JPS6228782B2 - - Google Patents

Info

Publication number
JPS6228782B2
JPS6228782B2 JP5100879A JP5100879A JPS6228782B2 JP S6228782 B2 JPS6228782 B2 JP S6228782B2 JP 5100879 A JP5100879 A JP 5100879A JP 5100879 A JP5100879 A JP 5100879A JP S6228782 B2 JPS6228782 B2 JP S6228782B2
Authority
JP
Japan
Prior art keywords
general formula
formula
represented
phenylthio
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5100879A
Other languages
Japanese (ja)
Other versions
JPS55143963A (en
Inventor
Aritsune Kaji
Noboru Ono
Akira Tanabe
Takashi Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5100879A priority Critical patent/JPS55143963A/en
Publication of JPS55143963A publication Critical patent/JPS55143963A/en
Publication of JPS6228782B2 publication Critical patent/JPS6228782B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏なニトロ化合物、およびその補造
方法に関する。さらに詳しくは蟲薬、医薬の有甚
な䞭間䜓である、䞋蚘䞀般匏で瀺される新
芏なニトロ化合物、およびその補造方法に関す
る。 〔匏䞭、R1は
The present invention relates to a novel nitro compound and a method for producing the same. More specifically, the present invention relates to a novel nitro compound represented by the following general formula (), which is a useful intermediate for agricultural chemicals and medicines, and a method for producing the same. [In the formula, R 1 is

【匏】ここにR4は氎玠原 子、䜎玚アルキル基たたはハロゲン原子を衚わ
す。を衚わし、R2は䜎玚アルキル基、䜎玚アル
ケニル基たたは䜎玚アルキニル基を衚わす。R3
は氎玠原子たたは䜎玚アルキル基を衚わす。〕 有甚な蟲薬ずしお知られおいるアレスリンは
1949幎にM.S.Schechterにより発明され、そのす
ぐれた殺虫掻性ず䜎毒性のゆえに広く党䞖界で䜿
甚されおおり、その合成法に぀いおも皮々の怜蚎
がなされおいる。 その䞭で、アレスリンのアルコヌル成分の合成
法に぀いおも皮々の提案がなされおおり、その䞀
郚は実際の補造に取り入れられおいるものであ
る。しかしこれらは収率、操䜜それに環境問題等
の点で必ずしも工業的に満足できるものではな
い。 䟋えば今日工業的に実斜されおいるアレスロロ
ンの合成方法は、M.S.Schechterらによ぀お初め
お行なわれた方法を若干改良したもので以䞋の工
皋よりなる。 しかし、該方法においおは化合物(4)からアレス
ロロン(5)に至る最終工皋が䜎収率である事、化合
物(3)から化合物(4)を合成する際に甚いるメチルグ
リオキザヌル(6)の合成が容易でなく、か぀高䟡で
ある事などの欠点があげられ工業的には、必ずし
も満足いく方法ではない。 たた、マむケル反応を利甚したアレスロロンの
合成法ずしおは、R.H.Schlessingerらの方法があ
げられ本方法は、メチルチオアセトン(7)ずケテン
チオアセタヌルモノオキシド(8)を原料ずしたもの
で以䞋の工皋よりなる。 しかしこのSchlessingerらの方法も工業的方法
ずしおは次のような倧きな問題点を有しおいる。 マむケル反応の埌に、立䜓的に混み入぀たケ
トンのα䜍にアリル基を導入するため、反応性
が高く、か぀高䟡なアリルアむオダむドを甚い
おいる。化合物(9)→(10)の工皋 化合物(11)からアレスロロン(5)に至る反応で、
工業的に䜿甚するには、危険床が倧きくか぀取
扱いが容易でない−ブトキシカリりムを甚い
おいる。 埓぀お、本方法も工業的な補法ずしおは、必ず
しも満足できる方法ではない。 このような背景の䞋に本発明者らは、この殺虫
化合物の䞭間䜓ずしお䜿甚されるシクロペンテノ
ロン類の補法に぀き鋭意怜蚎した結果、新芏でし
かも極めお有利にこれを補造し埗る方法を芋い出
し、これに基づきその重芁な䞭間䜓、およびその
補造方法に皮々の怜蚎を加え本発明を完成した。 即ち、本発明は、前蚘䞀般匏で瀺される
新芏なニトロ化合物、およびその補造方法ずしお
䞀般匏 匏䞭、R1およびR2は前述ず同じ意味を有す
る。 で瀺される化合物を塩基の存圚䞋、䞀般匏 R3−CHCH−NO2  匏䞭、R3は前述ず同じ意味を有する。 で瀺されるニトロオレフむンずを反応させるこず
を特城ずする前蚘䞀般匏で瀺される新芏な
ニトロ化合物の補造方法を提䟛するものである。 䞀般匏で瀺される本発明化合物は、䟋え
ば䞋蚘に瀺す方法により容易に䞔぀収率よく蟲薬
の有甚な䞭間䜓である䞀般匏 匏䞭、R2およびR3は前述ず同じ意味を有す
る。 で瀺されるシクロペンテノロン類に導くこずがで
き、極めお有甚な䞭間䜓である。 即ち䞀般匏で瀺される本発明化合物を
塩基ず反応させた埌、䞀般匏 R5OH  匏䞭、R5は䜎玚アルキル基を衚わす。 で瀺されるアルコヌル䞭で、酞ず反応させ次いで
これを氎の存圚䞋で酞凊理し、䞀般匏 匏䞭、R1、R2およびR3は前述ず同じ意味を有す
る。 で瀺されるアルデヒド化合物を埗、さらに該アル
デヒド化合物を塩基で凊理するこずにより䞀般匏
で瀺されるシクロペンテノロン類を埗る方
法、たたは、䞊蚘方法においお、䞀般匏
で瀺されるアルデヒド化合物を単離するこずなし
に、䞀般匏で瀺される本発明化合物を塩基
ず反応させた埌に、䞀般匏で瀺されるアル
コヌル䞭で酞ず反応させ、次いで、ここで埗られ
た化合物を酞凊理および塩基凊理を行うこずによ
り䞀般匏で瀺されるシクロペンテノロンを
埗る方法、あるいは、䞀般匏で瀺される
本発明化合物を塩基ず反応させた埌に、氎の存圚
䞋、酞ず反応させ盎接䞀般匏で瀺されるア
ルデヒド化合物を埗、次いで該アルデヒド化合物
を塩基で凊理するこずにより䞀般匏で瀺さ
れるシクロペンテノロン類に導くこずができる。 さらに䞀般匏で瀺される本発明化合物は
䞊蚘のようなシクロペンテノロン類の他、医薬ず
しお知られおいるプロスタグランゞンなどの䞭間
䜓ずもなり埗るものであり、䞭間䜓ずしおの圹割
は極めお重芁である。 たた本発明の出発原料である䞀般匏で瀺
される化合物は公知化合物である䞋蚘䞀般匏
 匏䞭、R1は前述ず同じ意味を有する。 をアルキル化するこずにより容易に埗られ、たた
䞀般匏で瀺されるニトロオレフむンは、䞋
蚘䞀般匏で瀺されるアルデヒドずニトロメ
タンを反応させ、次いで脱氎凊理するこずにより
容易に埗るこずができる。 R3CHO  匏䞭、R3は前述ず同じ意味を有する。 䞀般匏で瀺される本発明化合物におい
お、R2の具䜓䟋ずしおはメチル基、゚チル基、
プロピル基などのアルキル基、アリル、−ブテ
ニルなどのアルケニル基、−プロパルギル、
−ブチン−−むルなどのアルキニル基があげら
れ、R3の具䜓䟋ずしおは氎玠原子、メチル基、
゚チル基、プロピル基などのアルキル基があげら
れる。R4の具䜓䟋ずしおは氎玠原子、メチル
基、塩玠原子および臭玠原子などがあげられる。
たた䞀般匏においお、R5の具䜓䟋ずしお
はメチル基、゚チル基およびプロピル基などがあ
げられる。 本発明化合物の補造に際しおの塩基ずし
おは、ナトリりムメチラヌト、ナトリりム゚チラ
ヌト、カリりム−−ブトキシドなどのアルコラ
ヌト類、ナトリりム、氎玠化ナトリりム、氎玠化
カリりム、ゞムシルナトリりム、フツ化ナトリり
ムたたはフツ化カリりムなどをあげるこずができ
る。 たた、溶媒ずしおは必芁に応じおメタノヌル、
゚タノヌル、−ブタノヌルなどの䜎玚アルコヌ
ル類、テトラヒドロフラン、ゞオキサン、ゞメチ
ルホルムアミド、ゞメチルスルホキシド、゚ヌテ
ル、ベンれン、トル゚ンなどを䜿甚するこずがで
きる。 反応枩床は特に限定されるものではないが、−
50℃から溶媒の沞点の範囲、奜たしくは−30℃〜
40℃の範囲で行なうこずができる。 䞀般匏で瀺される本発明化合物を甚い、
前述のような方法によりシクロペンテノロン類ぞ
導く方法においおは、マむケル反応の前に眮換基
R2を導入するこずができるため、眮換基R2の導
入が極めお容易に行なえるずいう利点を有しおい
る。 さらに䞀般匏で瀺される化合物を塩基で
凊理しお最終目的物である䞀般匏で瀺され
るシクロペンテノロン類を合成する工皋では、ナ
トリりム゚チラヌトのような汎甚な塩基でも収率
よく目的物が埗られ、R.H.Schlessingerらの方法
に比し、工業的な補法ずしお有利であり、たた該
閉環反応工皋の収率がよいこず、およびメチルグ
リオキザヌルを甚いないこず等、今日工業的に行
なわれおいるM.S.Schechterらの方法ず比べおも
優れた点が倚い。 以䞊述べたように本発明は、蟲薬、医薬の補造
に極めお有甚な、新芏な䞭間䜓、およびその補造
方法に関するものであり、これらの工業生産にず
぀お、工皋数の削枛、操䜜の容易さ、収率の良さ
など、その寄䞎するずころは、非垞に倧きい。 次に、本発明をより明確にするために、以䞋の
実斜䟋で詳现に説明するが、本発明がこれらに限
定されるものではないこずは蚀うたでもない。 実斜䟋  氎玠化ナトリりム0.58をゞメチルホルムアミ
ド150mlに仕蟌み、宀枩で−プニルチオ−
−ヘキセン−−オン5.0をゞメチルホルムア
ミド10mlに溶解させた液を滎䞋する。宀枩で時
間かきたぜた埌、反応液を−℃に冷华し、撹拌
し぀぀−ニトロ−−プロペン2.0をゞメチ
ルホルムアミドmlに溶かした液を10分かけお滎
䞋した。−℃で時間かきたぜた埌、−℃に保
ちながら酢酞mlを滎䞋した。氎100mlにあけ
お、゚ヌテルで抜出した。゚ヌテル局を氎、食塩
氎で順次掗浄した埌、硫酞マグネシりムで也燥し
た。゚ヌテルを留去した埌、シリカゲルカラムク
ロマトグラフむヌにより粟補し、−ニトロ−
−メチル−−アセチル−−プニルチオ−
−ヘキセン5.7を淡黄色オむルで埗た。 収率 81.2 屈折率  1.5572 NMRデヌタCCl4、内郚暙準TMS ÎŽ1.04(d)、1.26(d)3H ÎŽ2.16、2.303H ÎŽ2.3〜2.52H、 ÎŽ2.8〜3.01H、 ÎŽ4.1〜4.51H、 Ύ〜3H、 ÎŽ7.35H 実斜䟋  氎玠化ナトリりム1.176をゞメチルホルムア
ミド150mlに仕蟌み宀枩で−プニルチオ−
−ヘキシン−−オン10.0をゞメチルホルムア
ミド15mlに溶解させた液を滎䞋する。宀枩で時
間かき混ぜた埌、反応液を−℃に冷华し、撹拌
し぀぀−ニトロ−−プロペン4.26をゞメチ
ルホルムアミド10mlに溶かした液を15分間で滎䞋
した。−℃で時間かき混ぜた埌−℃に保ち
ながら酢酞mlを滎䞋した。氎100mlにあけお゚
ヌテルで抜出し、゚ヌテル局を氎、食塩氎の順に
掗浄し、硫酞マグネシりムで也燥埌、゚ヌテルを
留去し、シリカゲルカラムクロマトグラフむヌに
より粟補し−ニトロ−−メチル−−アセチ
ル−−プニルチオ−−ヘキシン10.86を
淡黄色オむルで埗た。 収率 76.1 屈折率  1.5660 NMRデヌタCCl4、内郚暙準TMS ÎŽ1.11(d)、1.32(d)3H ÎŽ2.181H ÎŽ2.413H ÎŽ4.3〜5.32H ÎŽ7.215H 実斜䟋  実斜䟋ず同様の方法で、−プニルチオ−
−ヘキシン−−オンのかわりに−メチル−
−プニルチオ−−ヘプテン−−オン4.68
を甚い、たた、氎玠化ナトリりムの䜿甚量は
0.50、−ニトロ−−プロペンの䜿甚量は
1.74ずした以倖は実斜䟋ず同様の操䜜によ
り、−ニトロ−・−ゞメチル−−アセチ
ル−−プニルチオ−−ヘプテン4.62を淡
黄色オむルで埗た。 収率 72.0 NMRデヌタCCl4、内郚暙準TMS ÎŽ1.15(d)、1.40(d)3H ÎŽ1.706H ÎŽ2.30、2.353H ÎŽ2.55〜2.65(d)2H ÎŽ2.70〜3.001H ÎŽ4.20〜4.402H ÎŽ7.20〜7.405H 参考䟋  ナトリりム0.086をメタノヌルmlに溶か
し、−℃でかきたぜながら、−ニトロ−−
メチル−−プニルチオ−−アセチル−−
ヘキセン1.0をメタノヌルmlに溶かした液を
滎䞋した。この液を、−℃に冷华した硫酞−メ
タノヌル混液濃硫酞ml、メタノヌル30mlに
激しくかきたぜながら時間で滎䞋した。滎䞋埌
反応液をゞクロルメタン150mlにあけた埌、氷氎
100ml、苛性゜ヌダ氎、食塩氎で順次掗浄し
た。ゞクロルメタン局を硫酞マグネシりムで也燥
した埌、溶媒を留去し淡黄色オむル0.98を埗
た。このオむルはNMRからほが玔粋な、・
−ゞメトキシ−−メチル−−プニルチオ−
−アセチル−−ヘキセンであ぀た。 屈折率  1.5615 参考䟋  ・−ゞメトキシ−−メチル−−プニ
ルチオ−−アセチル−−ヘキセン0.98を
1Nå¡©é…ž10ml䞭に入れ55℃で1.5時間激しくかきた
ぜた。反応液に゚ヌテル20mlを加え抜出し、゚ヌ
テル局を重そう氎、氎、食塩氎で順次掗浄した
埌、無氎硫酞マグネシりムで也燥する。 ゚ヌテルを留去した埌、シリカゲルカラムクロ
マトグラフむヌで粟補を行な぀お、0.60の−
メチル−−プニルチオ−−アセチル−−
ヘキセン−−アヌルを淡黄色オむルずしお埗
た。 収率 72.2 屈折率  1.5634 NMRデヌタCDCl4、内郚暙準TMS ÎŽ1.20(d)、1.40(d)3H ÎŽ2.44、3H ÎŽ2.5〜3.4、3H Ύ〜、3H ÎŽ7.3、5H ÎŽ9.5、9.81H 参考䟋  ナトリりム0.174をメタノヌル10mlに溶か
し、−℃でかき混ぜながら、−ニトロ−−
メチル−−プニルチオ−−アセチル−−
ヘキシン2.0をメタノヌルmlに溶かした液を
滎䞋した。この液を−℃に冷华した硫酞−メタ
ノヌル混液濃硫酞16ml、メタノヌル60mlに激
しくかき混ぜながら30分で滎䞋した。滎䞋埌、反
応液をゞクロルメタン150mlにあけた埌、氷氎100
ml、炭酞゜ヌダ、氎、飜和食塩氎の順で掗浄
した。ゞクロルメタン局を硫酞マグネシりムで也
燥埌、溶媒を留去し、淡黄色オむル1.98を埗
た。このオむルはN.M.R.からほが玔粋な・
−ゞメトキシ−−メチル−−プニルチオ−
−アセチル−−ヘキシンであ぀た。 収率 94.3 屈折率  1.5442 参考䟋  ・−ゞメトキシ−−メチル−−プニ
ルチオ−−アセチル−−ヘキシン1.90を
塩酞氎20ml䞭に入れ、55℃で1.5時間激しくか
き混ぜた。反応液に゚ヌテル50mlを加え抜出し、
゚ヌテル局を重そう氎、氎、食塩氎で順次掗浄し
た埌、硫酞マグネシりムで也燥する。゚ヌテルを
留去した埌、シリカゲルカラムクロマトグラフむ
ヌで粟補し、1.54の−メチル−−プニル
チオ−−アセチル−−ヘキシン−−アヌル
を淡黄色オむルずしお埗た。 収率 95.4 屈折率  1.5728 NMRデヌタCCl4、内郚暙準TMS ÎŽ1.15(d)、1.32(d)3H ÎŽ2.11H ÎŽ2.36、2.413H ÎŽ2.52(d)、2.62(d)2H ÎŽ2.60〜3.01H ÎŽ7.25H ÎŽ9.50、9.851H 参考䟋  ナトリりム0.086をメタノヌルmlにずか
し、−℃でかきたぜながら、−ニトロ−−
メチル−−プニルチオ−−アセチル−−
ヘキセン1.0をメタノヌルmlにずかした液を
滎䞋した。この液を−℃に冷华した20硫酞氎
溶液50mlにはげしくかきたぜながら滎䞋した。液
䞋埌時間−℃でかきたぜた埌、反応液をゞク
ロルメタンで抜出した。ゞクロルメタン局を氷氎
100ml及び苛性゜ヌダ氎、食塩氎で順次掗浄
した。ゞクロルメタン局を硫酞マグネシりムで也
燥した埌、溶媒を留去した。埗られた淡黄色オむ
ルをシリカゲルクロマトグラフむヌで粟補し、
0.54の−メチル−−プニルチオ−−ア
セチル−−ヘキセン−−アヌルを淡黄色オむ
ルずしお埗た。 収率 60.4 屈折率  1.5642 NMRCDCl4、内郚暙準TMS ÎŽ1.20(d)、1.40(d)3H ÎŽ2.44、3H ÎŽ2.5〜3.4、3H Ύ〜、3H ÎŽ7.3、5H ÎŽ9.5、9.81H 参考䟋  無氎゚タノヌルmlにナトリりム0.044を溶
かした液に、宀枩でかきたぜながら、−メチル
−−プニルチオ−−アセチル−−ヘキセ
ン−−アヌル0.50を無氎゚タノヌルmlにず
かした液を滎䞋した。15分宀枩でかきたぜた埌、
塩酞mlを加えた埌、゚タノヌルを液圧䞋に
留去した。反応液に゚ヌテルを加えお抜出した
埌、゚ヌテル局を氎、食塩氎で順次掗浄し、硫酞
マグネシりムで也燥した。゚ヌテルを留去した
埌、シリカゲルカラムクロマトグラフむヌにより
粟補し、アレスロロン0.20を淡黄色オむルずし
お埗た。 収率 68.0 NMRCDCl4、内郚暙準TMS ÎŽ2.1、3H ÎŽ2.35(d)、2.60(d)2H ÎŽ2.90、2H ÎŽ3.1bs、1H ÎŽ4.5〜6.0、4H 参考䟋  −メチル−−プニルチオ−−アセチル
ヘキサン−−アヌル2.50をトル゚ン20mlにず
かし、ベンゞルトリ゚チルアンモニりム−クロリ
ド20mg及び50苛性カリ氎溶液を加え窒玠気
流䞋宀枩で時間かきたぜた。反応液を氎にあけ
食塩飜和の埌、゚ヌテルで回抜出した。゚ヌテ
ル局を食塩氎で回掗浄埌、硫酞マグネシりムで
也燥した。溶媒留去埌、シリカゲルカラムクロマ
トを行な぀お、淡黄色オむルの−メチル−−
プロピル−シクロペンタ−−゚ン−−オン−
−オヌル0.73を埗た。 収率 52 NMRCCl4、内郚暙準TMS ÎŽ0.93、3H ÎŽ1.98、3H Ύ〜、4H ÎŽ4.43、1H
[Formula] (where R 4 represents a hydrogen atom, a lower alkyl group or a halogen atom), and R 2 represents a lower alkyl group, a lower alkenyl group or a lower alkynyl group. R3
represents a hydrogen atom or a lower alkyl group. ] Allethrin is known as a useful pesticide.
Invented by MS Schechter in 1949, it is widely used throughout the world due to its excellent insecticidal activity and low toxicity, and various studies have been conducted on its synthesis methods. Among these, various proposals have been made regarding methods for synthesizing the alcohol component of allethrin, some of which have been incorporated into actual production. However, these methods are not necessarily industrially satisfactory in terms of yield, operation, environmental problems, etc. For example, the method for synthesizing allethrone that is currently practiced industrially is a slight improvement on the method first carried out by MS Schechter et al., and consists of the following steps. However, in this method, the final step from compound (4) to allethrone (5) has a low yield, and methylglyoxal (used in the synthesis of compound (4) from compound (3) ) 6) is not easy to synthesize and is expensive, so it is not always a satisfactory method industrially. In addition, as a method for synthesizing arethrolone using the Michael reaction, there is a method by RH Schlessinger et al. This method uses methylthioacetone (7) and ketene thioacetal monooxide (8) as raw materials and consists of the following steps. . However, the method of Schlessinger et al. also has the following major problems as an industrial method. After the Michael reaction, allyl iodide, which is highly reactive and expensive, is used to introduce an allyl group into the α-position of the sterically crowded ketone. (Process of compound (9) → (10) ) In the reaction from compound (11) to arethrolone (5) ,
For industrial use, potassium t-butoxy is used, which is highly dangerous and difficult to handle. Therefore, this method is not necessarily satisfactory as an industrial manufacturing method. Against this background, the present inventors have conducted intensive studies on the production method of cyclopentenolones, which are used as intermediates for insecticidal compounds, and have discovered a novel and extremely advantageous method for producing the same. Based on this, the present invention was completed by conducting various studies on the important intermediate and its manufacturing method. That is, the present invention provides a novel nitro compound represented by the general formula () and a method for producing the same, which is represented by the general formula (). (In the formula, R 1 and R 2 have the same meanings as above.) In the presence of a base, a compound represented by the general formula () R 3 −CH=CH−NO 2 () (in the formula, R 3 is The present invention provides a method for producing a novel nitro compound represented by the general formula (), which is characterized by reacting a nitroolefin represented by the formula () with the same meaning as above. The compound of the present invention represented by the general formula () can be easily and efficiently prepared by the method shown below, for example, by the general formula (), which is a useful intermediate for agricultural chemicals. (In the formula, R 2 and R 3 have the same meanings as above.) It is an extremely useful intermediate that can lead to the cyclopentenolones shown below. That is, after reacting the compound of the present invention represented by the general formula () with a base, an acid is reacted in an alcohol represented by the general formula () R 5 OH () (wherein R 5 represents a lower alkyl group). This is then treated with acid in the presence of water to give the general formula () (In the formula, R 1 , R 2 and R 3 have the same meanings as above.) By obtaining an aldehyde compound represented by the formula and further treating the aldehyde compound with a base, a cyclopentenolone represented by the general formula () is obtained. or in the above method, the general formula ()
Without isolating the aldehyde compound represented by, the compound of the present invention represented by the general formula () is reacted with a base, and then reacted with an acid in the alcohol represented by the general formula (), and then, where A method for obtaining a cyclopentenolone represented by the general formula () by subjecting the obtained compound to an acid treatment and a base treatment, or a method in which the compound of the present invention represented by the general formula () is reacted with a base, and then water The aldehyde compound represented by the general formula () is directly obtained by reacting with an acid in the presence of cyclopentenolone, and then the aldehyde compound is treated with a base to lead to a cyclopentenolone represented by the general formula (). Furthermore, the compound of the present invention represented by the general formula () can also be an intermediate for prostaglandins, which are known as pharmaceuticals, in addition to the above-mentioned cyclopentenolones, and its role as an intermediate is extremely important. is important. In addition, the compound represented by the general formula (), which is the starting material of the present invention, is a known compound represented by the following general formula (). (In the formula, R 1 has the same meaning as above.) Nitroolefin, which is easily obtained by alkylating and represented by the general formula (), can be obtained by combining an aldehyde represented by the following general formula () and nitromethane. It can be easily obtained by reacting and then dehydrating. R 3 CHO () (In the formula, R 3 has the same meaning as above.) In the compound of the present invention represented by the general formula (), specific examples of R 2 include a methyl group, an ethyl group,
Alkyl groups such as propyl, allyl, alkenyl groups such as 2-butenyl, 2-propargyl, 2
Examples of R 3 include alkynyl groups such as -butyn-1-yl, and specific examples of R 3 include hydrogen atoms, methyl groups,
Examples include alkyl groups such as ethyl group and propyl group. Specific examples of R 4 include a hydrogen atom, a methyl group, a chlorine atom, and a bromine atom.
Further, in the general formula (), specific examples of R 5 include a methyl group, an ethyl group, and a propyl group. Examples of bases used in the production of the compound () of the present invention include alcoholates such as sodium methylate, sodium ethylate, potassium t-butoxide, sodium, sodium hydride, potassium hydride, dimsyl sodium, sodium fluoride, and sodium fluoride. Potassium chloride, etc. can be given. In addition, as a solvent, methanol,
Lower alcohols such as ethanol and t-butanol, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, ether, benzene, toluene, etc. can be used. The reaction temperature is not particularly limited, but -
Range of boiling point of solvent from 50℃, preferably -30℃~
It can be carried out at a temperature of 40°C. Using the compound of the present invention represented by the general formula (),
In the method described above to lead to cyclopentenolones, substituents are added before the Michael reaction.
Since R 2 can be introduced, it has the advantage that the substituent R 2 can be introduced extremely easily. Furthermore, in the process of treating the compound represented by the general formula () with a base to synthesize the final target cyclopentenolone represented by the general formula (), a general-purpose base such as sodium ethylate can be used with good yield. The desired product can be obtained, and it is advantageous as an industrial production method compared to the method of RH Schlessinger et al., and it is not carried out industrially today, such as the high yield of the ring-closing reaction step and the fact that methylglyoxal is not used. It has many advantages compared to the method of MSSchechter et al. As described above, the present invention relates to a novel intermediate extremely useful in the production of agricultural chemicals and medicines, and a method for producing the same, and is useful for industrial production of these products by reducing the number of steps and facilitating operation. Its contribution, such as good yield, is very large. EXAMPLES Next, in order to make the present invention more clear, the present invention will be explained in detail using the following examples, but it goes without saying that the present invention is not limited to these examples. Example 1 0.58 g of sodium hydride was added to 150 ml of dimethylformamide, and 3-phenylthio-5 was prepared at room temperature.
- A solution of 5.0 g of hexen-2-one dissolved in 10 ml of dimethylformamide is added dropwise. After stirring at room temperature for 1 hour, the reaction solution was cooled to -5°C, and a solution of 2.0 g of 1-nitro-1-propene dissolved in 5 ml of dimethylformamide was added dropwise over 10 minutes while stirring. After stirring at -5°C for 1 hour, 3 ml of acetic acid was added dropwise while maintaining the temperature at -5°C. It was poured into 100 ml of water and extracted with ether. The ether layer was washed successively with water and brine, and then dried over magnesium sulfate. After distilling off the ether, it was purified by silica gel column chromatography to obtain 1-nitro-2
-Methyl-3-acetyl-3-phenylthio-5
- 5.7 g of hexene were obtained as a pale yellow oil. Yield 81.2% Refractive index n 17 . 6 D 1.5572 NMR data ( CCl4 , internal standard TMS) ÎŽ1.04(d), 1.26(d)(3H) ÎŽ2.16(s), 2.30(s)(3H) ÎŽ2.3~2.5(2H, m ) ÎŽ2.8~3.0 (1H, m) ÎŽ4.1~4.5 (1H, m) ÎŽ5~6 (3H, m) ÎŽ7.3 (5H) Example 2 Prepare 1.176 g of sodium hydride in 150 ml of dimethylformamide and bring to room temperature. 3-phenylthio-5
- A solution prepared by dissolving 10.0 g of hexin-2-one in 15 ml of dimethylformamide is added dropwise. After stirring at room temperature for 1 hour, the reaction solution was cooled to -5°C, and a solution of 4.26 g of 1-nitro-1-propene dissolved in 10 ml of dimethylformamide was added dropwise over 15 minutes while stirring. After stirring at -5°C for 1 hour, 6 ml of acetic acid was added dropwise while maintaining the temperature at -5°C. The ether layer was poured into 100 ml of water and extracted with ether. The ether layer was washed with water and brine in that order. After drying over magnesium sulfate, the ether was distilled off and purified by silica gel column chromatography. 10.86 g of 3-acetyl-3-phenylthio-5-hexyne was obtained as a pale yellow oil. Yield 76.1% Refractive index n19 . 5 D 1.5660 NMR data (CCl 4 , internal standard TMS) Ύ1.11(d), 1.32(d) (3H) Ύ2.18(t) (1H) Ύ2.41(s) (3H) Ύ4.3~5.3 (m) (2H) Ύ7.21 (5H) Example 3 In the same manner as in Example 2, 3-phenylthio-
6-methyl- instead of 5-hexyn-2-one
3-phenylthio-5-hepten-2-one 4.68
g, and the amount of sodium hydride used is
0.50g, the amount of 1-nitro-1-propene used is
By the same operation as in Example 2 except that the amount was changed to 1.74 g, 4.62 g of 1-nitro-2,6-dimethyl-3-acetyl-3-phenylthio-5-heptene was obtained as a pale yellow oil. Yield 72.0% NMR data (CCl 4 , internal standard TMS) ή1.15(d), 1.40(d)(3H) ή1.70(m)(6H) ή2.30(s), 2.35(s)(3H ) ή2.55~2.65(d)(2H) ή2.70~3.00(m)(1H) ή4.20~4.40(m)(2H) ή7.20~7.40(m)(5H) Reference example 1 Sodium 0.086 Dissolve g in 5 ml of methanol and stir at -5℃ to dissolve 1-nitro-2-
Methyl-3-phenylthio-3-acetyl-5-
A solution prepared by dissolving 1.0 g of hexene in 3 ml of methanol was added dropwise. This liquid was added dropwise over 1 hour to a sulfuric acid-methanol mixture (8 ml of concentrated sulfuric acid, 30 ml of methanol) cooled to -5°C while stirring vigorously. After dropping, pour the reaction solution into 150ml of dichloromethane, then add to ice water.
It was washed sequentially with 100 ml of 2% caustic soda water and saline. After drying the dichloromethane layer with magnesium sulfate, the solvent was distilled off to obtain 0.98 g of pale yellow oil. This oil is almost pure from NMR, 1.1
-dimethoxy-2-methyl-3-phenylthio-
It was 3-acetyl-5-hexene. Refractive index n 17 . 7 D 1.5615 Reference example 2 0.98 g of 1,1-dimethoxy-2-methyl-3-phenylthio-8-acetyl-5-hexene
The mixture was poured into 10 ml of 1N hydrochloric acid and stirred vigorously at 55°C for 1.5 hours. Add 20 ml of ether to the reaction solution for extraction, wash the ether layer with deuterated water, water, and brine in sequence, and then dry over anhydrous magnesium sulfate. After distilling off the ether, purification was performed using silica gel column chromatography to obtain 0.60 g of 2-
Methyl-3-phenylthio-3-acetyl-5-
Hexene-1-al was obtained as a pale yellow oil. Yield 72.2% Refractive index n 17 . 7 D 1.5634 NMR data (CDCl 4 , internal standard TMS) Ύ1.20(d), 1.40(d) (3H) Ύ2.44(s, 3H) Ύ2.5~3.4(m, 3H) Ύ5~6(m , 3H) Ύ7.3 (s, 5H) Ύ9.5 (s), 9.8 (s) (1H) Reference example 3 Dissolve 0.174 g of sodium in 10 ml of methanol and stir at -5°C to dissolve 1-nitro-2-
Methyl-3-phenylthio-3-acetyl-5-
A solution of 2.0 g of hexine dissolved in 6 ml of methanol was added dropwise. This liquid was added dropwise over 30 minutes to a sulfuric acid-methanol mixture (16 ml of concentrated sulfuric acid, 60 ml of methanol) cooled to -5°C while stirring vigorously. After dropping, pour the reaction solution into 150ml of dichloromethane, then add 100ml of ice water.
ml, 2% soda carbonate, water, and saturated saline in this order. After drying the dichloromethane layer with magnesium sulfate, the solvent was distilled off to obtain 1.98 g of pale yellow oil. This oil is almost pure 1.1 from NMR.
-dimethoxy-2-methyl-3-phenylthio-
It was 3-acetyl-5-hexyne. Yield 94.3% Refractive index n19 . 5 D 1.5442 Reference example 4 1.90 g of 1,1-dimethoxy-2-methyl-3-phenylthio-3-acetyl-5-hexyne
The mixture was poured into 20 ml of % hydrochloric acid water and stirred vigorously at 55°C for 1.5 hours. Add 50ml of ether to the reaction solution and extract.
The ether layer is washed successively with heavy water, water, and brine, and then dried over magnesium sulfate. After distilling off the ether, the residue was purified by silica gel column chromatography to obtain 1.54 g of 2-methyl-3-phenylthio-3-acetyl-5-hexyn-1-al as a pale yellow oil. Yield 95.4% Refractive index n23 . 0 D 1.5728 NMR data (CCl 4 , internal standard TMS) Ύ1.15(d), 1.32(d) (3H) Ύ2.1(m) (1H) Ύ2.36(s), 2.41(s) (3H) Ύ2.52(d), 2.62(d)(2H) Ύ2.60-3.0(m)(1H) Ύ7.2(5H) Ύ9.50(s), 9.85(s)(1H) Reference example 5 Sodium 0.086 Dissolve g in 5 ml of methanol and stir at -5°C to dissolve 1-nitro-2-
Methyl-3-phenylthio-3-acetyl-5-
A solution prepared by dissolving 1.0 g of hexene in 3 ml of methanol was added dropwise. This liquid was added dropwise to 50 ml of a 20% sulfuric acid aqueous solution cooled to -5°C while stirring vigorously. After stirring at -5°C for 3 hours, the reaction solution was extracted with dichloromethane. Dichloromethane layer in ice water
It was washed successively with 100 ml, 2% caustic soda water, and saline. After drying the dichloromethane layer with magnesium sulfate, the solvent was distilled off. The obtained pale yellow oil was purified by silica gel chromatography,
0.54 g of 2-methyl-3-phenylthio-3-acetyl-5-hexen-1-al was obtained as a pale yellow oil. Yield 60.4% Refractive index n 19 D 1.5642 NMR (CDCl 4 , internal standard TMS) ÎŽ1.20(d), 1.40(d) (3H) ÎŽ2.44(s, 3H) ÎŽ2.5~3.4(m, 3H ) ÎŽ5~6 (m, 3H) ÎŽ7.3 (s, 5H) ÎŽ9.5 (s), 9.8 (s) (1H) Reference Example 6 Stir 0.044g of sodium dissolved in 8ml of absolute ethanol at room temperature. Meanwhile, a solution prepared by dissolving 0.50 g of 2-methyl-3-phenylthio-3-acetyl-5-hexen-1-al in 2 ml of absolute ethanol was added dropwise. After stirring at room temperature for 15 minutes,
After adding 5 ml of 5% hydrochloric acid, ethanol was distilled off under hydraulic pressure. After adding ether to the reaction solution for extraction, the ether layer was washed successively with water and brine, and dried over magnesium sulfate. After distilling off the ether, the residue was purified by silica gel column chromatography to obtain 0.20 g of arethrolone as a pale yellow oil. Yield 68.0% NMR (CDCl 4 , internal standard TMS) ÎŽ2.1 (s, 3H) ÎŽ2.35(d), 2.60(d) (2H) ÎŽ2.90 (d, 2H) ÎŽ3.1 (bs, 1H) ) ÎŽ4.5-6.0 (m, 4H) Reference Example 7 Dissolve 2.50 g of 2-methyl-3-phenylthio-3-acetylhexane-1-al in 20 ml of toluene, and add 20 mg of benzyltriethylammonium chloride and 3 g of 50% caustic potassium aqueous solution. was added and stirred at room temperature under a nitrogen stream for 5 hours. The reaction solution was poured into water, saturated with sodium chloride, and then extracted twice with ether. The ether layer was washed twice with brine and then dried over magnesium sulfate. After evaporation of the solvent, silica gel column chromatography was performed to obtain the pale yellow oil 2-methyl-3-
Propyl-cyclopent-2-en-4-one-
0.73 g of 1-ol was obtained. Yield 52% NMR (CCl 4 , internal standard TMS) ÎŽ0.93 (t, 3H) ÎŽ1.98 (s, 3H) ÎŽ2~3 (m, 4H) ÎŽ4.43 (d, 1H)

Claims (1)

【特蚱請求の範囲】  䞀般匏 〔匏䞭、R1は【匏】ここにR4は氎玠原 子、䜎玚アルキル基たたはハロゲン原子を衚わ
す。を衚わし、R2は䜎玚アルキル基、䜎玚アル
ケニル基たたは䜎玚アルキニル基を衚わす。R3
は氎玠原子たたは䜎玚アルキル基を衚わす。〕 で瀺されるニトロ化合物。  䞀般匏 〔匏䞭、R1は【匏】ここにR4は氎玠原 子、䜎玚アルキル基たたはハロゲン原子を衚わ
す。を衚わし、R2は䜎玚アルキル基、䜎玚アル
ケニル基たたは䜎玚アルキニル基を衚わす。〕 で瀺される化合物を塩基の存圚䞋、䞀般匏 R3−CHCH−NO2 匏䞭、R3は氎玠原子たたは䜎玚アルキル基を衚
わす。 で瀺されるニトロオレフむンずを反応させるこず
を特城ずする䞀般匏 匏䞭、R1、R2およびR3は前述ず同じ意味を有す
る。 で瀺されるニトロ化合物の補造方法。
[Claims] 1. General formula [In the formula, R 1 represents the formula (herein, R 4 represents a hydrogen atom, a lower alkyl group, or a halogen atom], and R 2 represents a lower alkyl group, a lower alkenyl group, or a lower alkynyl group. R3
represents a hydrogen atom or a lower alkyl group. ] A nitro compound represented by 2 General formula [In the formula, R 1 represents the formula (herein, R 4 represents a hydrogen atom, a lower alkyl group, or a halogen atom], and R 2 represents a lower alkyl group, a lower alkenyl group, or a lower alkynyl group. ] The compound represented by is reacted with a nitroolefin represented by the general formula R 3 -CH=CH-NO 2 (wherein R 3 represents a hydrogen atom or a lower alkyl group) in the presence of a base. Featured general formula (In the formula, R 1 , R 2 and R 3 have the same meanings as above.) A method for producing a nitro compound represented by the following.
JP5100879A 1979-04-24 1979-04-24 Novel nitro compound and its preparation Granted JPS55143963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5100879A JPS55143963A (en) 1979-04-24 1979-04-24 Novel nitro compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5100879A JPS55143963A (en) 1979-04-24 1979-04-24 Novel nitro compound and its preparation

Publications (2)

Publication Number Publication Date
JPS55143963A JPS55143963A (en) 1980-11-10
JPS6228782B2 true JPS6228782B2 (en) 1987-06-23

Family

ID=12874740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5100879A Granted JPS55143963A (en) 1979-04-24 1979-04-24 Novel nitro compound and its preparation

Country Status (1)

Country Link
JP (1) JPS55143963A (en)

Also Published As

Publication number Publication date
JPS55143963A (en) 1980-11-10

Similar Documents

Publication Publication Date Title
JPH05213838A (en) Preparation of fluoxetine
JPS606332B2 (en) Method for producing a carboxylic acid or sulfinic acid derivative having a perfluoroalkyl group
CA1328116C (en) Process for the preparation of bronopol
FR2470758A1 (en) METHOD FOR FIXING ALKYL GROUPS ON A CARBONIC CHAIN CARRYING A FUNCTIONAL GROUP
JPS6228781B2 (en)
JPS6228782B2 (en)
JPS6213935B2 (en)
JPS6228780B2 (en)
JPS629098B2 (en)
JPH0525078A (en) Production of substituted acetoaldehyde
JPH0696564B2 (en) α- (ω-hydroxyalkyl) furfuryl alcohol and process for producing the same
KR100195888B1 (en) Process for producing d,l-3-methyl-cyclopentadecan-1-one
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
JPH0465065B2 (en)
JPH0243732B2 (en) SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO
JPH06104654B2 (en) Optically active glycerol derivative
JPH0243733B2 (en) SHINKINANITOROKAGOBUTSUOYOBISONOSEIZOHOHO
JPS6231700B2 (en)
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JPH0316339B2 (en)
KR100275039B1 (en) A method for producing cyclopentadec-2-enone for synthesis of mouscone
JP2973546B2 (en) Optically active 4-benzoyloxymethyl-2-oxazolidinone and method for producing the same
JP2642680B2 (en) Reduction of β-ketoester
JPS6314696B2 (en)
FR2487338A1 (en) 4:methoxyethyl phenol prodn. from a 4:alkoxyphenyl bromide - and a methoxy aldehyde, nitrile or ester, used as intermediate for the cardiovascular agent metoprolol