetic head manufactured in this example, an X-ray analysis was performed focusing on the adhesive interface 9 shown in FIG. 3.

更にギャップ部に浸透させたガラスの化学的耐久性を調
べるために60℃−相対湿度95%雰囲気中での240
時間の耐湿試験を恒温恒湿槽を用いて行った。ここで、
耐湿試験の評価方法としては第3図に示したごと(鎖線
8の位置迄研摩して鏡面仕上げをし、触針式表面形状測
定器を用いて耐湿試験前後のガラスギャップ部近傍の表
面形状を調べた。また光学顕微鏡を用いてガラス部の変
色状況ら観察した。
Furthermore, in order to investigate the chemical durability of the glass infiltrated into the gap, it was heated at 240°C in an atmosphere of 60°C and 95% relative humidity.
A humidity test for hours was conducted using a constant temperature and humidity chamber. here,
The evaluation method for the moisture resistance test is as shown in Figure 3 (polish to the position indicated by chain line 8 to give a mirror finish, and use a stylus type surface profile measuring device to measure the surface shape near the glass gap before and after the moisture resistance test. We also observed the discoloration of the glass part using an optical microscope.

X線によるガラスのフェライトに対する拡散度の分析結
果については、本発明による磁気ヘッドのものを第4図
に、また従来例によるものを第5図に示した。
The results of X-ray analysis of the degree of diffusivity of glass with respect to ferrite are shown in FIG. 4 for the magnetic head according to the present invention, and in FIG. 5 for the conventional example.

第5図よりわかるように、高鉛含有珪酸塩ガラスのギャ
ップ部からはフェライト部に対し深さ約10μmにわた
りPbが拡散しており、その拡散部分では磁気特性が劣
化するのみならず実効的にギャップ幅が広くなっている
。それに対し本発明による磁気ヘッドのギャップ部から
は第4図に示す通りほとんど拡散がみられない。また、
耐湿試験前後の表面形状について、本発明の磁気ヘッド
のものを第6図に、また高鉛含有珪酸塩カラスをギャッ
プにした従来の磁気ヘッドのものを第7図に模写した。
As can be seen from Figure 5, Pb diffuses from the gap of the high lead-containing silicate glass to a depth of approximately 10 μm into the ferrite region, and in this diffused region, not only the magnetic properties deteriorate but also the effective The gap width is widening. In contrast, almost no diffusion is observed from the gap portion of the magnetic head according to the present invention, as shown in FIG. Also,
The surface shapes before and after the moisture resistance test are reproduced in FIG. 6 for the magnetic head of the present invention, and in FIG. 7 for a conventional magnetic head with a gap made of high lead-containing silicate glass.

なお、第6図(a)、第7図(a)は耐湿試験前、(b
)は耐湿試験後の様子を示したものである。第7図から
れかるように、高鉛含有珪酸塩ガラスの表面形状は著し
く粗くなっている。その原因としては、過剰酸化鉛がキ
ャップカラス表面上に水酸化化合物を形成したことが考
えられる。そしてこの荒れは記録媒体との接触摺動の際
の摺動ノイズの増加記録媒体の損傷、磁気ヘッドの損傷
等の原因になりかねないという危険性がある。
In addition, Fig. 6 (a) and Fig. 7 (a) are before the moisture resistance test, and (b)
) shows the appearance after the moisture resistance test. As can be seen from FIG. 7, the surface profile of the high lead-containing silicate glass is extremely rough. The reason for this is thought to be that excess lead oxide formed hydroxide compounds on the surface of the cap glass. There is a risk that this roughness may cause increased sliding noise during sliding contact with the recording medium, damage to the recording medium, and damage to the magnetic head.

また硼酸塩系ガラス(第1表ガラスNo9)の場合、ギ
ャップガラス表面は青色の干渉色を示し、いわゆる「青
やけ」現象が起こり、外観不良となる。それに対し本発
明の磁気ヘッドについては、第6図に示す通り耐湿試験
後のガラス表面状態は、試験前の状態に比べてほとんど
変化しておらず、ガラス表面の変色も全くみられなかっ
た。
In the case of borate glass (glass No. 9 in Table 1), the surface of the gap glass exhibits a blue interference color, causing a so-called "blue discoloration" phenomenon, resulting in poor appearance. On the other hand, as for the magnetic head of the present invention, as shown in FIG. 6, the glass surface condition after the moisture resistance test was almost unchanged compared to the condition before the test, and no discoloration of the glass surface was observed.

発明の効果 上述したように本発明の製造方法によって製造した磁気
ヘッドは特性劣化の少ない、信頼性の優れたものとなり
、極めて有効なるものである。
Effects of the Invention As described above, the magnetic head manufactured by the manufacturing method of the present invention has little characteristic deterioration and is highly reliable, making it extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の一実施例による磁気
ヘッドの製造過程を説明するための図、第4図は本発明
の一実施例の磁気ヘッドにおいてギャップ部からガラス
成分がフェライト部へ拡散した状態を示す分析図、第5
図は従来の磁気ヘッドにおいての拡散状態を示す図、第
6図は本発明のへラドギャップ部の表面形状断面図で同
図(a)は耐湿試験前断面図、同図(b)は耐湿試験後
断面図、第7図は本発明の実施例に対する比較例として
作製した高鉛含有珪酸塩ガラスでギャップ部を形成した
磁気ヘッドのギャップ部の表面形状を示す断面図で同図
(a)は耐湿試験前断面図、同図(b)は耐湿試験後断
面図である。 1・・・・フェライトブロック 2・・・・切り込み部    3・・・・ガラス棒4・
・・・ギャップ部    6・・・・フロントコア部7
・・・・バックコア
1, 2, and 3 are diagrams for explaining the manufacturing process of a magnetic head according to an embodiment of the present invention, and FIG. 4 is a diagram for explaining the manufacturing process of a magnetic head according to an embodiment of the present invention. Analytical diagram showing the state of diffusion into the ferrite part, No. 5
The figure shows the diffusion state in a conventional magnetic head, and Figure 6 is a cross-sectional view of the surface shape of the helad gap section of the present invention. Figure 7 is a cross-sectional view showing the surface shape of the gap portion of a magnetic head in which the gap portion was formed with high lead-containing silicate glass, which was prepared as a comparative example for the example of the present invention. is a cross-sectional view before the moisture resistance test, and FIG. 1... Ferrite block 2... Notch part 3... Glass rod 4.
...Gap part 6...Front core part 7
・・・Back core

Claims (1)

【特許請求の範囲】 Bi_2O_3、PbO、SiO_2、B_2O_3の
4成分を主成分とし、且つそれぞれを Bi_2O_3:3〜30(mol%) PbO:1〜30(mol%) SiO_2:30〜50(mol%) B_2O_3:1〜20(mol%) の範囲で、しかも Bi_2O_3(mol%)+PbO(mol%)>2
0(mol%) SiO_2(mol%)+B_2O_3(mol%)>
45(mol%) SiO_2(mol%)/B_2O_3(mol%)>
2 なる関係式を満足するように含有し、残部にLi_2O
、Na_2O、K_2O、ZnOのうち少なくとも1種
をそれぞれ Li_2O:1〜20(mol%) Na_2O:1〜18(mol%) K_2O:1〜10(mol%) ZnO:1〜7(mol%) の範囲内で含有してなる磁気ヘッド接合用ガラス組成物
の粘度を10^2^.^5ポイズから10^3ポイズと
なる温度範囲内で磁気ギャップ部に溶融、浸透させるこ
とを特徴とする磁気ヘッドの製造方法。
[Claims] The main components are Bi_2O_3, PbO, SiO_2, and B_2O_3, and each of them is Bi_2O_3: 3 to 30 (mol%) PbO: 1 to 30 (mol%) SiO_2: 30 to 50 (mol%) ) B_2O_3: in the range of 1 to 20 (mol%), and Bi_2O_3 (mol%) + PbO (mol%)>2
0 (mol%) SiO_2 (mol%) + B_2O_3 (mol%)>
45 (mol%) SiO_2 (mol%)/B_2O_3 (mol%)>
2, and the remainder is Li_2O.
, Na_2O, K_2O, and ZnO, respectively: Li_2O: 1 to 20 (mol%) Na_2O: 1 to 18 (mol%) K_2O: 1 to 10 (mol%) ZnO: 1 to 7 (mol%) The viscosity of the magnetic head bonding glass composition containing within the range of 10^2^. A method for manufacturing a magnetic head, characterized in that the magnetic head is melted and infiltrated into a magnetic gap within a temperature range of ^5 poise to 10^3 poise.
JP12966086A 1986-06-04 1986-06-04 Production of magnetic head Pending JPS62288133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12966086A JPS62288133A (en) 1986-06-04 1986-06-04 Production of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12966086A JPS62288133A (en) 1986-06-04 1986-06-04 Production of magnetic head

Publications (1)

Publication Number Publication Date
JPS62288133A true JPS62288133A (en) 1987-12-15

Family

ID=15014996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12966086A Pending JPS62288133A (en) 1986-06-04 1986-06-04 Production of magnetic head

Country Status (1)

Country Link
JP (1) JPS62288133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256606A (en) * 1991-06-13 1993-10-26 Alps Electric Co., Ltd. Moisture resistant low melting point glass for magnetic head and magnetic head
JPH06231419A (en) * 1993-01-29 1994-08-19 Victor Co Of Japan Ltd Magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256606A (en) * 1991-06-13 1993-10-26 Alps Electric Co., Ltd. Moisture resistant low melting point glass for magnetic head and magnetic head
JPH06231419A (en) * 1993-01-29 1994-08-19 Victor Co Of Japan Ltd Magnetic head

Similar Documents

Publication Publication Date Title
EP1291329A1 (en) Glass composition, sealing glass for magnetic head and magnetic head
US4544974A (en) Alumina glass composition and magnetic head incorporating same
US3954434A (en) Method of manufacturing a ferrite magnetic transducer head
JPS62288133A (en) Production of magnetic head
US5224001A (en) Magnetic head
JPS62288132A (en) Production of magnetic head
JPH0432025B2 (en)
JP2740697B2 (en) Moisture resistant low melting glass composition for magnetic head and magnetic head
JPS6335465A (en) Glass for sealing magnetic head
JPS62112206A (en) Glass composition for bonding magnetic head
JP2944716B2 (en) Adhesive glass
JPS60186437A (en) Glass composition for ferrite adhesion
JP3190961B2 (en) Low temperature fusing glass composition
JPH0677300B2 (en) Magnetic head sealing glass and magnetic head
JP2570791B2 (en) Bonding glass and magnetic head
JPS6335432A (en) Production of magnetic head and glass composition for magnetic head
JP2554198B2 (en) Glass for welding
JPS61247638A (en) Glass for binding ferrite
JP2000173010A (en) Sealing glass for magnetic head, magnetic head and manufacture of the same
JPH02204344A (en) Bonding glass and magnetic head
KR100399555B1 (en) Bonding glass for magnetic heads
JPH0365524A (en) Complex type floating magnetic head
JPS62230646A (en) Glass composition for joining ferrite
JPS61196411A (en) Magnetic head
JPH05266417A (en) Combined magnetic head