JPH0432025B2 - - Google Patents

Info

Publication number
JPH0432025B2
JPH0432025B2 JP3926887A JP3926887A JPH0432025B2 JP H0432025 B2 JPH0432025 B2 JP H0432025B2 JP 3926887 A JP3926887 A JP 3926887A JP 3926887 A JP3926887 A JP 3926887A JP H0432025 B2 JPH0432025 B2 JP H0432025B2
Authority
JP
Japan
Prior art keywords
glass
pbo
composition
resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3926887A
Other languages
Japanese (ja)
Other versions
JPS63206330A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3926887A priority Critical patent/JPS63206330A/en
Publication of JPS63206330A publication Critical patent/JPS63206330A/en
Publication of JPH0432025B2 publication Critical patent/JPH0432025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は磁気ヘツド用耐湿性低融着ガラス組成
物に係り、特に磁気ヘツドの空隙部の形成、また
はヘツド構成部分の結合、充填に用いられるガラ
ス組成物に関するものである。 <従来の技術> フエライトまたは金属などの磁性体材料からな
るコアチツプを形成する際、あるいは形成された
コアチツプをセラミツク等からなるスライダー等
へ埋め込む際には、ガラスや樹脂を使用してコア
相互間のギヤツプ、またはコアチツプと他のヘツ
ド構成部品との空隙部の充填、補強が行なわれて
いる。 これらのガラスには、従来から融着作業温度の
低いPbOを主成分とするガラスが適していること
が知られている。そして、かかるガラス組成物に
関しては、すでに多くの提案がなされている。 <発明が解決しようとする問題点> しかしながら、かかるガラスは耐環境性、特
に、耐湿性、耐水性に関して性能が劣るという短
所があり、このためガラス表面が変質を起こし
て、変色やスライダー、コア部分に対してガラス
部分に段差ができる欠点がある。 この原因は、PbOがガラス成分量として65(Wt
%)を超えているため、PbOが容易にガラス表面
に吸着した水分中へ溶出するために起こると考え
られている。 このような場合には、磁気ヘツド、特にデジタ
ルヘツドの信頼性が著しく劣化して、実際には記
録媒体に傷をつける原因の一つになるともいわれ
ている。 即ち、狭小な空隙巾を持つ磁気ヘツドには、空
隙充填材料に従来のガラスはもはや使用不可能と
なり、新規なガラス組成物の出現が強く要求され
ている。 そこで本発明は、かかる現状に鑑みなされたも
のであり、容易に融着処理ができるなどの特長を
有する磁気ヘツド用耐湿性低融着ガラス組成物を
提供することを目的とするものである。 <問題点を解決するための手段> 本発明は、上記問題点を解決するため、TeO2
でPbO含量の一部を置換することによりPbO量を
減らして、耐水性、耐湿性に優れた新規な組成の
ガラス、即ち、Wt%でPbOを50〜65、B2O3を15
〜30、TeO2を10〜21、SiO2を2〜5、MgOを
1.5以下、Al2O3を1〜6、及びCuOを2以下含有
することを特徴とするものである。 前述の組成において、PbOが65Wt%を超える
と耐湿性が著しく劣化し、一方、50Wt%に満た
ないと結晶化が起こる。B2O3が30Wt%を超える
と耐水性が劣り、一方、15Wt%に満たないと再
加熱により失透しやすい。TeO2が10Wt%未満で
は、流動性が悪く作業温度が高くなり過ぎる。ま
た、21Wt%超えると、熱膨張が大きくなり過ぎ
て、応力が発生してクラツクを生じたり、磁気ヘ
ツドとしての出力が低下する。SiO2が2Wt%に満
たないと耐アルカリ性が著しく劣化し、また、
5Wt%を超えると流動性が悪くなる。 MgOとAl2O3はガラスとしての安定性を向上さ
せるためのものであり、MgOは1.5Wt%を超える
とガラス化せず、Al2O3は6Wt%を超えると低融
性の性質が失われ、1Wt%未満であると添加効果
が十分に発揮されない。CuOは、耐湿性を損なう
ことなく熱膨張を少し小さくすることができる
が、2Wt%を超えるとガラス化しない。従つて各
成分の含有率は、前述の範囲に規制する必要があ
る。 本発明におけるガラスは、後述の表に示す如く
ガラス転移点が383〜420℃であり、熱膨張係数は
85〜105×10-7deg-1である。 以上述べた組成範囲にある本発明のガラスの耐
環境性は、次に示す方法にて正確に評価できるこ
とを見出した。 直径10mm、厚さ5〜8mm程度のおはじき状のサ
ンプルを作成して、両面を光学研磨仕上げを行な
い、可視部の透過率を測定して、このサンプルを
評価したい環境、即ち、純水または弱アルカリ性
溶液に浸し、20分間超音波により加速する。 その後、サンプルを溶液から取り出し、再び前
記可視部の透過率を測定してその減少を調べた。 第1図は、その結果を示したものである。横軸
にTeO2の置換量、縦軸に透過率の変化(ΔT%)
を示しており、この結果、適度な量をPbOから
TeO2に置換すると初期透過率(To%)に対して
透過率の変化がなくなり、化学的耐久性が良好に
なつた。すなわち、TeO2の置換量が多いほど透
過率の変化が少なく、耐湿性に優れる。透過率の
変化の激しいものは、表面が白くマツト状になつ
たり干渉色を示すなどの変化を示すが、本発明の
ガラスは変化が非常に少なく、従来と同じ熱特性
のガラス組成に比べて、その耐環境性が著しく向
上していることが分かつた。 以上述べた組成範囲にある本発明のガラスは、
白金るつぼ内にて溶融温度950〜1000℃であり、
500〜550℃の作業温度範囲でフエライトとの融着
が可能である。 <実施例> 以下、本発明の実施例によりさらに詳述する。
所望の組成のガラスが得られるように、各原料を
採取して、混合した調合物を白金るつぼ中におい
て950℃で60分間溶融した。得られたガラスの調
合組成と特性を第1表に示した。 試料No.1の組成のガラスを直径0.4mmの棒に加
工して、このガラス棒を磁気ヘツドのフエライト
コアの空隙に上部に載置して、窒素ガス雰囲気中
の電気炉において530℃で約1時間加熱してガラ
スを空隙部に浸透させた。 以上のようにして製作されたヘツドのガラス部
分は、環境試験装置を用いた実装試験により耐水
性、耐湿性で十分満足するものであることを確認
した。同様にしてNo.2〜No.7のガラス組成におい
ても同じ効果が確認された。 ガラスの熱膨張係数は、使用するフエライトの
種類、及び他のヘツドの構成部品の材料とそれら
の空隙の大小によつて選択する必要がある。
<Industrial Application Field> The present invention relates to a moisture-resistant, low-fusion glass composition for magnetic heads, and in particular to a glass composition used for forming gaps in magnetic heads, or for bonding and filling head components. be. <Prior art> When forming a core chip made of magnetic material such as ferrite or metal, or when embedding the formed core chip in a slider made of ceramic or the like, glass or resin is used to connect the cores. Gaps, or voids between the core chip and other head components, are filled and reinforced. It has been known that glasses mainly composed of PbO, which have a low fusion temperature, are suitable for these glasses. Many proposals have already been made regarding such glass compositions. <Problems to be Solved by the Invention> However, such glass has the disadvantage of poor performance in terms of environmental resistance, especially moisture resistance and water resistance, and this causes deterioration of the glass surface, resulting in discoloration and damage to the slider and core. There is a drawback that there is a step difference between the glass part and the glass part. The reason for this is that PbO has a glass content of 65 (Wt
%), it is thought that this occurs because PbO is easily eluted into the water adsorbed on the glass surface. In such a case, the reliability of the magnetic head, especially the digital head, is significantly degraded, and it is said that this is actually one of the causes of damage to the recording medium. That is, for magnetic heads with narrow gap widths, conventional glass can no longer be used as a gap filling material, and there is a strong demand for new glass compositions. The present invention has been made in view of the current situation, and an object of the present invention is to provide a moisture-resistant, low-fusion glass composition for a magnetic head, which has features such as being easily fused. <Means for solving the problems> In order to solve the above problems, the present invention provides TeO 2
By replacing a part of the PbO content with PbO, a new composition glass with excellent water and moisture resistance was obtained, namely, PbO in Wt% of 50-65 and B2O3 in 15%.
~30, TeO2 10~21, SiO2 2 ~5, MgO
1.5 or less, Al 2 O 3 of 1 to 6, and CuO of 2 or less. In the above composition, if PbO exceeds 65 Wt%, the moisture resistance deteriorates significantly, while if it is less than 50 Wt%, crystallization occurs. If B 2 O 3 exceeds 30 Wt%, water resistance will be poor, while if it is less than 15 Wt%, devitrification will occur easily due to reheating. If TeO 2 is less than 10 Wt%, the fluidity is poor and the working temperature becomes too high. Moreover, if it exceeds 21 Wt%, the thermal expansion becomes too large, causing stress and cracks, and the output as a magnetic head decreases. If SiO 2 is less than 2Wt%, alkali resistance will deteriorate significantly, and
If it exceeds 5Wt%, fluidity will deteriorate. MgO and Al 2 O 3 are used to improve the stability of the glass; MgO does not vitrify when it exceeds 1.5 Wt%, and Al 2 O 3 has low melting properties when it exceeds 6 Wt%. If the amount is less than 1 Wt%, the effect of addition will not be sufficiently exhibited. CuO can be made to have a slightly smaller thermal expansion without sacrificing moisture resistance, but if it exceeds 2 Wt% it will not vitrify. Therefore, the content of each component must be regulated within the above-mentioned range. The glass in the present invention has a glass transition point of 383 to 420°C and a coefficient of thermal expansion as shown in the table below.
It is 85 to 105×10 -7 deg -1 . It has been found that the environmental resistance of the glass of the present invention within the composition range described above can be accurately evaluated by the following method. Create a bead-shaped sample with a diameter of 10 mm and a thickness of about 5 to 8 mm, perform optical polishing on both sides, measure the transmittance in the visible region, and place it in the environment in which you want to evaluate the sample, i.e., pure water or weak Soak in alkaline solution and accelerate with ultrasound for 20 min. Thereafter, the sample was taken out of the solution, and the transmittance in the visible region was measured again to examine its decrease. FIG. 1 shows the results. The horizontal axis shows the amount of TeO 2 substituted, and the vertical axis shows the change in transmittance (ΔT%).
As a result, a moderate amount is removed from PbO.
When replaced with TeO 2 , there was no change in transmittance compared to the initial transmittance (To%), and chemical durability was improved. In other words, the larger the amount of TeO 2 substitution, the smaller the change in transmittance and the better the moisture resistance. Glasses with severe changes in transmittance show changes such as the surface becoming white and matte or exhibiting interference colors, but the glass of the present invention shows very little change, and compared to conventional glass compositions with the same thermal characteristics. It was found that its environmental resistance was significantly improved. The glass of the present invention having the above-mentioned composition range is
The melting temperature is 950-1000℃ in a platinum crucible,
Fusion with ferrite is possible in the working temperature range of 500-550℃. <Examples> Hereinafter, the present invention will be explained in further detail using examples.
Each raw material was sampled and the mixed formulation was melted in a platinum crucible at 950° C. for 60 minutes so that a glass with the desired composition was obtained. Table 1 shows the composition and properties of the glass obtained. Glass having the composition of sample No. 1 was processed into a rod with a diameter of 0.4 mm, and this glass rod was placed on top of the gap in the ferrite core of a magnetic head and heated at approximately 530°C in an electric furnace in a nitrogen gas atmosphere. The glass was heated for 1 hour to infiltrate the voids. It was confirmed that the glass portion of the head manufactured as described above had sufficiently satisfactory water resistance and moisture resistance through a mounting test using an environmental testing device. Similarly, the same effect was confirmed for glass compositions No. 2 to No. 7. The coefficient of thermal expansion of the glass must be selected depending on the type of ferrite used, the materials of other head components, and the size of their voids.

【表】【table】

【表】 ◎:非常に良好 ○:良好
<発明の効果> 以上詳述した如く、本発明の新規な組成のガラ
スを用いて製造した磁気ヘツドは、耐水性、耐湿
性等の耐環境性に優れた固着層を有するため高い
信頼性が得られ、また、ガラスの転移点が低いの
で使い易いという顕著な効果がある。
[Table] ◎: Very good ○: Good <Effects of the invention> As detailed above, the magnetic head manufactured using the glass with the new composition of the present invention has excellent environmental resistance such as water resistance and humidity resistance. It has a remarkable effect of being easy to use because it has an excellent adhesion layer and high reliability, and also because the transition point of the glass is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラスのTeO2置換量とその透過率の
変化を示す特性図である。
FIG. 1 is a characteristic diagram showing changes in the amount of TeO 2 substitution in glass and its transmittance.

Claims (1)

【特許請求の範囲】 1 重量%で、 PbO:50〜65、 B2O3:15〜30、 TeO2:10〜21、 SiO2:2〜5、 MgO:1.5以下、 Al2O3:1〜6、 CuO:2以下、 含有したことを特徴とする磁気ヘツド用耐湿性低
融着ガラス組成物。
[Claims] 1% by weight, PbO: 50 to 65, B 2 O 3 : 15 to 30, TeO 2 : 10 to 21, SiO 2 : 2 to 5, MgO: 1.5 or less, Al 2 O 3 : 1 to 6. A moisture-resistant, low-fusion glass composition for a magnetic head, characterized in that it contains CuO: 2 or less.
JP3926887A 1987-02-24 1987-02-24 Moisture-proof low-melting glass composition for magnetic head Granted JPS63206330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3926887A JPS63206330A (en) 1987-02-24 1987-02-24 Moisture-proof low-melting glass composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3926887A JPS63206330A (en) 1987-02-24 1987-02-24 Moisture-proof low-melting glass composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS63206330A JPS63206330A (en) 1988-08-25
JPH0432025B2 true JPH0432025B2 (en) 1992-05-28

Family

ID=12548395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3926887A Granted JPS63206330A (en) 1987-02-24 1987-02-24 Moisture-proof low-melting glass composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS63206330A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263732A (en) * 1989-04-05 1990-10-26 Alps Electric Co Ltd Light-absorption welding-type glass for magnetic head
US5245492A (en) * 1989-11-28 1993-09-14 Matsushita Electric Industrial Co., Ltd. Magnetic head
JPH054836A (en) * 1991-06-24 1993-01-14 Hitachi Metals Ltd Magnetic head and bonding glass for assembling same
JP2778012B2 (en) * 1993-08-10 1998-07-23 東芝硝子株式会社 Low temperature sealing composition
JP2007096257A (en) * 2005-04-15 2007-04-12 Asahi Glass Co Ltd Glass-covered light emitting diode element and light emitting diode covering glass

Also Published As

Publication number Publication date
JPS63206330A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
KR100484059B1 (en) Glass composition, sealing glass for magnetic head and magnetic head
JP4537092B2 (en) Glass composition and magnetic head
JPH0432025B2 (en)
JPH0372023B2 (en)
JP2944387B2 (en) Low melting glass
JP3296679B2 (en) Adhesive glass
JPH02137745A (en) Magnetic head
JP2740697B2 (en) Moisture resistant low melting glass composition for magnetic head and magnetic head
JP2863670B2 (en) Glass composition for welding magnetic head
JP2554198B2 (en) Glass for welding
JP2944716B2 (en) Adhesive glass
JP2004155597A (en) Low-melting glass for magnetic recording head
KR100399555B1 (en) Bonding glass for magnetic heads
JPH028979B2 (en)
JPS6335465A (en) Glass for sealing magnetic head
JPS62288133A (en) Production of magnetic head
JP3190961B2 (en) Low temperature fusing glass composition
JP2968022B2 (en) Adhesive glass
JPS61196411A (en) Magnetic head
JPS62112206A (en) Glass composition for bonding magnetic head
KR100390281B1 (en) Bonding glass for fixing magnetic head
SU1763402A1 (en) Low-melting glass for sealing of magnetic heads elements
JPS6345147A (en) Bonding glass for magnetic head
JPH11228168A (en) Low melting point glass for magnetic head
JPS62288132A (en) Production of magnetic head

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term