JPS62287556A - Axis-aligning method for charged beam - Google Patents

Axis-aligning method for charged beam

Info

Publication number
JPS62287556A
JPS62287556A JP12916686A JP12916686A JPS62287556A JP S62287556 A JPS62287556 A JP S62287556A JP 12916686 A JP12916686 A JP 12916686A JP 12916686 A JP12916686 A JP 12916686A JP S62287556 A JPS62287556 A JP S62287556A
Authority
JP
Japan
Prior art keywords
coil
axis
aperture
alignment
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12916686A
Other languages
Japanese (ja)
Inventor
Yoji Ogawa
洋司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12916686A priority Critical patent/JPS62287556A/en
Publication of JPS62287556A publication Critical patent/JPS62287556A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform beam axis alignment with a few times of scanning, by detecting such a part as different in intensity or quantity of a beam by means of the scanning, and estimating an exciting quantity when the beam aligns its axis to an aperture hole, from the exciting quantity of an axis-aligning coil at that time. CONSTITUTION:An exciting quantity of a Y coil of an axis-aligning coil 11 is fixed, and synchronizing with scanning of an X coil of the coil 11, a reflected electron signal out of a limited aperture mask 12 is detected by a detector 13. Here, an X coil exciting quantity is set to a middle point Xc of detection signals Xa and Xb to be secured when a beam is scanned in an X direction so as to traverse a V-shaped groove 15 on the mask 15, scanning the Y coil of the coil 11, and the Y coil is set to a mid point Yf likewise. In succession, again scanning the X coil, the X coil is set a mid point X1. With suchlike operation repeated several times, beam axis-alignment to a mask aperture 14 is performable.

Description

【発明の詳細な説明】 1 発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は、荷電ビーム描画装置に係り、特に荷電ビーム
の軸合せ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a charged beam lithography apparatus, and particularly to a method for aligning the axis of a charged beam.

(従来技術) 近年、超LSI等の倣細で且つ高品度のパターンを形成
する装置として、電子ビーム描画装置が用いられている
。電子ビーム描画装置の内で、特に可変寸法ビーム方式
のものは、高精度で且つ高スループツトの描画が可能で
ある。このため、光で転写することが不可能な0.5〔
μm〕以下の設計ルールの超LSIパターンを、ウェハ
上に直接描画する装置として適している。
(Prior Art) In recent years, electron beam lithography devices have been used as devices for forming fine, high-quality patterns for VLSIs and the like. Among electron beam lithography apparatuses, those using a variable beam beam type are particularly capable of performing lithography with high precision and high throughput. For this reason, it is impossible to transfer with light.
It is suitable as an apparatus for directly drawing a VLSI pattern with a design rule of [μm] or less on a wafer.

ところで、この種の装置では高精度なパターン描画を行
うために、電子ビームと各種レンズ及び各種偏向器との
軸合せが必要となる。
By the way, in this type of apparatus, in order to draw a pattern with high precision, it is necessary to align the electron beam with various lenses and various deflectors.

軸合せを行う方法としては、通常小さな円形アパーチャ
を有する制限アパーチャマスクを、アパーチャ中心がレ
ンズあるいは偏向器の軸と一致するようにレンズ内又は
レンズあるいは偏向器の近傍に設置し、軸合せ用コイル
によりビームを上記アパーチャマスク上で走査し、該マ
スクから反射したビームやマスクを通過したビームある
いはマスクへ流入するビームの強度もしくは量を検出し
て、その強度あるいは量が最大あるいは最小となるよう
軸合せ用コイルの励磁を調整し、で行っている。射5図
はこのような軸合せ方法の一例を説明する図で、軸合せ
コイル21によりビーム20をアパーチャマスク22上
で走査し、マスク22上で反射したビームを検出器23
で検出して、反射したビームの強度が最小になるよう軸
合せコイル21の励磁を調整することによって、ビーム
の軸合せを行うことができる。
Alignment is accomplished by placing a limited aperture mask, usually with a small circular aperture, in or near the lens or deflector so that the center of the aperture coincides with the axis of the lens or deflector, and using an alignment coil. The beam is scanned over the aperture mask, the intensity or amount of the beam reflected from the mask, the beam passing through the mask, or the beam flowing into the mask is detected, and the axis is adjusted so that the intensity or amount is maximized or minimized. This is done by adjusting the excitation of the matching coil. FIG. 5 is a diagram illustrating an example of such an alignment method, in which a beam 20 is scanned over an aperture mask 22 by an alignment coil 21, and the beam reflected on the mask 22 is sent to a detector 23.
The beam can be aligned by detecting the reflected beam and adjusting the excitation of the alignment coil 21 so that the intensity of the reflected beam is minimized.

上記のような方法でビームの軸合せを行う時、ビームの
軸ズレ量が小さい場合には軸合せコイル21の走査する
範囲が狭くても、反射ビームの強度(′M)が最小にな
る点あるいは透過したビームの強度(量)が最大になる
点を容易jこ見出すことができるが、軸ズレ量が大きい
場合には第6図に示す如くマ) IJクス状あるいは第
7図に示す如くスパイラル状に広範囲を走査しなければ
前記最大点あるいは最小点を見出すことができず、ビー
ムの軸合せに時間を要するようになる。特に電子光学系
の構成上クロスオーバの近傍に制限アパーチャマスクを
配置する場合には、ビーム径、アパーチャ径共に小さく
なるので、相対的に軸ズレ量が大きくなり、ビームの軸
合せに多大の時間を要する問題点があった。
When aligning the beam axis using the method described above, if the amount of beam axis deviation is small, even if the range scanned by the alignment coil 21 is narrow, the intensity ('M) of the reflected beam will be the minimum point. Alternatively, it is possible to easily find the point where the intensity (amount) of the transmitted beam is maximum, but if the amount of axis deviation is large, it will appear in the shape of an IJ square as shown in Figure 6 or as shown in Figure 7. Unless a wide area is scanned in a spiral manner, the maximum or minimum point cannot be found, and it takes time to align the beam axis. In particular, when a limiting aperture mask is placed near the crossover due to the configuration of the electron optical system, both the beam diameter and the aperture diameter become small, resulting in a relatively large amount of axis misalignment, and it takes a lot of time to align the beam axis. There was a problem that required

(発明が解決しようとする問題点) 本発明は上記事情を考慮してなされたもので、その目的
とするところは、短時間にかつ容易に荷電ビームの軸合
せを行い得る荷電ビームの軸合せ用アパーチャマスク及
び荷電ビームの軸合せ方法を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the above circumstances, and its purpose is to provide a method for aligning the axis of a charged beam so that the axis of the charged beam can be easily aligned in a short time. An object of the present invention is to provide an aperture mask for use in the present invention and a method for aligning the axis of a charged beam.

〔発明の構成〕[Structure of the invention]

C問題点を解決するための手段) 本発明においてアパーチャマスクはアパーチャ孔を中心
とした円周上の部分の反射ビームあるいは透過ビームの
強度式たは量が他の部分と異なっにおり、前記ビームの
強度あるいは量が異なる部分を走査によって検出し、そ
の時の軸合せ用コイルの励磁量からビームがアパーチャ
孔に軸合せされた時の励磁量を推定することにより、少
数回の走査でビーム軸合せを可能としたものである。
Means for Solving Problem C) In the present invention, the aperture mask has a part on the circumference centered around the aperture hole whose intensity formula or amount of reflected beam or transmitted beam is different from other parts, and the beam The beam alignment can be performed in a small number of scans by detecting areas where the intensity or amount of the beam differs by scanning, and estimating the amount of excitation when the beam is aligned with the aperture hole from the amount of excitation of the alignment coil at that time. This made it possible.

(作用) 本発明によれば、制限アパーチャ上を数回走査すること
により、ビームを制限アパーチャに軸合せすることがで
き、小範囲を走査する微調を併用することにより、短時
間で高精度のビームの軸合せが実現できるという効果が
得られる。
(Function) According to the present invention, by scanning the limiting aperture several times, the beam can be aligned with the limiting aperture, and by using fine adjustment that scans a small area, high precision can be achieved in a short time. This has the effect that beam alignment can be achieved.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明一実施例におけるビーム軸合せ方法を説
明する模式図で、11は軸合せコイル、12は制限アパ
ーチャマスク、13は検出器である。第2図(a)は第
1図の制限アパーチャマスク12の平面図、同図(bl
は断面図で、アパーチャマスク12はマスク孔14を中
心とした円周上にV字溝15を有している。
FIG. 1 is a schematic diagram illustrating a beam alignment method in an embodiment of the present invention, in which 11 is an alignment coil, 12 is a limiting aperture mask, and 13 is a detector. FIG. 2(a) is a plan view of the limiting aperture mask 12 shown in FIG.
1 is a cross-sectional view, and the aperture mask 12 has a V-shaped groove 15 on the circumference around the mask hole 14. FIG.

次に本実施例における軸合せ方法について説明する。ま
ず、軸合せコイル11のXコイルの励磁量を固定して、
軸合せコイル11のXコイルの走査に同期して制限アパ
ーチャマスク12からの反射電子信号を検出器13によ
り検出する。ここで、第3図(a)に示す如く制限アパ
ーチャマスク12上のV字溝15を横切るようにビーム
をX方向に走査した時得られる検出信号は同図(b)に
示す如くなる。xA、 x、は各々V字溝15のX座標
に対応する。
Next, the alignment method in this embodiment will be explained. First, fix the amount of excitation of the X coil of the alignment coil 11,
A reflected electron signal from the limiting aperture mask 12 is detected by a detector 13 in synchronization with the scanning of the X coil of the alignment coil 11. Here, when the beam is scanned in the X direction so as to cross the V-shaped groove 15 on the limiting aperture mask 12 as shown in FIG. 3(a), the detection signal obtained is as shown in FIG. 3(b). xA and x correspond to the X coordinate of the V-shaped groove 15, respectively.

次にxA、 x、の中点〜にXコイルの励磁量を設定し
、軸合せコイル】1のXコイルを走査し、V字溝15の
y座標チ、汽を検出して、Xコイルを中点座標y、に設
定する。続いて再びXコイルを走査してV字溝15の座
標凡、xHを検出し、Xコイルを中点座標X1に設定す
る。このような操作を数回繰返すことによりマスク孔1
4に軸合せすることが可能となる。さらにこの後マスク
孔14の周辺の小範囲の領域を梢密に走査して、検出信
号が最小となる点に軸合せコイル11の励磁を設定する
こきにより、アパーチャ中心に精度良く軸合せすること
ができる。このように本発明によれば少い走査で短時間
に、精度良くビームの軸合せができる。
Next, set the excitation amount of the X coil to the midpoint of xA, Set the midpoint coordinate y. Subsequently, the X coil is scanned again to detect the coordinates xH of the V-shaped groove 15, and the X coil is set at the midpoint coordinate X1. By repeating this operation several times, mask hole 1
It becomes possible to align the axis to 4. Furthermore, after this, a small area around the mask hole 14 is closely scanned, and the excitation of the alignment coil 11 is set at the point where the detection signal is the minimum, thereby aligning the axis with the aperture center with high precision. Can be done. As described above, according to the present invention, beam alignment can be performed with high accuracy in a short time and with a small number of scans.

第4図は本発明の別の実施例の軸合せ方法を説明する模
式図で、図中第1図と同一部分には同一符号を付してそ
の説明は省略する。第5図は第4図の制限アバ−千ヤマ
スク12の平面図で、アパーチャマスク12はマスク孔
】3を中心とした円周上に小円孔群・15を有している
。本実施例の場合には検出器13はアパーチャマスク1
2からの透過電子信号を検出する点が第1図〜第2図の
第1の実施例と異っている。軸合せ方法は透過電子信号
を用いる点を除き第1の実施例と同様なので詳しい説明
は省略する。
FIG. 4 is a schematic diagram illustrating an axis alignment method according to another embodiment of the present invention, in which the same parts as in FIG. FIG. 5 is a plan view of the limited aperture mask 12 shown in FIG. 4, and the aperture mask 12 has a group of small circular holes 15 on the circumference centered on the mask hole ]3. In this embodiment, the detector 13 is the aperture mask 1
This embodiment differs from the first embodiment shown in FIGS. 1 and 2 in that the transmitted electron signal from 2 is detected. The alignment method is the same as in the first embodiment except that a transmission electron signal is used, so detailed explanation will be omitted.

本発明に用いる制限アパーチャマスクは上述の実施例に
限定されるものではなく、例えばV字溝の代りに円周状
の突起を有するアパーチャマスクを用いるなどビームの
反射あるいは透過が変化する材料、構造とすることによ
って同様の作用効果を持たせることができる。
The limited aperture mask used in the present invention is not limited to the above-mentioned embodiments; for example, an aperture mask having circumferential protrusions is used instead of a V-shaped groove, and materials and structures that change the reflection or transmission of the beam are used. By doing so, similar effects can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、短時間で容易に高精
度なビームの軸合せができる効果が得られる。
As described above, according to the present invention, the effect of easily and highly accurate beam alignment can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための模式図、第
2図はアパーチャ構造を示す図、第3図は本発明の詳細
な説明するための図、第4図は7図は従来の走査方式を
示す説明図である。 】1・・・軸合せコイル、 12・・・制限アパーチャマスク、 】3・・・検出器。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第1図 第2図 第3図 第4図
FIG. 1 is a schematic diagram for explaining one embodiment of the present invention, FIG. 2 is a diagram showing an aperture structure, FIG. 3 is a diagram for detailed explanation of the present invention, FIG. FIG. 2 is an explanatory diagram showing a conventional scanning method. ]1... Alignment coil, 12... Limiting aperture mask, ]3... Detector. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 荷電ビーム放射源から放射される荷電ビームを試料面上
に集束制御する荷電ビーム描画装置における荷電ビーム
の軸合せ方法において、荷電ビームを軸合せしようとす
る軸合せ用アパーチャの周辺にビームの反射強度あるい
は反射量または透過強度あるいは透過量の異なる部分を
前記軸合せ用アパーチャを中心とした円周上に設けたア
パーチャマスクと、このアパーチャマスクより前記ビー
ム放射源側に配置され、ビームを上記アパーチャ上で走
査する軸合せ用コイルを用いて、前記アパーチャマスク
上のビームの反射強度あるいは反射量または透過強度あ
るいは透過量の異なる部分の位置を測定し、この測定さ
れた位置から軸合せ用アパーチャの位置を求め、前記軸
合せ用コイルでビームを前記求められたアパーチャ位置
に軸合せを行う荷電ビームの軸合せ方法。
In a charged beam alignment method in a charged beam lithography system that focuses and controls a charged beam emitted from a charged beam radiation source onto a sample surface, the reflected intensity of the beam is reduced around the alignment aperture where the charged beam is to be aligned. Alternatively, an aperture mask having portions with different reflection amounts, transmission intensities, or transmission amounts on a circumference centered on the alignment aperture, and an aperture mask disposed closer to the beam radiation source than the aperture mask, directing the beam onto the aperture. Using an alignment coil that scans at A method for aligning a charged beam by determining the axis of the charged beam and aligning the axis of the beam to the determined aperture position using the alignment coil.
JP12916686A 1986-06-05 1986-06-05 Axis-aligning method for charged beam Pending JPS62287556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916686A JPS62287556A (en) 1986-06-05 1986-06-05 Axis-aligning method for charged beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916686A JPS62287556A (en) 1986-06-05 1986-06-05 Axis-aligning method for charged beam

Publications (1)

Publication Number Publication Date
JPS62287556A true JPS62287556A (en) 1987-12-14

Family

ID=15002772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916686A Pending JPS62287556A (en) 1986-06-05 1986-06-05 Axis-aligning method for charged beam

Country Status (1)

Country Link
JP (1) JPS62287556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349021A (en) * 1999-04-13 2000-12-15 Internatl Business Mach Corp <Ibm> Electron beam lithography system
WO2016199738A1 (en) * 2015-06-08 2016-12-15 株式会社ニコン Charged particle beam exposure apparatus and device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349021A (en) * 1999-04-13 2000-12-15 Internatl Business Mach Corp <Ibm> Electron beam lithography system
WO2016199738A1 (en) * 2015-06-08 2016-12-15 株式会社ニコン Charged particle beam exposure apparatus and device manufacturing method
EP3306646A4 (en) * 2015-06-08 2019-01-23 Nikon Corporation Charged particle beam exposure apparatus and device manufacturing method
US10593514B2 (en) 2015-06-08 2020-03-17 Nikon Corporation Charged particle beam irradiation apparatus and device manufacturing method
TWI712864B (en) * 2015-06-08 2020-12-11 日商尼康股份有限公司 Charged particle beam irradiation apparatus

Similar Documents

Publication Publication Date Title
US4677301A (en) Alignment apparatus
KR100669846B1 (en) Scanning method and system for inspecting anomalies on surface
US4167677A (en) Optical device for the alignment of two superimposed objects
US4070116A (en) Gap measuring device for defining the distance between two or more surfaces
US4723221A (en) Method for manufacturing semiconductor device and apparatus therefor
US4566795A (en) Alignment apparatus
US20020155356A1 (en) Mask for measuring optical aberration and method of measuring optical aberration
US4785187A (en) Alignment device
KR19980081185A (en) Multi-detector alignment system for photolithography
JPH0712746A (en) Method for determining position of scanning beam
CN102043352A (en) Focusing and leveling detection device
JP2001202912A (en) Method of aligning opening in a charged particle beam system, having optical axis
US5321493A (en) Apparatus and method for evaluating a projection lens
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JPS62287556A (en) Axis-aligning method for charged beam
JPH0652650B2 (en) Alignment method of charged beam
JP2631725B2 (en) Particle size measurement method using interference pattern
JPH0565020B2 (en)
JPS5926883B2 (en) Edge detection device
JPH0643111A (en) Inspecting apparatus for defect
JPS6352766B2 (en)
JPS58106746A (en) Axis alignment process of electron lens
JPH0739955B2 (en) Surface displacement detector
JPH1012531A (en) Aligner
JPS63177004A (en) Method for detecting positional shift of mask and wafer