JPS6228693A - 原子炉冷却系配管 - Google Patents

原子炉冷却系配管

Info

Publication number
JPS6228693A
JPS6228693A JP60167588A JP16758885A JPS6228693A JP S6228693 A JPS6228693 A JP S6228693A JP 60167588 A JP60167588 A JP 60167588A JP 16758885 A JP16758885 A JP 16758885A JP S6228693 A JPS6228693 A JP S6228693A
Authority
JP
Japan
Prior art keywords
temperature
heat
piping
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167588A
Other languages
English (en)
Inventor
正 藤井
隆平 川部
明彦 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60167588A priority Critical patent/JPS6228693A/ja
Publication of JPS6228693A publication Critical patent/JPS6228693A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の冷却系配管に係り、特にガス冷却型
原子炉に使用するのに好適な配管構造に関する。
〔発明の背景〕
従来、原子カプラント等で用いられる熱交換器の設計に
あたっては、伝熱管にピンホールが発生してプラグした
場合や、長期間の運転により伝熱管表面によごれが付着
する場合を想定し、予め10〜20%程度伝熱面積に余
裕をとっている。
仮に、熱交換を行う際、炉心を出て高温となり熱を与え
る側の流体を1次側、1次側から熱を与えらる側の流体
を2次側と呼ぶことにする。
定格運転状態で、1次側、2次側流体とも所定の流量、
入口温度で熱交換器に入ったとしたと、伝熱面積の余裕
がある分だけ、交換熱量が定格以上となり、1次側の熱
交換器出口温度が低下する。
1次側流体の温度が低下したため、炉心入口温度もそれ
に伴なって低下する。原子炉出力は一定であるので、炉
心出口温度、さらには熱交換器入口温度が低下し、定格
運転状態の温度レベルに達しないことになる。
これを防止するため、熱交換器の伝熱面積の余裕を吸収
する方法を検討する必要性がある。
代表的な伝熱面積の余裕の吸収方法としては、(1)1
次側流体の流量を減少させる、(2)2次側流体の温度
レベルを変え、対数平均温度差を小さくする方法等があ
る。
多目的高温ガス炉では、以下のような、熱交換器の伝熱
面積余裕の吸収方法を採用した例がある。
この例では高温ガス炉のプラント構成は、第10図に示
すように、炉心1.1次冷却系二重配管2.中間熱交換
器3.2次冷却系二重配管4、蒸気発生器5.1次ヘリ
ウム循環機6.2次ヘリウム循環機7から成る。これら
の機器は、炉心を中心に対称に配置され、A−Bの2ル
ープを構成する。第10図の例は一方のループである。
冷却材としては、1次系、2次系ともにヘリウムガスを
使用している。
中間熱交換器3の伝熱面積余裕を吸収するために、1次
系の流体の条件を固定し、°2次系の流量を増加させる
。その結果、2次系の入口温度を上昇させ、それに伴な
う蒸気発生器5の2次系リウム出口温度を上昇させる必
要がある。
また蒸気発生器5の伝熱面積余裕と、中間熱交換器3の
伝熱面積余裕の吸収方法の結果要求される、2次系リウ
ム出口温度上昇のため、蒸気発生器の中間部に出口ノズ
ル8を設け、2次ヘリウムの一部をバイパスさせる。蒸
気発生器の出口部からの2次ヘリウムと中間ノズルから
バイパスされた2次ヘリウムを、バイパス流量比を変え
て混合させることにより、交換熱量の増加および中間熱
交換器入口温度の低下を防止する方法が採用されている
しかし、二次ヘリウム系を無くし一次系ヘリウムガスを
直接水系と熱交換させるプラント構成を採用した場合に
は、水側温度は、圧力によって定められる飽和温度から
著しく異なった値としたことができないので、変更でき
る温度レベルの範囲。
すなわち交換熱量調節範囲が限られ、−次系の温度、流
量を定格状態にすることができない恐れがある。
また、−次系ヘリウムの温度は二次系ヘリウムの温度よ
りも高いので、高温側ヘリウムの一部を熱交換器をバイ
パスさせ低温ヘリウムと混ぜる方法を採用するには、ノ
ズル、流量調節バルブ等を前記公知例よりもさらに高温
に耐えるようにしなければならず、設計・製作は非常な
困難がともなう。
〔発明の目的〕
本発明の目的は、高温のヘリウムと比較的低温の水との
熱交換器のような著しく温度差のある熱交換器の伝熱面
積の余裕を吸収し、炉心入口での定格の温度・流量条件
を達成できる原子炉冷却系配管を提供することにある。
〔発明の概要〕
本発明の要点は、配管部において、温度差の大きい高温
の冷却材と低温の冷却材を熱交換させることで、熱交換
器を定格以下の温度で出た1次側冷却材を加熱し、炉心
入口において定格の温度・流量条件を調整する点にある
〔発明の実施例〕
以下、本発明の実施例を第1図〜第9図に基づいて説明
する。
従来、高温ガス炉においては、炉心出口冷却材温度が8
00〜1000℃と非常に高く、圧力も40kg/cd
程度と高いため、他のプラントのような一本の配管だけ
で、耐熱性、耐圧性を維持することが困難である。その
ため、第11図に示すような同心円状の二重配管を採用
している。
第11図は、第10図に示した多目的高温ガス実験炉で
採用が予定されている1次系二重配管2の縦断面図を表
わしたものである。同心円の内側から外側に向かって、
高温ヘリウムガス流路9、ライナー10、積層金属断熱
材11、仕切板12、繊維状断熱材13、内管14、高
温ヘリウムガス流路と逆方向に流れる低温ヘリウムガス
流路15、圧力管16.保温材17という構成である。
内管14より内側の構造物により、9oO℃前後のヘリ
ウムガス温度を保持し、低温のヘリウムガスで、内IW
14を冷却し、圧力管16により、約40kg/a&の
高圧を保持している。
この高温ガス炉の大きな特徴の一つである、二重配管構
造を利用した実施例1を、以下の第1図〜第5図を用い
て説明する。なお高温ヘリウムガス流路9、ライナー1
0.内管14、低温ヘリウムガス流路15、圧力管16
、保温材17は、従来のものと同一である。
実施例1の概略構造を、第1図の縦断面図、第1図のA
−Agにおける横断面を示す第2図により説明する。ま
ず、二重配管の全長の一部分に、ライナー1oと内管1
4の間の断熱材を削除して、その環状空間部を隔壁18
でもって仕切り、複数のセル19を設置する。各々のセ
ル19には、上下に配管20.21を、圧力管16と保
温材17を貫通するように配置して、セル19内に、液
体金属またはガスを注入できる構成とした。
この注入・注出用配管20.21の周囲に断熱材22を
巻き、二重配管外への熱損失を防止する。
また、低温ヘリウムガスが漏れないよう配管20.21
の圧力管16、及び内管14とのギャップを溶接構造と
した。さらに、配管20.21の先端部には、各々バル
ブ23.24が設けられ、セル19に注入される液体金
属、または不活性ガスの量を調節する。
第3図は、液体金属と、不活性ガスの配管系統を示した
もので、各セル19の注出用配管21は、配管25に統
合された後、液体金属側配管27と不活性ガス側配管3
3に分岐する。配管27は、液体金属タンク28に接続
し、さらにタンク28は配管29と接続し、配管31と
結合する。
同様に不活性ガス側も、配管33が、不活性ガスタンク
34と接続し、さらにタンク34は配管35と接続し、
配管31と結合する。
これらの配管27,29,33.35には、バルブ26
,30,32.36を設ける。このバルブ26,30,
32.36の開閉により、不活性ガスのガス圧を利用し
、液体金属または不活性ガスを、配管31へ導く。その
後分岐点から、各々のセル19に設けられた注入用配管
2oに分配されるというループ構成である。
なお、運転開始前は、ライナー1oと内管14が、冷却
系の圧力(約40 kg/d)で押しつぶされないよう
に、不活性ガスを各セル19内に冷却系以上の圧力で封
入しておく。
実施例1の動作を以下に説明する。
原子炉プラント等で用いられている熱交換器は、前述の
ように製作上伝熱面積の余裕をとっている。
そのため5次式で計算される交換熱量Qは、その余裕分
だけ、定格値を上回る6 Q=U−A−J’l        ・・・・・・・・
・(1)ご二で、U:熱貫流率(J/耐・s’C)A:
伝熱面積(rrl’) aT、:対数平均温度差(’C) を表わしている。よって、交換熱量Qを下げるためには
、熱貫流率Uまたは対数平均温度差J”1を小さくする
必要がある。
熱貫流率U、対数平均温度差ΔT、は、それぞれ次式で
与えられる。なお、この熱交換器は、2次側流体が伝熱
管内を流れる構造とした。
・・・・・・・・・(2) T1.、、−T2□ ・・・・・・・・・(3) ここで、h:流体の熱伝達率(J/r+(s’C)λ:
伝熱管の熱伝導率(J/ms℃) r:伝熱管の汚れ係数(rr? s ’C/ J )T
:流体の温度(’C) d、、do:伝熱管の内径、外径(m)を表わしている
。なお添字1,2は、1次側流体、2次側流体を、in
、outは、熱交換器入口部、熱交換器出口部を表わし
ている。
交換熱量Qが、定格値を上回ると、1次側の熱が過剰に
2次側へ与えられるため、1次側の熱交換器出口温度T
1++mtが定格値以下となる。
第10図に示すような高温ガス炉プラントでは、熱交換
された後のヘリウムガスは、ガス循環器6で断熱圧縮さ
れ、二重配管の外側の低温ヘリウムガス流路15を通り
炉心1へ導かれる。
よって、熱交換器出口部での、ヘリウムガス温度が低下
すると、断熱圧縮により数度の温度上昇はあるが、炉心
入口部でのヘリウムガス温度が低下する。
このため、本実施例1では、炉心入口部でのヘリウムガ
ス温度の低下を防止するため第4図に示すような計装制
御系を設置する。即ち、炉心入口温度T。arm 1m
 を熱電対により検出し、定格運転状態における設定温
度T、l、との差を判定し、冷却材の温度によってセル
19に液体金属を注入するための、バルブの開度を制御
する機構を設ける。
第5図は、セル19内に液体金属を注入する際の手順を
示している。
まず第4図に示した計装制御系により、炉心入口温度T
。wra 1+1 が設定温度T□、以下である場合は
、第3図の配管系統図に示した不活性ガス側バルブ32
.36を閉じる。そして、1番目のセル19のバルブ2
3.24を開けた後、液体金属側のバルブ26.30を
開ける。すると、不活性ガスの高い圧力により、タンク
28内の液体金属が押出され、配管29.31を通り、
セル注入用配管20からセル19内へ流入する。セル1
9内の不活性ガスが、完全に液体金属に置換された後は
、セル注出用バルブ24を閉じる。
このようにして、ライナー10と内管14の間の環状空
間に、熱伝導率が非常に良い液体金属を封入したセル1
9を構成する。
この二重配管は、内側を高温ヘリウムガスが、内側を低
温ヘリウムガスが流れる。対向流型の熱交換器と考える
ことができる。そこで、内管14とライナー10の環状
空間部を、不活性ガスから液体金属に置換することで、
内管14、セル19゜ライナー10で構成される伝熱管
の熱伝導率が上がり、高温ヘリウムガスの熱が低温ヘリ
ウムガスに与えられ、炉心入口温度が上昇することにな
る。
1番目のセル19内に液体金属を注入した後も、まだ炉
心入口温度が設定温度以下である場合は、2番目のセル
19についても、前述の操作と同様にして、液体金属を
注入する。この操作を繰返し、炉心入口温度が、設定温
度になるまで、次々にセル19内に液体金属を注入し、
配管部での交換熱量を増加させる。
一方、熱交換器の伝熱面積の余裕が小さくなってくると
、熱交換器出口部の1次側温度を定格値に近づく。しか
し二重配管内の、液体金属を注入した多数のセル19の
効果で、二重配管を出た後の炉心入口温度が逆に熱を与
えられすぎて、設定温度以上となる。その場合は、まず
液体金属側のバルブ30を閉じ、液体金属を注入してい
る最後のセル19の注入用バルブ24を開け、セル19
内の液体金属をタンク28へ戻す。それから、不活性ガ
ス側のバルブを開け、セル19内に不活性ガスを再注入
し、炉心入口温度を下げる。
液体金属が注入されていた最後のセル19に、不活性ガ
スを再注入した後も、炉心入口温度が設定温度以上であ
る場合は、その1つ前のセル19について、同様な操作
により、不活性ガスを再注入する。この操作を繰返し、
炉心入口温度が、設定温度になるまで、次々にセル19
内に不活性ガスを再注入し、配管部での交換熱量を減少
させる。
以上述べたように、実施例1によれば、液体金属を注入
したセル19の個数を変えることで、二重配管部におい
て高温ヘリウムガスと低温ヘリウムガスとの交換熱量を
制御する。その結果、熱交換器を出た1次側ヘリウムガ
スを加熱し、炉心入口部において定格の温度・流量条件
を達成できる。
また熱交換器入口温度が低下し、(3)式で定義した対
数平均温度差を小さくすることができ、熱交換器の交換
熱量を減少できる。
第6図、第7図に示す実施例2は、第1図〜第5図に示
した二重配管に適用した実施例1とは異なり、高温の冷
却材が流れる配管と低温の冷却材が流れる配管が分離し
ている冷却系配管に適用したものである。
実施例2の概略構造を、第6図の縦断面図、第6図のB
−B線における断面を示す第7図により説明する。
まず、高温の冷却材が流れる配938と、低温の冷却材
が流れる配管の一部分を、互いに平行に配置する。この
一対の配管37.38の間隙を隔壁18と支持材39に
より仕切り、複数のセル19を構成する。その後、一対
の配管37.38゜及びセル19の周囲に保温材17を
巻き、配管外部への熱損失を防止する。
なお各々のセル19の側面に設けた注入用配管20、注
出用配管21、配管20.21の先端部に設けたバルブ
23,24、さらに第3図に示した液体金属および不活
性ガスの注入・注出用配管系、第4図に示した計装制御
系は、前述の実施例1のものと同一である。
実施例2の動作は、前述の実施例1の動作と同様である
。即ち、第4図に示した計装制御系により、炉心入口温
度と、設定温度との大小を比較判定し、二本の配管37
.38の間隙に設けられたセル19内に、バルブ23の
開度を制御して液体金属を注入する。
熱伝導率の非常に良い液体金属が封入されたセル19を
介して、二本の配管を流れる冷却材は熱交換し、炉心入
口温度が上昇する。
このようにして計測される炉心−人口温度に応じて、液
体金属を注入したセル19の個数を変えることで、セル
19を介した高温の冷却材と低温の冷却材の交換熱量を
制御する。
その結果、熱交換器を定格以下の温度で出た1次側冷却
材を加熱し、炉心入口部において、定格の温度・流量条
件を達成できる。
また、熱交換器入口温度が低下するので、(3)式で定
義した対数平均温度差が減少し、熱交換器の交換熱量を
小さくすることができる。
第8図、第9図に示す実施例3は、第6図、第7図に示
した実施例2同様、高温の冷却材が流れる配管と低温の
冷却材が流れる配管の、一対の配管に適用したものであ
る。
実施例3の概略構造を、第8図の縦断面図、第8図のc
−c’線における断面図を示す第9図により説明する。
なお、高温の冷却材が流れる配管38、低温の冷却材が
流れる配管37、及び保温材17は、第6図、第7図に
示した実施例2と同一である。
本実施例3は1作動流体を注入できる複数のパイプ4o
を、上端部は低温側配管37、下端部は高温側配管38
に挿入したものである。そして一対の配管37.38、
及びパイプ4oの周囲を保温材40で断熱した構成であ
る。
゛各々のパイプ4oには、作動流体を注入、注出するた
め、側面に配管41.42を、保温材17を貫通するよ
うに配置する。さらに配管41゜42の先端部には、バ
ルブ43.44を設け、パイプ40内の作動流体の量を
調節する。
本実施例3の動作を以下に説明する。
熱交換器の伝熱面積に余裕があり、炉心入口温度が定格
以下である場合、第4図に示す実施例1と同様な計測制
御系を設け、計測された炉心入口温度と、設定温度との
大小を比較判定し、パイプ40の側面に設けたバルブ4
3の開度を制御し。
パイプ40内に作動流体を注入する。
パイプ4o内に注入する作動流体は、高温側配管38を
流れる冷却材温度以上で気化し、低温側配管37を流れ
る冷却材温度以下で凝縮する性質の流体を選択する。
従って注入され、バイブ4o白下端部にたまった作動流
体は、高温側配管38を流れる冷却材で加熱され、一部
が気化し上端部へ向かう。一方、パイプ4oの上端部は
、低温側配管37に挿入されており気化した作動流体は
、上端部で冷却され凝縮した後、パイプ40の内面をっ
たって下降する。
即ち、バイブ4o下端部で、高温の冷却材から気化熱を
奪い、上端部で凝縮する際、低温の冷却材に熱を与える
ことができる。
1番目のパイプ4oに作動流体を注入した後も、炉心入
口温度が設定温度以下である場合は、次のパイプに作動
流体を注入する。この操作を、炉心入口温度が、設定温
度になるまで繰返す。
一方、熱交換器の伝熱面積の余裕が小さくなった場合は
、パイプ40内の作動流体を、気化する温度が高い流体
と置換して、高温側の冷却材から低温側の冷却材への熱
の移動を抑制する。
このように、実施例3によれば、作動流体を封入したヒ
ートパイプ40の個数を変えることで。
配管部において、高温の冷却材と低温の冷却材との交換
熱量が制御できる。その結果、熱交換器の伝熱面積余裕
を吸収し、炉心入口部において定格の温度・流量条件を
達成できる。
〔発明の効果〕
本発明によれば、配管部において高温の冷却材と低温の
冷却材を、熱交換させることができるので、熱交換流体
間の温度差が著しい熱交換器の伝熱面積余裕を吸収し、
炉心入口において定格の温度・流量条件を達成できる。
【図面の簡単な説明】
第1図は、本発明の実施例1の配管部縦断面図、第2図
は、第1図のA−A線断面図、第3図は、実施例1にお
ける液体金属と不活性ガスの配管系統図、第4図は、実
施例1の計測制御系を示すブロック線図、第5図はセル
内に液体金属を注入。 注出させる際の手順を示すフローチャート、第6図は、
本発明の実施例2の配管部縦断面図、第7図は第6図の
B−B線断面図、第8図は1本発明の実施例3の配管部
縦断面図、第9図は第8図のC−C線断面図、第10図
は、多目的高温ガス炉におけるプラント構成図、第11
図は多目的高温ガス炉で使用される二重配管の断面図で
ある。

Claims (1)

  1. 【特許請求の範囲】 1、炉心で生じた熱を受けて高温化した第1流体を通す
    第1配管と、前記熱を熱交換器で放出して低温化した第
    2流体を通す第2配管とを冷却系配管として備える原子
    炉において、前記第1と第2の両配管の途中部位を伝熱
    装置で熱的に接続したことを特徴とした原子炉冷却系配
    管。 2、前記伝熱装置は、第1と第2の両配管壁面間に設け
    た中空なセルと、前記セル内に入れた伝熱媒体であるこ
    とを特徴とした特許請求の範囲の第1項に記載の原子炉
    冷却系配管。 3、前記伝熱装置は、第1と第2の両配管内に端部を設
    けたヒートパイプであることを特徴とした特許請求の範
    囲の第1項に記載の原子炉冷却系配管。
JP60167588A 1985-07-31 1985-07-31 原子炉冷却系配管 Pending JPS6228693A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167588A JPS6228693A (ja) 1985-07-31 1985-07-31 原子炉冷却系配管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167588A JPS6228693A (ja) 1985-07-31 1985-07-31 原子炉冷却系配管

Publications (1)

Publication Number Publication Date
JPS6228693A true JPS6228693A (ja) 1987-02-06

Family

ID=15852537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167588A Pending JPS6228693A (ja) 1985-07-31 1985-07-31 原子炉冷却系配管

Country Status (1)

Country Link
JP (1) JPS6228693A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031962A (ja) * 2012-08-03 2014-02-20 Furukawa Electric Co Ltd:The 熱交換器、熱交換モジュール、および自動車用の暖房装置
JP2014152963A (ja) * 2013-02-06 2014-08-25 Kobe Steel Ltd 熱交換器
CN104913319A (zh) * 2015-05-30 2015-09-16 四川省凯明机械制造有限公司 一种高效冷渣机
CN105806100A (zh) * 2016-04-18 2016-07-27 刘利平 同轴翅片换热器
JP6118008B1 (ja) * 2016-10-07 2017-04-19 住友精密工業株式会社 熱交換器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031962A (ja) * 2012-08-03 2014-02-20 Furukawa Electric Co Ltd:The 熱交換器、熱交換モジュール、および自動車用の暖房装置
JP2014152963A (ja) * 2013-02-06 2014-08-25 Kobe Steel Ltd 熱交換器
CN104913319A (zh) * 2015-05-30 2015-09-16 四川省凯明机械制造有限公司 一种高效冷渣机
CN105806100A (zh) * 2016-04-18 2016-07-27 刘利平 同轴翅片换热器
JP6118008B1 (ja) * 2016-10-07 2017-04-19 住友精密工業株式会社 熱交換器
US11022376B2 (en) 2016-10-07 2021-06-01 Sumitomo Precision Products Co., Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
US4147204A (en) Compressed-air storage installation
Farid et al. Thermal performance of a heat storage module using PCM’s with different melting temperature: experimental
US4504439A (en) Gas cooled nuclear reactor
EP0234566B1 (en) Emergency nuclearreactor core cooling structure
US3392087A (en) Heterogeneous nuclear reactor of the pressure vessel type
Lv et al. Design and analysis of a new passive residual heat removal system
CN113686918A (zh) 液态铅铋合金与sco2回路耦合换热特性研究实验系统
JPS6228693A (ja) 原子炉冷却系配管
Weitzel et al. Design data for ortho-parahydrogen converters
CN208444609U (zh) 一种基于真空腔室的压力容器冷却系统
Chikhi et al. Effect of water entrainment on the coolability of a debris bed surrounded by a by-pass: Integral reflood experiments and modelling
US4257356A (en) Heat exchanging apparatus and method
US3448797A (en) Pressurizer
CN103137219B (zh) 一种反应堆分层燃料组件
Dean et al. Supercritical helium refrigerator for superconducting power transmission cable studies
Murase et al. BWR loss of coolant integral tests with two bundle loop,(I) thermal-hydraulic characteristics in parallel channels
CN220420261U (zh) 一种铅冷自然循环传热通用实验台架
Barni et al. Cooldown symulations for TESLA Test Facility (TTF) cryostats
Vijayan et al. Steady state and stability characteristics of a supercritical pressure natural circulation loop (SPNCL) with CO 2
Hajek et al. Experimental loop s-CO2 SUSEN
Fernandez et al. Reflux boiling heat removal in a scaled TMI-2 system test facility
Ahuja et al. Application of matrix heat exchangers to thermomechanical exergy recovery from liquid hydrogen
Wang et al. Study on Flow Characteristics of Double Loop Natural Circulation System Under Asymmetric Conditions
Sarkar et al. Integrated cryogenic fluid flow distribution and cooling scheme with helium liquefier/refrigerator for SST-1 magnet system
Balunov et al. The Specifics of Design and Prediction of Thermohydraulic Characteristics of Thermosiphons