JPS62287245A - Method for photoprocessing polycondensed aromatic high polymer - Google Patents

Method for photoprocessing polycondensed aromatic high polymer

Info

Publication number
JPS62287245A
JPS62287245A JP13035986A JP13035986A JPS62287245A JP S62287245 A JPS62287245 A JP S62287245A JP 13035986 A JP13035986 A JP 13035986A JP 13035986 A JP13035986 A JP 13035986A JP S62287245 A JPS62287245 A JP S62287245A
Authority
JP
Japan
Prior art keywords
polymer
aromatic
nucleus
photoprocessing
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13035986A
Other languages
Japanese (ja)
Other versions
JPH06857B2 (en
Inventor
Shozaburo Nagano
長野 昭三郎
Kazuaki Hotta
和明 堀田
Masahiro Hosoi
正広 細井
Takatoshi Kuratsuji
倉辻 孝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Teijin Ltd
Original Assignee
NEC Corp
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Teijin Ltd filed Critical NEC Corp
Priority to JP61130359A priority Critical patent/JPH06857B2/en
Publication of JPS62287245A publication Critical patent/JPS62287245A/en
Publication of JPH06857B2 publication Critical patent/JPH06857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To carry out the photoprocessing the titled polymer with good efficiency, without remaining any heat history by photoprocessing the high polymer contg. the polycondensed aromatic compd. in the greater part of skeleton of the main chain of the polymer with UV rays. CONSTITUTION:The high polymer contg. the polycondensed aromatic compd. such as a naphthalene nucleus or an anthracene nucleus in the greater part of the skeleton of the main chain of the polymer is photoprocessed by the UV rays. the polycondensed aromatic compd. constituting the skeleton of the polymer is the high molecular compd. which has the condensed aromatic compd. such as naphthalene and anthracene, etc., as a special feature. The titled polymer comprises the high polymer of the polycondensed aromatic compd. in which the aromatic nucleus such as naphthalene and anthracene, etc. has the substituent substd. with alkyl group (R group), and has the substituent capable of reducing an electron density of the aromatic nucleus such as the side chain R group substd. by a halogen atom, and also, has the substituent capable of controlling the rate of the photoprocessing by substituting said aromatic nucleus with one or more halogen atoms.

Description

【発明の詳細な説明】 3、発明の詳細な明 本発明は紫外線により光加工きれ易い重合体で、その主
鎖の大部分にナフタリン核又はアンスラセン核の如き少
くとも二つ以上の芳香核を有する多環芳香族高分子の光
加工に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention The present invention is a polymer that is easily photoprocessed by ultraviolet rays, and has at least two or more aromatic nuclei such as a naphthalene nucleus or anthracene nucleus in most of its main chain. The present invention relates to optical processing of polycyclic aromatic polymers.

本発明の方法は (1)紫外線を照射すると光酸化分解が容易に起る。The method of the invention is (1) Photooxidative decomposition easily occurs when exposed to ultraviolet light.

(2)紫外線レーザを照射すると効率的に光酸化分解が
起る。
(2) Photooxidative decomposition occurs efficiently when irradiated with ultraviolet laser.

但し、 (3)照射されなかった部分並びに光の届かなかったと
ころの重合体の諸物性は殆んど変化しない。
However, (3) the physical properties of the polymer in the areas that were not irradiated and the areas where the light did not reach hardly change.

などの特徴を有するため下記の種々の用途に利用できる
Because it has the following characteristics, it can be used for the various purposes listed below.

■ 半導体集積回路の作成、フォトエレクトロフォーミ
ング加工、金属板のケミカルエツチング、更に印刷配線
板の作成等の工程に使用される乾式エツチング用フォト
レジスト (芳香核の側鎖アルキル基にハロゲンが置換された重合
体を使ポしな場合には直接的エツチング用フォトレジス
ト)■ リードオンリーメモリー(Read 0nly
 Memory (以下ROMと略す))用有機高分子
基材 (潜在的に面に重重な方向にもメモリーを集積し得るR
OM)III  微細多孔膜用有機高分子素材(テープ
状のものとして感熱転写用リボンテープ素材(多数回使
用)等1又、小ざなものとして、酸素を透過し易いコン
タクトレンズ用素材等)更に光加工が特異で且つ容易な
ため層状加工が可能なほか熱履歴が残り難い状態で紫外
線により穴あけ、切断0表面加工等が実施出来るなどの
待(欺のある高分子成型物を関連業界に提供するもので
ある。
■ Photoresists for dry etching (in which the side chain alkyl group of the aromatic nucleus is substituted with halogen) used in processes such as the production of semiconductor integrated circuits, photoelectroforming processing, chemical etching of metal plates, and production of printed wiring boards. Direct etching photoresist (if polymer is not used) ■ Read-only memory (Read only memory)
Memory (hereinafter abbreviated as ROM)) organic polymer base material (R that can potentially integrate memory in a direction that overlaps the surface)
OM) III Organic polymer materials for microporous membranes (tape-like ribbon tape materials for thermal transfer (used multiple times), etc.; small items such as contact lens materials that are easily permeable to oxygen); Because the processing is unique and easy, it is possible to perform layered processing, and it is possible to perform hole-drilling with ultraviolet rays without leaving any thermal history, surface processing without cutting, and so on. It is something.

先行技術との関係 近年、フォトエツチング、光加工技術は急速に進歩し、
光線化への努力の他、工程の合理化についての提案が多
数行はれている。例えばエヌ・ウエノ等(Japane
se Journal of Applied Phy
sics Vol、20. No、100ctober
 L709−L712(1981))は波長180〜2
90nmO遠紫外線によるフォトレジストの乾式エツチ
ングを試み、現像工程が省略し得るとの極めて興味のあ
る報告をしている。
Relationship with prior art In recent years, photoetching and optical processing technologies have rapidly advanced.
In addition to efforts to use light beams, many proposals have been made to streamline the process. For example, N. Ueno, etc.
se Journal of Applied Phys.
sics Vol, 20. No, 100ctober
L709-L712 (1981)) has a wavelength of 180-2
They have attempted dry etching of photoresist using 90nmO far ultraviolet rays, and have made an extremely interesting report that the development step can be omitted.

フォトレジストとしてはポリ (メチルメタアクリレー
ト)、ポリ (メチルイソプロペニルケトン)、のほが
AZ−1350(ナフトキノン−〇−シアサイドで改良
されたノボラック樹脂)を用い放電灯としてはドイツチ
リウムディスチャージランプ(Deuterium D
ischarge Lamp)を用いている。
The photoresists used were poly (methyl methacrylate), poly (methyl isopropenyl ketone), and Nohoga AZ-1350 (novolac resin improved with naphthoquinone-〇-siaside), and the discharge lamp was a German thium discharge lamp ( Deuterium D
ischarge lamp).

又、220nmより短い波長の紫外線をポリマーに照射
して重合体を3発的にフォトエツチングする方法として
はインターナショナル・ビジネス・マシーンズ・コーポ
レーション(以下18M社と略す)のアール・スリニヴ
サン(R,5rinIvasan)により見出され有機
高分子を務発光分M (Ablative Photo
 Decoapostion)する有効な方法として広
く知られた著名な反応である。
Furthermore, as a method for three-shot photoetching of a polymer by irradiating the polymer with ultraviolet rays with a wavelength shorter than 220 nm, R. Srinivasan of International Business Machines Corporation (hereinafter abbreviated as 18M Company) Ablative Photo
This is a well-known reaction that is widely known as an effective method for decoaposition.

我国にも、 ・待公開 昭59−12945   ポリエステルを食
刻する方法・特公開 昭59−69931   ポリイ
ミドを食刻する方法・特公開 昭59−105638 
 レジスト材料の遠紫外パターン付は方法 がIBM社により出願されている。
Also in our country: ・Publication: 1980-12945 Method of etching polyester: Special publication 1987-69931 Method of etching polyimide: Special publication: 1987-105638
A method for deep ultraviolet patterning of resist materials has been filed by IBM.

然しなから、上記先行技術はいづれも290nmより短
い波長を有する遠紫外線のみを使用しており、有機高分
子としては脂肪族化合物、単環芳香族化合物のみを対象
とした光加工技術であることは明白である。
However, the above-mentioned prior art uses only deep ultraviolet light with a wavelength shorter than 290 nm, and is a photo-processing technology that targets only aliphatic compounds and monocyclic aromatic compounds as organic polymers. is obvious.

例えば前記IBM社待公開昭59−12945では高圧
水銀ランプ、キセノンランプ及び炭素アークランプは当
該誘発光分解反応には無効であり、使用し得ないことが
明記されている。
For example, the above-mentioned IBM Publication No. 59-12945 clearly states that high-pressure mercury lamps, xenon lamps, and carbon arc lamps are ineffective for the induced photolysis reaction and cannot be used.

又、アール・スリニヴサン等のその後の関速報文(例え
ばJ、Aa、Che職。
Also, the subsequent reports of R Srinivsan and others (e.g. J, Aa, Che positions).

Soc、19g4,106. 4288−4290+ 
 Journal  or  Polymer  5c
ience   Polym■■ Chemistry Edition、 Vol、22
.2601−2609(1984)等)でも研究の対象
となっている重合体はポリ (メチルメタアクリレート
)、ポリ(エチレンテレフタレート)、ベンゼンテトラ
カルボン酸と単環芳香族ジアミンとの縮重合ポリイミド
、単環芳香族系のポリカーボネート即ち、脂肪族。
Soc, 19g4,106. 4288-4290+
Journal or Polymer 5c
ience Polym■■ Chemistry Edition, Vol, 22
.. 2601-2609 (1984), etc.), the polymers that are the subject of research are poly(methyl methacrylate), poly(ethylene terephthalate), polycondensation polyimide of benzenetetracarboxylic acid and monocyclic aromatic diamine, and monocyclic Aromatic polycarbonate, i.e. aliphatic.

単環芳香族系の高分子に限られている。Limited to monocyclic aromatic polymers.

主として紫外線を利用するフォトレジスト材料として使
用されている高分子は O水溶性コロイド系フォトレジストく例えばポリ(ビニ
ールアルコール))0ポリ桂皮酸系フオトレジスト(例
えばボ1バビニール桂皮酸エステル))o111化ゴム
系フォトレジスト(単環芳香族ビスアジド)等もいずれ
も脂肪族及至は単環芳香族系の高分子である。
Polymers mainly used as photoresist materials that utilize ultraviolet light include O-water-soluble colloid photoresists (e.g., poly(vinyl alcohol)); Rubber photoresists (monocyclic aromatic bisazide) and the like are all aliphatic and monocyclic aromatic polymers.

キノン・ジアザイド系フォトレジストの中には多環芳香
族系の化合物が使用きれているが、これは光によってキ
ノン・シアサイドが窒素を放出する性質を利用したもの
であって本発明の如き高分子の紫外線による光酸化分解
とは本質的に異なる光反応を利用したフォトレジストで
ある。
Polycyclic aromatic compounds are used up in quinone/diazide photoresists, but this takes advantage of the property of quinone/diazide to release nitrogen when exposed to light, and polymers such as those of the present invention are used. This is a photoresist that utilizes a photoreaction that is essentially different from the photooxidative decomposition caused by ultraviolet rays.

又、感光性高分子の中には感光基としてアントラセン基
を含むポリマーもあるがいずれも光二量化型の感光性高
分子に関するものであり光分解型の高分子ではない。
Further, some photosensitive polymers contain anthracene groups as photosensitive groups, but all of them are photosensitive polymers of the photodimerizable type and are not photodegradable polymers.

脂肪族系、単環芳香族系の高分子と多環縮合芳香族系の
高分子とでは紫外線の波長の影響は異なるものとなる。
The influence of the wavelength of ultraviolet rays differs between aliphatic and monocyclic aromatic polymers and polycyclic fused aromatic polymers.

アール・スリニヴサンの報告 (Journal  o
f  Poly層er  5cience    Po
lymer  Chemistry  Editio■ Vol、22.2601−2609(1984))によ
ると脂肪族系高分子(例えばポリ(メチルメタアクリレ
ート))単環芳香族系高分子(例えばポリ(エチレンテ
レフタレート))は248nm、308nmの波長を有
するレーザによりエツチングされるが193nmより長
い波長の光を使用するとその誘発分解のメカニズムは光
分解よりも熱分解の占める割合が増大すると報告してい
る。このことは効率的にエツチングしようとすればする
ほど前記の高分子は熱分解によりエツチングされること
になり熱履歴の残らない状態での加工は困難になること
を示唆している。
Report by R Srinivsan (Journal o
f Poly layer er 5science Po
According to Lymer Chemistry Editorial Vol. 22.2601-2609 (1984)), aliphatic polymers (e.g. poly(methyl methacrylate)) and monocyclic aromatic polymers (e.g. poly(ethylene terephthalate)) have a wavelength of 248 nm and 308 nm. etching is carried out by a laser having a wavelength of 193 nm, but it has been reported that when light with a wavelength longer than 193 nm is used, the mechanism of induced decomposition is more dominated by thermal decomposition than by photodecomposition. This suggests that the more efficient etching is attempted, the more the polymer will be etched by thermal decomposition, making it more difficult to process without leaving any thermal history.

本発明者等は上記知見に基づぎ、放電灯からの紫外線、
380nmより短い波長を放射するレーザ等でも光加工
が容易な(熱加工の寄与の少ない)有機高分子について
鋭意探索した結果本発明に到達したものである。
Based on the above knowledge, the present inventors have discovered that ultraviolet rays from discharge lamps,
The present invention was achieved as a result of intensive searches for organic polymers that can be easily optically processed (with little contribution from thermal processing) even with lasers that emit wavelengths shorter than 380 nm.

即ち、本発明は重合体の大部分の1願の骨格にナフタリ
ン核又はアンスラセン核の如き多環縮合芳香族化合物を
含む高分子を紫外線により実質的に熱加工を伴わないで
効率良く光加工する方法である。
That is, the present invention efficiently photoprocesses a polymer containing a polycyclic condensed aromatic compound such as a naphthalene nucleus or anthracene nucleus in the skeleton of most of the polymer using ultraviolet rays without substantially involving thermal processing. It's a method.

重合体の骨格を構成する多環縮合芳香族化合物としては
ナフタリン、アンスラセン等の縮合芳香族化合物である
ことを特徴とする高分子化合物であり、又そのナフタリ
ン、アンスラセン、等の芳香核にアルキル基(以下R基
と略す)、側11R基にハロゲンが!l!換されたR基
、メトアルコキシ基、ヒドロキシ基、アニリン基、N(
R)2基、NHCOR基。
The polycyclic condensed aromatic compound constituting the polymer skeleton is a polymer compound characterized by being a condensed aromatic compound such as naphthalene, anthracene, etc., and an alkyl group in the aromatic nucleus of the naphthalene, anthracene, etc. (hereinafter abbreviated as R group), there is a halogen in the side 11R group! l! Substituted R group, methoalkoxy group, hydroxy group, aniline group, N(
R) 2 groups, NHCOR group.

等の芳香核に電子集積を起す1換基、又はニトロ基、ス
ルホン基。
A monosubstituent that causes electron accumulation in an aromatic nucleus such as, or a nitro group or a sulfone group.

502R基、シアノ基、アルデヒド基、COR基、カル
ボン酸基。
502R group, cyano group, aldehyde group, COR group, carboxylic acid group.

カルボン酸エステル基、NH3基、NR3基等の芳香核
の電子密度を減少させる置換基、のほかハロゲン基等を
一つ又は二つ以上置換することにより光加工速度を調節
した多環縮合芳香族化合物系の高分子も本発明の対象高
分子組成物の筒部に属する。又、その高分子組成物はラ
ジカル重合又は縮重合により合成されたものであっても
よく、結晶性高分子であっても非晶質重合体であっても
良い。結晶性高分子を未配向のまま使用したり、−軸、
二軸に配向された状態で光加工に供したり、最終製品と
して市場に提供しても伺等差支えはない。
Polycyclic fused aromatics whose photoprocessing speed is adjusted by substituting one or more halogen groups in addition to substituents that reduce the electron density of aromatic nuclei such as carboxylic acid ester groups, NH3 groups, and NR3 groups. Compound-based polymers also belong to the cylindrical portion of the target polymer composition of the present invention. Further, the polymer composition may be synthesized by radical polymerization or condensation polymerization, and may be a crystalline polymer or an amorphous polymer. Crystalline polymers can be used unoriented,
There is no problem in subjecting it to optical processing in a biaxially oriented state or providing it on the market as a final product.

更に又、その他のその重合体の物性を著しく屓はない範
囲で、又は付加価値を高めるため他の重合体と共重合、
ブレンド若しくはブロック重合したり、光増感剤、触媒
−例えば光増感剤として色素類、触媒として遷移金属の
塩、等−を添加しても本発明の範囲外であるとは主張し
得ない。
Furthermore, it may be copolymerized with other polymers to the extent that the physical properties of the polymer are not significantly affected or to increase added value.
It cannot be argued that blending or block polymerization, addition of photosensitizers, catalysts such as dyes as photosensitizers, salts of transition metals as catalysts, etc. are outside the scope of the present invention. .

光加工に用いる紫外線としては380nmより短い波長
を有する所謂紫外線であるが可視光を含む光、例えば太
陽光であっても同等差支えがない。
The ultraviolet rays used for optical processing are so-called ultraviolet rays having a wavelength shorter than 380 nm, but there is no problem with light including visible light, such as sunlight.

広い面積で光加工を実施したい場合には実施例1に示し
た如く太陽光(又はフレネルレンズ等で集光した)を利
用してもよい。
If it is desired to carry out optical processing over a wide area, sunlight (or light collected by a Fresnel lens or the like) may be used as shown in Example 1.

然し、工業的には放電灯(高圧水銀ランプ、キセノンラ
ンプ、炭素アーク、水銀共鳴ランプ等)を利用し、その
複数個を重ねて使用すれば比較的広い面積のものを効率
の高い状態で光加工することが出来る。
However, industrially, discharge lamps (high-pressure mercury lamps, xenon lamps, carbon arcs, mercury resonance lamps, etc.) are used, and by stacking multiple of them, a relatively large area can be illuminated with high efficiency. It can be processed.

この際、精密なパターンが必要ときれる場合には集積回
路プロセスで使用されているフォトマクス、ウェーハ露
光用アライナ−等の技術、プロセス、設備を援用するこ
とによりはマ同じ程度の精密な加工を行なうことが出来
る。
At this time, if a precise pattern is required, it is possible to achieve the same degree of precision processing by using technologies, processes, and equipment used in integrated circuit processes, such as photomax and wafer exposure aligners. It can be done.

集積回路プロセスで蓄積された技術を本発明の対象高分
子に適用した場合、著しく機能化された製品が作成し得
るのが本発明の工業的な効果を示す一例となる。即ち、
任意の形状のパターンを有するフォトマスクを使用すれ
ばその任意のパターンを本発明の対象高分子の表面上に
正確に転写することが出来るほか、射出成型や熱加工で
は加工物に熱履歴が茂った状態での製品しか製作し得な
いのに対し熱履歴が殆ど残らないような製品を得ること
が本発明により工業的に可能となる。
An example of the industrial effects of the present invention is that when the technology accumulated in the integrated circuit process is applied to the target polymer of the present invention, highly functionalized products can be created. That is,
If a photomask with a pattern of an arbitrary shape is used, the arbitrary pattern can be accurately transferred onto the surface of the target polymer of the present invention. In addition, injection molding and thermal processing can cause the workpiece to have a long thermal history. Whereas it is possible to manufacture products only in the same state, the present invention makes it possible industrially to obtain products that leave almost no thermal history.

更に、光加工を続けることにより任意のパターンを有す
る多数の穴を本発明の対象高分子の表面上に任意の深ざ
の加工、望むなら穿孔することも出来る。
Furthermore, by continuing the optical processing, a large number of holes having an arbitrary pattern can be formed on the surface of the target polymer of the present invention to an arbitrary depth, if desired.

高分子を利用した微細多孔膜としては、ボアテックス、
フロロボアー、ジュラガード、ミリポアー、ニュクリア
ボアー、(いずれも商標名)等が工事され関連業界で評
価され、その特性にふざわしい使われ方がなきれている
Microporous membranes using polymers include Voretex,
Products such as Fluorobor, Duraguard, Millipore, and Nuclear Boar (all trade names) have been developed and evaluated in related industries, and there is no shortage of ways to use them that are appropriate for their characteristics.

然し、これらの微細多孔膜は穴の形状を任意な形には出
来ない欠点を有する。然るに本発明の対象高分子と既存
技術の380nmより短い波長の光を発生する技術、そ
れを利用する技術、とを組合せることにより任意の形状
を有する微細多孔膜が作成し得ることになる。
However, these microporous membranes have the disadvantage that the holes cannot be formed into arbitrary shapes. However, by combining the target polymer of the present invention with existing technology that generates light with a wavelength shorter than 380 nm and technology that utilizes it, a microporous membrane having an arbitrary shape can be created.

現在、技術的には1′完成の域に到達しつつある紫外線
レーザ −−−−380nmより短い波長を有するレー
ザと本発明の対象高分子とを組合せて使用することも新
しい機能を本発明の対象高分子に効率的に賦与すること
となる。
Ultraviolet lasers, which are currently reaching the level of technological perfection, can also be used in combination with lasers with wavelengths shorter than 380 nm and the target polymer of the present invention. This results in efficient imparting to the target polymer.

これらのレーザとしてはN2(波長337nm) 、 
XeC1(波長308nm)、YAG (1/4波長(
4倍高調波) 256nm)、KrF (波長248n
m)、ArF(波長193nm)等のレーザがある。こ
れらのレーザ光をレンズ等の光学系を使用して集光し穴
あけ、切断等の光加工を行なう場合には熱履歴の殆ど残
らない重合体として本発明の対象高分子は極めて適切な
重合体となる。
These lasers include N2 (wavelength 337 nm),
XeC1 (wavelength 308 nm), YAG (1/4 wavelength (
4th harmonic) 256nm), KrF (wavelength 248nm)
There are lasers such as ArF (wavelength: 193 nm). When these laser beams are focused using an optical system such as a lens to perform optical processing such as drilling or cutting, the target polymer of the present invention is an extremely suitable polymer as it leaves almost no thermal history. becomes.

又、半導体レーザプリンターの開発中の技術、関連技術
−例えばポリゴンミラー、Fθレンズ等の光学系の技術
を援用することが出来れば単位面積当りに多数の微細孔
を有する多孔膜も本発明の対象高分子を利用して作るこ
とが出来よう。
Furthermore, if technology under development for semiconductor laser printers and related technology such as optical system technology such as polygon mirrors and Fθ lenses can be utilized, porous films having a large number of micropores per unit area are also covered by the present invention. It can be made using polymers.

逆に、レーザ光をレンズ等を利用して分散させたり出力
の小きな放電灯を利用したりして可能となると考えられ
る技術は対象高分子の表面を改質(例えば疎水性を親水
性に)することである。
On the other hand, technologies that are thought to be possible by dispersing laser light using lenses, etc. or using low-output discharge lamps modify the surface of the target polymer (for example, changing hydrophobicity to hydrophilicity). ).

紫外線レープ又は放電灯とフォトマスク並びに本発明の
対象高分子との別の組合せ方は複数枚のフォトマスクを
組合せることである。
Another way of combining an ultraviolet lamp or a discharge lamp with a photomask and the target polymer of the present invention is to combine a plurality of photomasks.

この場合には本発明の対象高分子は平面に垂直な方向に
、使用したフォトマスクの枚数に応じた複数の異なった
深どのエッチ孔、を与えることになる。
In this case, the target polymer of the present invention will have a plurality of etched holes of different depths in the direction perpendicular to the plane, depending on the number of photomasks used.

従って、若しも深さの異なるエッチ孔(メモリー)を読
み出す方法が開発されれば平面上のみでなく垂直方向に
もメモリーが記s!されたROM用基板として本発明対
象高分子が使用し得ることを暗示している。
Therefore, if a method to read out etched holes (memories) with different depths is developed, the memories can be written not only on the plane but also in the vertical direction! This suggests that the polymer targeted by the present invention can be used as a substrate for ROM.

次に光加工条件(温度、照射雰囲気)について触れる。Next, we will discuss optical processing conditions (temperature, irradiation atmosphere).

光加工温度は温度が高ければ光加工速度は著しく早くな
る。然し、一般に常温から100°Cの範囲であれば良
い。但し、加工され難い高分子の場合には更に昇温する
か、他の長い波長の光の照射−例えば3赤外線、赤外線
、炭酸ガスレーザ等を補助的に使用してもよい。
As for the optical processing temperature, the higher the temperature, the faster the optical processing speed becomes. However, in general, the temperature range may be from room temperature to 100°C. However, in the case of a polymer that is difficult to process, the temperature may be further increased, or other long wavelength light irradiation such as three infrared rays, infrared rays, carbon dioxide laser, etc. may be used supplementarily.

光加工はその速度を下げたい場合には窒素で薄められt
;空気中又は減圧下で実施してもよいが雰囲気ガス中の
酸素分圧が高い方が一般に加工速度は著しく早く、又加
圧下で照射を実施することも好ましい。
Optical processing can be diluted with nitrogen to reduce its speed.
; Although the irradiation may be carried out in air or under reduced pressure, the processing speed is generally much faster when the partial pressure of oxygen in the atmospheric gas is high, and it is also preferable to carry out the irradiation under pressure.

遠紫外線のみを利用する先行技術では照射雰囲気中の酸
素分圧を上げても加工速度が変わらないか又は著しく増
加しないと報告されている。
It has been reported that in the prior art utilizing only deep ultraviolet rays, the processing speed does not change or significantly increase even if the oxygen partial pressure in the irradiation atmosphere is increased.

(例えばエヌ・ウエノ等Japanese Journ
al or Applied Physics Vol
(For example, N Ueno etc. Japanese Journ
al or Applied Physics Vol.
.

20、Ho1O,0ctober L709−L712
.アール・スリニヴサン等Journal orPol
ymer 5cience  Po1y@er Che
mistry Edition Vol、22.260
1−2609(1984))。然るに、本発明の対象高
分子は酸素が著しくオゾンに変化しない範囲に於いて酸
素分圧を上げることにより加工速度は著しく増大する。
20,Ho1O,0ctober L709-L712
.. R Srinivsan et al. Journal orPol
ymer 5science Po1y@er Che
Mistry Edition Vol, 22.260
1-2609 (1984)). However, for the target polymer of the present invention, the processing speed can be significantly increased by increasing the oxygen partial pressure within a range where oxygen does not significantly change to ozone.

このことが本発明が先行技術とは異なった技術であるこ
との一つの証拠となし得る。
This can be taken as one evidence that the present invention is a technology different from the prior art.

又、光加工は、本発明の対象高分子を水溶液中−例えば
アルカリ水溶液中に浸漬して実施することも出来る。
Further, optical processing can also be carried out by immersing the target polymer of the present invention in an aqueous solution, for example, an alkaline aqueous solution.

以下、重合体の主鎖の骨格に縮合芳香族化合物を含む例
としてポリ(エチレンナフタレート−2・6)(以下P
EN−2・6と略す)、比較例としてポリ(エチレンテ
レフタレート)(以下PETと略す)を挙げて実施例と
して示す。
Hereinafter, poly(ethylene naphthalate-2.6) (hereinafter referred to as P
As a comparative example, poly(ethylene terephthalate) (hereinafter abbreviated as PET) will be shown as an example.

但し、以下の実施例は本発明の対象高分子組成物の請求
範囲を何等制限若しくは制約をするものでない。
However, the following examples do not in any way limit or restrict the claimed scope of the subject polymer composition of the present invention.

実施例−1太陽光による光加工 第1表に示した如き物性を有する屋外用銘柄の二軸延伸
PEN−2・6フイルム(100c++xlOOc++
x20.3 u lを、直径1cmの穴のあいた101
00cmX100のスレート板と、穴のおいていないス
レート板にてはさみ、これを垂直に保持した状態で穴の
あいた面を太陽光に晒した。
Example 1 Photoprocessing using sunlight A biaxially stretched PEN-2/6 film (100c++xlOOc++) of outdoor grade having the physical properties shown in Table 1 was
x20.3 ul in 101 with a 1cm diameter hole.
The sample was sandwiched between a slate plate measuring 0.00 cm x 100 cm and a slate plate without holes, and the surface with holes was exposed to sunlight while holding the plate vertically.

180日後にフィルム試料を取出し調べたところ、丁度
スレート板に穴のあいた部分が完全に穴があ−1でいた
。従って1日(日照時間)当り平均して1100Nのエ
ソチッグが行はれたことになる。
When the film sample was taken out and examined after 180 days, it was found that the hole was completely formed in the area where the hole had been made in the slate plate. Therefore, on average, 1100N of Esotig was used per day (sunshine hours).

第−表 屋外用PEN−2・6フイルムの物性(TD方
向の測定値) (注)以下特に断らない限り測定法は同じ方法、又単位
も同じ単位で表示。
Table - Physical properties of outdoor PEN-2 and 6 films (measured values in the TD direction) (Note) Unless otherwise specified, the measurement methods are the same and the units are expressed in the same units.

尚、TDはフィルムの巾方同、MDはフィルムの引出し
方向を示す。
Note that TD indicates the width of the film, and MD indicates the direction in which the film is pulled out.

比較のため、一般電気用銘柄の二軸延伸PEN−2・6
フイルムと二軸延伸PETフィルム(@内、T社製品)
を屋外に@露してテストした。光によりエチッングされ
なかった残ったフィルムの物性を調べるためフィルム全
面に太陽光が当るようにしてテストした。第二表に3ケ
月後にフィルムの厚ざの変化を調べた結果を示す。
For comparison, general electrical grade biaxially stretched PEN-2/6
Film and biaxially stretched PET film (@ inside, product of company T)
It was tested by exposing it outdoors. In order to examine the physical properties of the remaining film that was not etched by light, a test was conducted by exposing the entire surface of the film to sunlight. Table 2 shows the results of examining changes in film thickness after 3 months.

第三表にPEN−2・6フイルムのテスト前後の物性変
化、第四表にPETフィルムのテスト前後の物性変化を
各々示した。
Table 3 shows the changes in the physical properties of the PEN-2/6 film before and after the test, and Table 4 shows the changes in the physical properties of the PET film before and after the test.

第五表太陽光によるエツチングテスト PEN−2・6フイルムは二次転位点、軟化点共にPE
Tフィルムよりも各々約40°C1約100Cと高く耐
熱性は優れているにも拘らず太陽光によるエツチングの
速度は5倍以上速いことが判った。
Table 5 Etching test using sunlight PEN-2 and 6 films have PE in both secondary dislocation point and softening point.
It was found that although the heat resistance was higher than that of T film at about 40° C. and about 100° C., the etching speed by sunlight was more than 5 times faster.

第五表太陽光によるエツチングテスト (PEN−2・6フイルムの物性変化、MD力方向つt
W定)第四表太陽光によるエツチングテスト (PETフィルムの物性変化、MD力方向つき測定)第
五表、第四表に示されているようにPEN−2・6フイ
ルムは太陽光でエツチングされ易いにも拘らず光でエツ
チングされなかった部分の物性は著しく変化していない
Table 5: Etching test using sunlight (changes in physical properties of PEN-2 and 6 films, direction of MD force)
Table 4 Etching test by sunlight (physical property change of PET film, MD force direction measurement) As shown in Tables 5 and 4, PEN-2 and 6 films were etched by sunlight. Despite the ease of etching, the physical properties of the parts not etched by light did not change significantly.

従って二軸延伸PEN−2・6フイルムは、紫外線によ
りエッチされ易いにも拘わらず自然条件下での耐候性は
二軸延伸PETフィルムより優れた特性を示す。(参考
文献;アイ・オーウチ(I 、 0uchi)等。
Therefore, although the biaxially oriented PEN-2.6 film is easily etched by ultraviolet rays, its weather resistance under natural conditions is superior to that of the biaxially oriented PET film. (References: I Ouchi et al.

Proc、17thJapanCongr、間ater
、Res、、217(1974))実施例−2高圧水銀
灯による光加工 第五表に示した如き種々の厚ざの二軸延伸PEN−2・
6フイルムを高圧水銀灯(東芝社&! H400P 4
00W)で照射してフィルムの厚との変化を測定した。
Proc, 17thJapanCongr, Intermediate
, Res, 217 (1974)) Example-2 Optical processing using a high-pressure mercury lamp Biaxially stretched PEN-2 of various thicknesses as shown in Table 5
6 film with high pressure mercury lamp (Toshiba &! H400P 4
00W) and the change in film thickness was measured.

この高圧水銀灯は546nm、436nm、570nm
、402nm。
This high pressure mercury lamp has wavelengths of 546nm, 436nm, and 570nm.
, 402 nm.

313nm13020m、209nm、の波長の光を放
射し、その相対強度も上記の順で弱くなる特性を有する
ランプである。
This lamp emits light with wavelengths of 313 nm, 13020 m, and 209 nm, and its relative intensity also decreases in the above order.

水銀灯とフィルム試料との距離は20c1、雰囲気は空
気中、温度は50〜60’Cに保持した。
The distance between the mercury lamp and the film sample was 20c1, the atmosphere was air, and the temperature was maintained at 50-60'C.

第五表 高圧水銀灯照射によるエツチングテスト(二軸
延伸PEN−2・6フイルム) 工業的に平面に対し垂直方向で100OA程度の深とで
精密加工する技術としては精密射出成型法がありコンパ
クトデスク、ビディオデスクの製造法として既に確立し
、その製品は既に市場に多数出廻っている。
Table 5: Etching test by high-pressure mercury lamp irradiation (biaxially stretched PEN-2/6 film) Precision injection molding is an industrial technology for precision processing at a depth of about 100 OA in the direction perpendicular to the plane, such as compact desks, It has already been established as a manufacturing method for video desks, and many of its products are already on the market.

第五表に示したようにワット数400Wの放電灯では平
面に対し垂直方向のエツチング速度は160〜240に
/hrと遅いが、工業的にはキセノフシ3−トアーク・
ランプ、水銀ショートアーク・ランプ、遠紫外線ランプ
等では3〜6KW又はそれ以上の放電灯が市場に出廻っ
ている。従ってこれ等のランプの中から目的に応じ適当
なものを選定し温度、酸素分圧等の光加工条件を適切に
選べば経済的な加工条件でPEN−2・6を光加工する
ことが出来る。
As shown in Table 5, the etching rate perpendicular to the plane of a discharge lamp with a wattage of 400 W is as slow as 160 to 240/hr, but industrially
Among lamps, mercury short arc lamps, deep ultraviolet lamps, etc., discharge lamps of 3 to 6 kW or more are available on the market. Therefore, if you select an appropriate lamp from among these lamps depending on the purpose and appropriately select optical processing conditions such as temperature and oxygen partial pressure, it is possible to optically process PEN-2 and 6 under economical processing conditions. .

手続補正書 昭和62年9月9日Procedural amendment September 9, 1986

Claims (1)

【特許請求の範囲】[Claims] 重合体の主鎖の大部分の骨格に多環縮合芳香族化合物を
含む高分子を紫外線により光加工する方法
A method for photo-processing polymers containing polycyclic fused aromatic compounds in most of the main chain of the polymer using ultraviolet rays.
JP61130359A 1986-06-06 1986-06-06 Photoprocessing of polycyclic fused aromatic polymers Expired - Lifetime JPH06857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130359A JPH06857B2 (en) 1986-06-06 1986-06-06 Photoprocessing of polycyclic fused aromatic polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130359A JPH06857B2 (en) 1986-06-06 1986-06-06 Photoprocessing of polycyclic fused aromatic polymers

Publications (2)

Publication Number Publication Date
JPS62287245A true JPS62287245A (en) 1987-12-14
JPH06857B2 JPH06857B2 (en) 1994-01-05

Family

ID=15032493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130359A Expired - Lifetime JPH06857B2 (en) 1986-06-06 1986-06-06 Photoprocessing of polycyclic fused aromatic polymers

Country Status (1)

Country Link
JP (1) JPH06857B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948631A (en) * 1972-09-13 1974-05-11
JPS5643332A (en) * 1979-09-17 1981-04-22 Unitika Ltd Control of wettability of molding by light irradiation
JPS5978271A (en) * 1982-10-28 1984-05-07 Seiko Epson Corp Photochromic coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948631A (en) * 1972-09-13 1974-05-11
JPS5643332A (en) * 1979-09-17 1981-04-22 Unitika Ltd Control of wettability of molding by light irradiation
JPS5978271A (en) * 1982-10-28 1984-05-07 Seiko Epson Corp Photochromic coating composition

Also Published As

Publication number Publication date
JPH06857B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
EP1326138B1 (en) Negative photosensitive polyimide composition and method of forming image from the same
JP2935994B2 (en) Hydroxypolyimide and high temperature positive photoresist obtained therefrom.
US5175043A (en) Aromatic polymer molded article with modified surface condition and process for producing the same
US5487852A (en) Laser-machining polymers
US4649100A (en) Production of resist images, and a suitable dry film resist
DE60032943T2 (en) IMID-BENZOXAZOLPOLYKONDENSAT AND METHOD FOR THE PRODUCTION
US4267258A (en) Negative type deep ultraviolet resist
KR900008329A (en) Polyimide type positive photoresist
CA1176902A (en) Method for the manufacture of resist structures using short wave uv with a copolymer including chloro or cyano substituted acrylic derivative
JPH11202488A (en) Positive photosensitive polyimide composition and insulating film
JPH01284554A (en) Polyimide type negative photoresist containing 1, 2-disulfone and its use
JPS62287245A (en) Method for photoprocessing polycondensed aromatic high polymer
US4816383A (en) Method for forming fine patterns of conjugated polymers
US5104773A (en) Preparing highly thermoresistant relief structures
JPH0967421A (en) Functional organic material, functional organic resin composition, control of optical transparency and production of colored thin-film pattern
US5215869A (en) Process of forming a permanent yellow imaged light modulating film
GB2318579A (en) Glutarimide acrylic copolymers for photoresists
US4539288A (en) Process for the development of relief structures based on radiation-crosslinked polymeric precursors of polymers which are resistant to high temperature
KR101113037B1 (en) Positive type photosensitive resin composition
Masuhara et al. Non-linear photochemistry of polymer films: laser ablation of poly (n-vinylcarbazole)
US5215870A (en) Process of forming a permanent yellow imaged light modulating film
JP2575366B2 (en) Polyimide precursor composition and method of using the same
US5851728A (en) Three-component chemical amplified photoresist composition
JP2006350262A (en) Positive photosensitive polyimide composition and method for forming polyimide pattern using the same
US5061604A (en) Negative crystalline photoresists for UV photoimaging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term