JPS62285945A - Production of phenolic resin binder - Google Patents

Production of phenolic resin binder

Info

Publication number
JPS62285945A
JPS62285945A JP12778186A JP12778186A JPS62285945A JP S62285945 A JPS62285945 A JP S62285945A JP 12778186 A JP12778186 A JP 12778186A JP 12778186 A JP12778186 A JP 12778186A JP S62285945 A JPS62285945 A JP S62285945A
Authority
JP
Japan
Prior art keywords
resin
phenolic resin
solid
formaldehyde
resol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12778186A
Other languages
Japanese (ja)
Other versions
JPH0725990B2 (en
Inventor
Takayuki Oda
尾田 貴之
Fumiyuki Ogawa
文幸 小川
Isao Kai
勲 甲斐
Kazuo Tamemoto
為本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP12778186A priority Critical patent/JPH0725990B2/en
Publication of JPS62285945A publication Critical patent/JPS62285945A/en
Publication of JPH0725990B2 publication Critical patent/JPH0725990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain the title binder which does not cause environmental pollution, has excellent curability, storage stability and working efficiency and is suitable for use in shell molds, by blending a specified liquid resol type phenolic resin contg. no free HCHO with a solid phenolic resin. CONSTITUTION:A phenol compd. (a) (e.g., phenol) is condensed with HCHO (b) in a molar ratio of 1:3-8 in an alkaline aq. medium contg. 0.02-0.2mol [per mol of the component (a)] of NaOH (c) dissolved in water at 40-100 deg.C (reflux temp.) for 1-10hr. The reaction mixture is cooled and the pH thereof is adjusted to 4-7 with an acid, NH3 and/or an ammonium salt [e.g., (NH4)2CO3] are/is added thereto to convert the remaining free HCHO into hexamethyleneteramine. If desired, the mixture is dehydrated in a vacuum to obtain a liquid resol type phenolic resin (B) contg. no free HCHO. At least one solid phenolic resin (A) such as novolak, resol or benzyl ether type phenolic resin is blended with at least 2wt% (on a solid basis) component B.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、優れた硬化性能を有し、かつ使用時に作業環
境の汚染を伴わないフェノール系樹脂結合剤を製造する
ための方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Application Field The present invention is for producing a phenolic resin binder that has excellent curing performance and does not pollute the working environment during use. This relates to the method of

さらに詳しくいえば、本発明はンエルモールド用、鋳型
又は中子接着用、押湯保温材用、耐火物用、建築部材用
、工業用積層材用、成形材料用、砥石用、摩擦材料用、
無機職維断熱材用、セラミックス用など広範囲にわたっ
て好適に使用しうる、改良された性質をもつ工業用フェ
ノール系樹脂結合剤の製造方法に関するものである。
More specifically, the present invention is applicable to molds, molds or core adhesives, riser heat insulation materials, refractories, building materials, industrial laminated materials, molding materials, grindstones, and friction materials. ,
The present invention relates to a method for producing an industrial phenolic resin binder with improved properties that can be suitably used in a wide range of applications such as inorganic fiber insulation materials and ceramics.

従来の技術 従来、鋳造工業分野において、鋳型又は中子(以下鋳型
等という)の製造に使用される/エルモールド用樹脂被
覆砂粒は、予熱されたシリカサンド、ジルコンサンドな
どの鋳型用骨材を熱硬化性樹脂結合剤で被覆して得られ
るが、その樹脂結合剤の種類によりノボラック樹脂−へ
キサミン系樹脂被覆砂粒と、レゾール系樹脂被覆砂粒と
に大別される台 一般にこのノボラック樹脂−へキサミン系樹脂被覆砂粒
は、硬化剤として優れた特性を有するヘキサメチレンテ
トラミンすなわちヘキサミンがノボラック型フェノール
樹脂結合剤【対して15〜25重債チ使用されているた
め、レゾール型フェノール樹脂結合剤又は該レゾール樹
脂に少量のノボラック樹脂を配合した混合樹脂結合剤を
被覆したレゾール系樹脂被覆砂粒よシも鋳型性能、とぐ
に硬化性能面で優れているという特徴がある。
Conventional technology Conventionally, in the casting industry, resin-coated sand grains for Elmold are used to manufacture molds or cores (hereinafter referred to as molds, etc.). Sand grains coated with a thermosetting resin binder are generally classified into novolac resin-hexamine-based resin-coated sand grains and resol-based resin-coated sand grains depending on the type of resin binder. Xamine-based resin-coated sand grains are manufactured using hexamethylenetetramine, or hexamine, which has excellent properties as a hardening agent. Resole-based resin-coated sand grains coated with a mixed resin binder containing resol resin and a small amount of novolac resin are also characterized by excellent mold performance and curing performance.

しかしその反面鋳型等の製造時におけるヘキサミンの熱
分解によって生じるアンモニアやホルムアルデヒドなど
を主体とする有害ガスは作業環境を著しく汚染したり、
作業者にかぶれを生じさせるなどへ体罠与える悪影響が
大きくその公害対策に多くの費用を要するという問題が
ある。−万このような問題を解決するために提案された
前記レゾール系樹脂被覆砂粒においては、作業環境など
の改善の点では、効果がみられるものの、前述したよう
に鋳型などの製造時における硬化速度が非常に遅くなる
ために、生産効率の著しい低下を免れないという欠点が
ある。
However, on the other hand, harmful gases, mainly ammonia and formaldehyde, generated by the thermal decomposition of hexamine during the manufacturing of molds, etc., can significantly pollute the working environment.
There is a problem in that it has a large negative impact on the body of workers, such as causing rashes, and requires a lot of money to counteract the pollution. -The resol-based resin-coated sand grains proposed to solve these problems are effective in improving the working environment, but as mentioned above, the curing speed during the production of molds, etc. The disadvantage is that production efficiency inevitably decreases because the process becomes extremely slow.

このように、作業環境の汚染などを伴うことなく、しか
も鋳型などの製造に用いたときK、結合剤として優れた
性能を示すフェノール系樹脂結合剤は、これまで実現さ
れておらず、当該技術分野において、その開発が強く望
まれていた。
As described above, a phenolic resin binder that does not contaminate the working environment and also exhibits excellent performance as a binder when used in the production of molds, etc., has not been realized to date, and the technology in question Its development has been strongly desired in this field.

発明が解決しようとする問題点 本発明は、このような要望にこたえ、作業環境を汚染す
ることがなく、したがって、公害対策費用を節減しうる
上に、鋳型などの造型性能、すなわち硬化性能に浸れた
フェノール系樹脂結合剤の提供を目的とするものである
Problems to be Solved by the Invention The present invention satisfies these demands, does not pollute the working environment, reduces pollution control costs, and improves the molding performance of molds, that is, the curing performance. The present invention aims to provide a soaked phenolic resin binder.

問題点を解決するための手段 本発明者らは前記目的を達成するために鋭意研究を重ね
た結果、従来用いられている実質的に固形状のフェノー
ル樹脂に、特定の製造方法によって得られる特定の液状
レゾール樹脂を配合した結合剤は、例えばシェルモール
ド用結合剤として使用する場合、従来のノボラック樹脂
−へキサミン系結合剤よりも作業環境が改善される上(
/′C1特にレゾール系樹脂の筒型などの造型性を大幅
に向上させうることを見出し、この知見に基づいて本発
明を完成するに至った。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have conducted intensive research and found that the substantially solid phenolic resin used in the past has a specific property obtained by a specific manufacturing method. When used as a binder for shell molds, for example, a binder containing a liquid resol resin has an improved working environment than the conventional novolac resin-hexamine binder (
/'C1 It has been found that the moldability of resol resins, particularly cylinders, can be greatly improved, and based on this knowledge, the present invention has been completed.

すなわち、本発明に従えば、アルカリ水性媒体の存在下
、フェノール系化合物とホルムアルデヒドとをモル比1
:3ないし1:8の割合で縮合反応させ、得られた反応
混合物を酸でpH4〜7に調整したのち、この中にアン
モニア及びアンモニウム塩の中から選ばれた少なくとも
1種の化合物を加えて処理し遊離ホルムアルデヒドをヘ
キサメチレンテトラミンに変換させて、実質上遊離ホル
ムアルデヒドを含まない液状レゾール型フェノール樹脂
を得、次いでこれをノボラック型フェノール樹脂、レゾ
ール型フェノール樹脂及びベンジルエーテル型フェノー
ル樹脂の中から選ばれた少なくとも1種の固形フェノー
ル樹脂に対し、該液状レゾール型フェノール樹脂(固形
分換算)が固形分全重量に基づき少なくとも2重量優に
なる割合で配合すること(よって、所望のフェノール系
樹脂結合剤を製造することができる。
That is, according to the present invention, the phenolic compound and formaldehyde are mixed in a molar ratio of 1 in the presence of an alkaline aqueous medium.
Condensation reaction is carried out at a ratio of :3 to 1:8, and the resulting reaction mixture is adjusted to pH 4 to 7 with an acid, and then at least one compound selected from ammonia and ammonium salts is added thereto. The process converts free formaldehyde into hexamethylenetetramine to obtain a liquid resol-type phenolic resin substantially free of free formaldehyde, which is then selected from a novolac-type phenolic resin, a resol-type phenolic resin, and a benzyl ether-type phenolic resin. The liquid resol-type phenolic resin (in terms of solid content) is blended with at least one solid phenolic resin in a ratio of at least 2 weights based on the total solid weight (thus, the desired phenolic resin bonding is achieved). can be manufactured.

本発明方法において、液状レゾール樹脂の製造に際して
使用するフェノール系化合物としては、例、t ハフエ
ノーノペ レゾルシノール、カテコール、ヒドロキノン
、ピロガロールなどのモノフェノール類、クレゾール、
キシレノール、クミルフェノール、ノニルフェノールナ
トのアルキルフェノール類、フェニルフェールなどのア
リールフェノール類、ビスフェノールA、ビスフェノー
ルFなどノビスフエノール類のほか、モノフェノール類
、アルキルフェノール類、アリールフェノール類、ビス
フェノール類を製造する際に副生ずる精製残渣のような
1種又は2種以上の混合物が挙げられる。
In the method of the present invention, the phenolic compounds used in the production of the liquid resol resin include, for example, monophenols such as haphenope resorcinol, catechol, hydroquinone, and pyrogallol, cresol,
When producing xylenol, cumylphenol, alkylphenols such as nonylphenol, arylphenols such as phenylfer, nobisphenols such as bisphenol A and bisphenol F, as well as monophenols, alkylphenols, arylphenols, and bisphenols. Examples include one type or a mixture of two or more types, such as by-produced purification residues.

また、これらのフェノール系化合物と反応させるホルム
アルデヒドは、通常ホルマリンのような水溶液が用いら
れるが、そのほか反応に際してホルムアルデヒドを発生
しつる物質、例えばバラホルムアルデヒド、トリオキサ
ンなども用いることができる。ま念必要に応じてグリオ
キザール、フルフラールなどと併用することも可能であ
る。
Further, as the formaldehyde to be reacted with these phenolic compounds, an aqueous solution such as formalin is usually used, but other substances that generate formaldehyde during the reaction, such as paraformaldehyde and trioxane, can also be used. If necessary, it can also be used in combination with glyoxal, furfural, etc.

フェノール系化合物とホルムアルデヒドとは、前者1モ
ル当り後者3〜8モルの割合で用いられる。ホルムアル
デヒドの量がこれよりも少ないと、得られる液状レゾー
ル樹脂の硬化が遅く、これを固形ノボラック樹脂に配合
しても、改質剤や架橋剤としての役割を果すことができ
ない。また、ホルムアルデヒドの量をこれよりも多くし
た場合には、液状レゾール樹脂の物性の面では特に問題
はないが1反応混合物中の実質的な樹脂含有1が少なく
なり経済上不利である。
The phenolic compound and formaldehyde are used in a ratio of 3 to 8 moles of the latter per 1 mole of the former. If the amount of formaldehyde is less than this, the curing of the obtained liquid resol resin will be slow, and even if it is blended with the solid novolak resin, it will not be able to function as a modifier or a crosslinking agent. Further, when the amount of formaldehyde is increased more than this, there is no particular problem in terms of the physical properties of the liquid resol resin, but the substantial resin content 1 in one reaction mixture decreases, which is economically disadvantageous.

前記フェノール系化合物とホルムアルデヒドとの縮合反
応は、アルカリ注水性媒体の存在下に行われるが、この
アルカリ注水性媒体に用いられる触媒のアルカリとして
は、例えばナトリウム、カリウム、リチウム、マグネ7
ウム、カルシウム、ストロンチウム、バリウムなどの水
酸化物、酸化物、炭酸塩、炭酸水素塩のようなアルカリ
性無機fヒ合物や、トリメチルアミン、トリエチルアミ
ン、トリベンジルアミン、トリフェニルアミンなどの第
三級アミンのようなアルカリ性有機化合物が挙げられる
。これらはそれぞれ単独で用いてもよいし、2種以上組
み合わせて用いてもよい。
The condensation reaction between the phenolic compound and formaldehyde is carried out in the presence of an alkaline water-injecting medium, and the alkali of the catalyst used in this alkaline water-injecting medium includes, for example, sodium, potassium, lithium, magne 7, etc.
Alkaline inorganic arsenic compounds such as hydroxides, oxides, carbonates, and hydrogen carbonates such as aluminum, calcium, strontium, and barium, and tertiary amines such as trimethylamine, triethylamine, tribenzylamine, and triphenylamine. Examples include alkaline organic compounds such as. These may be used alone or in combination of two or more.

これらの触媒使用量は種類、反応温度、製造規模など尾
よって異な9−概に限定されないが、工業的規模の製造
を実施するに際してはフェノール系化合物1モル当、9
0.02〜0.2モルの範囲が適当である。
The amount of these catalysts used varies depending on the type, reaction temperature, production scale, etc.9 - Generally speaking, it is not limited, but when carrying out production on an industrial scale, it is
A range of 0.02 to 0.2 mol is suitable.

さらに、前記触媒の存在下に実施されるフェノール系化
合物とホルムアルデヒドとの縮合反応においては、フェ
ノール系化合物にホルムアルデヒドを可及的に付加させ
て未反応フェノール類の残存を低減し、かつ過度の高分
子化を抑制する必要がある。したがって、該反応は水性
媒体中において、通常40〜ioo℃(還流温度)、好
ましくは50〜90℃の範囲の温度で実施される。
Furthermore, in the condensation reaction between a phenol compound and formaldehyde carried out in the presence of the catalyst, formaldehyde is added to the phenol compound as much as possible to reduce the residual amount of unreacted phenols, and to avoid excessively high It is necessary to suppress molecularization. The reaction is therefore usually carried out in an aqueous medium at a temperature in the range from 40 to ioo<0>C (reflux temperature), preferably from 50 to 90[deg.]C.

また、反応時間としては、反応温度、触媒量及びその他
の条件によって異なるが1通常1〜10時間程度でよい
The reaction time may vary depending on the reaction temperature, amount of catalyst, and other conditions, but is usually about 1 to 10 hours.

さらに、縮合反応の終点については、反応条件によって
異なシ、−概に限定されないが一般的には反応によって
生成する反応混合物の水希釈度が2〜8−/2の範囲が
適当である。
Furthermore, the end point of the condensation reaction varies depending on the reaction conditions, but is generally not limited to a range in which the degree of dilution with water of the reaction mixture produced by the reaction is from 2 to 8/2.

ここでいう水希釈度とは、単位重量(2)の縮合液を3
0℃で白濁させるに要した水の添加景(−)で示される
The degree of water dilution here means that the unit weight (2) of the condensate liquid is 3
The amount of water required to make the sample cloudy at 0° C. is shown by (-).

次に、このようにして得られた反応混合物を冷却したの
ち酸類でpH4〜7に調整するが、このpH調整は、次
工程におけるアンモニアやアンモニウム塩により残存ホ
ルムアルデヒドを処理する際に生じる大きな発熱によっ
て反応混合物が過度に高分子化するのを抑制し、良好な
貯蔵安定性や鋳型強度を有する液状レゾール樹脂を得る
上で非常に重要である。
Next, the reaction mixture obtained in this way is cooled and adjusted to pH 4 to 7 with acids, but this pH adjustment is due to the large heat generated when residual formaldehyde is treated with ammonia or ammonium salt in the next step. This is very important in suppressing excessive polymerization of the reaction mixture and obtaining a liquid resol resin having good storage stability and mold strength.

ここで陵としては、通常アルカリ中和の際に用いられる
解離定数が、  10−’以上の有機酸又は無機酸、例
えば、硫酸、塩酸、リン酸、シュウ酸、安息香酸、サリ
チル酸、乳駿などを挙げることができる。これらは、単
独で用いてもよいし、2種以上組み合わせて用いてもよ
い。
Examples of organic acids or inorganic acids with a dissociation constant of 10 or more that are usually used in alkali neutralization, such as sulfuric acid, hydrochloric acid, phosphoric acid, oxalic acid, benzoic acid, salicylic acid, and lactate. can be mentioned. These may be used alone or in combination of two or more.

また多量の触媒を使用する場合には、水に対する難浴性
若しくは不溶性塩を形成するような酸を選択し、生成塩
をろ過除去することが望ましい。
Furthermore, when using a large amount of catalyst, it is desirable to select an acid that forms a salt that is difficult to bathe or is insoluble in water, and to remove the formed salt by filtration.

さらにpH調整された反応混合物は、アンモニア、アン
モニウム塩又は、これらの混合物で処理して系中に残存
するホルムアルデヒドをヘキサミ/に変換せしめたのち
、必要に応じてデカンテーション又は減圧濃縮して所望
の樹脂濃度に調整することにより、実質的にホルムアル
デヒドを含まない本発明に係る液状レゾール樹脂が得ら
れる。
Furthermore, the pH-adjusted reaction mixture is treated with ammonia, an ammonium salt, or a mixture thereof to convert the formaldehyde remaining in the system into hexamic acid, and then, if necessary, is decanted or concentrated under reduced pressure to obtain the desired amount. By adjusting the resin concentration, a liquid resol resin according to the present invention substantially free of formaldehyde can be obtained.

また、該レゾール四指は使用目的に応じて、メタノール
やアセトンなどの有機溶媒で希釈し使用してもよい。
Furthermore, the resol four fingers may be diluted with an organic solvent such as methanol or acetone depending on the purpose of use.

前記アンモニウム塩としては、例えば炭酸アンモ”ム、
 Fd!inルバミン酸アンモニウム、炭酸水素アンモ
ニウム、安息香酸アンモニウム、サリチル酸アンモニウ
ム、酢酸アンモニウム、クエン酸アンモニウム、塩化ア
ンモニウム、硫酸アンモニウムなどが挙げられ、これら
はそれぞれ単独で用いてもよいし、2種以上組み合わせ
て用いてもよく、またアンモニアと使用してもよい。ア
ンモニウム塩を用いる場合には、無機アルカリ触媒の中
和及び遊離ホルムアルデヒドの処理を同時に実施しうる
などの利点がある。
Examples of the ammonium salt include ammonium carbonate,
Fd! Examples include ammonium rubamate, ammonium hydrogen carbonate, ammonium benzoate, ammonium salicylate, ammonium acetate, ammonium citrate, ammonium chloride, ammonium sulfate, etc., and each of these may be used alone or in combination of two or more. It can also be used with ammonia. When an ammonium salt is used, there is an advantage that neutralization of the inorganic alkali catalyst and treatment of free formaldehyde can be carried out simultaneously.

pH調整された反応混合物のアンモニアやアンモニウム
塩江よる処理は、一般に大きな発熱を伴うため、適宜な
冷却手段又は投入方法を考慮して、反応混合物温度が6
0℃を超えないように実施することが好ましく、また、
必要に応じて減圧下で水分を除去し、所望の樹脂濃度に
調整する場合にも、これに準じ実施することが望ましい
Treatment of a pH-adjusted reaction mixture with ammonia or ammonium salt generally generates a large amount of heat.
It is preferable to carry out the process so as not to exceed 0°C, and
It is desirable to carry out the same procedure when adjusting the desired resin concentration by removing water under reduced pressure as necessary.

このように、pH調整された反応混合物をアンモニアや
アンモニウム塩で処理して得られる本発明に係る液状レ
ゾール樹脂は、水系に対する溶解性が向上し、かつ従来
のレゾール樹脂よ)も貯蔵安定性が向上する性質を有す
るなどの利点がある。
As described above, the liquid resol resin according to the present invention obtained by treating the pH-adjusted reaction mixture with ammonia or an ammonium salt has improved solubility in aqueous systems, and has better storage stability than conventional resol resins. It has the advantage of improving properties.

このようにして得られた本発明に係る液状レゾール樹脂
は、従来公知の方法で天運される一般のノボラック型フ
ェノール樹脂、レゾール型フェノール樹脂、ベンジルエ
ーテル型フェノール樹脂ヤこれらの混合樹脂などの実質
的に固形状のフェノール樹脂に配合した場合、その硬化
性能を向上する上に、有害ガスの発生を大幅に低減して
作業環境を改善することができる。なお、前記固形状フ
ェノール樹脂を使用目的に応じてメタノールなどの有機
溶剤に溶解したフェスに対しても、同様の効果を発揮す
ることができる。
The liquid resol resin according to the present invention obtained in this way can be made of substantially all the common novolac type phenol resins, resol type phenol resins, benzyl ether type phenol resins, and mixed resins thereof, which are obtained by conventionally known methods. When blended with solid phenolic resin, it not only improves its curing performance, but also significantly reduces the generation of harmful gases and improves the working environment. Incidentally, the same effect can be exerted on a festival prepared by dissolving the solid phenol resin in an organic solvent such as methanol depending on the purpose of use.

本発明方法においては、前記の液状レゾール樹脂を、前
記の実質的に固形状のフェノール樹脂に対し、該液状レ
ゾール樹脂を、その固形分量がフェノール四指固形分全
量に対して少なくとも2重量%、好ましくは少なくとも
5重量%になるような割合で配合される。この配合量が
2重量%未満では、硬化性能が十分に改善されない。
In the method of the present invention, the liquid resol resin is added to the substantially solid phenol resin, the solid content of which is at least 2% by weight based on the total solid content of the phenol, Preferably, the proportion is at least 5% by weight. If this amount is less than 2% by weight, curing performance will not be sufficiently improved.

本発明で得られるフェノール系閤脂結合剤には、必要に
応じてシラン系カップリング剤、アミド系滑剤などの添
加剤、有機又は無機・・ロゲ/化物などの崩壊性改質剤
、レゾルシノール、カテコール、安息香酸、サリチル酸
、ビスフェノール類などの硬化促進剤、離型剤あるいは
エポキシ樹脂、キシレン樹脂、酢酸ビニル樹脂、アクリ
ル樹脂などの合成樹脂などを本発明の目的を損わない範
囲内で混合して使用することができる。
The phenolic soy sauce binder obtained in the present invention may optionally contain additives such as a silane coupling agent and an amide lubricant, organic or inorganic disintegration modifiers such as loge/chemicals, resorcinol, Curing accelerators such as catechol, benzoic acid, salicylic acid, and bisphenols, mold release agents, and synthetic resins such as epoxy resins, xylene resins, vinyl acetate resins, and acrylic resins may be mixed within the scope of the invention. can be used.

作用 本発明で得られるフェノール系樹脂結合剤が従来公知の
フェノール樹脂結合剤よりも硬化特性や有害ガスの低減
に優れた性能を発揮しつる理由は必ずしも明確なもので
はない。しかし、その理由の1つとして、樹脂結合剤成
分として用いられる液状レゾール樹脂は縮合反応におい
てフェノール系化合物に対して過剰のホルムアルデヒド
を可及的に付加させて形成したヘキサミンと同様な硬化
機能を有する多くの架橋性メチロール基を含み、かつ遊
離ホルムアルデヒドをアンモニア又はアンモニウム塩処
理して形成されるヘキサミンが結合した樹脂構造を有す
るため、これを従来のフェノール樹脂にその改質剤又は
架橋剤として組み合わせて使用する場合、従来の明脂、
浩合剤に比べて硬化機能を有する多くの架橋性官能基が
付与されるため、有害ガスの発生を伴うヘキサミンの使
用量を実質的に少なくできることなどから硬化速度を向
上させ、かつ有害ガスの発生を低減させる効果があるも
のと推察される。
Function The reason why the phenolic resin binder obtained by the present invention exhibits better curing properties and performance in reducing harmful gases than conventionally known phenolic resin binders is not necessarily clear. However, one of the reasons for this is that the liquid resol resin used as a resin binder component has a curing function similar to that of hexamine, which is formed by adding as much formaldehyde as possible to a phenolic compound in a condensation reaction. Because it contains many crosslinkable methylol groups and has a resin structure bound to hexamine, which is formed by treating free formaldehyde with ammonia or ammonium salt, it can be combined with conventional phenolic resins as a modifier or crosslinking agent. When using, conventional clear resin,
Compared to bulking agents, it has many crosslinking functional groups with a curing function, so the amount of hexamine used, which generates harmful gases, can be substantially reduced, improving the curing speed and reducing harmful gas emissions. It is presumed that this has the effect of reducing the occurrence.

実施例 次に実施例により本発明をさらに詳細に説明する。なお
、実施例及び比較例中の部及び係は特に断らないかぎ9
重量基準である。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. In addition, the parts and sections in the Examples and Comparative Examples are key 9 unless otherwise specified.
It is based on weight.

また、四指被覆砂粒(Rcs)の評価は次の試験法に従
って実施した。
In addition, evaluation of the four-finger coated sand grains (Rcs) was carried out according to the following test method.

抗折カニJ工S−に−6910 ペンド: 、TACT試験法5M−3 融着点: 、TAOT試験法0−1 温時強度゛J工S−に−6910に準じ、金型温度25
0℃で所定時間焼成したテストピース 脱型10秒後の抗折力を測定した。
Folding Crab J-S-6910 Pend: , TACT test method 5M-3 Melting point: , TAOT test method 0-1 Temperature strength according to J-K S-6910, mold temperature 25
The test piece was baked at 0° C. for a predetermined time and the transverse rupture strength was measured 10 seconds after demolding.

アンモニア :温度250℃の熱板上に設置した密閉可
能なボックス(縦5QllIX横 120x11I×高さx70m)内に樹脂被覆砂粒2.
52を投入し70秒間焼 成した際に発生するアンモニアガ ス濃度を北用式検知管(測定範囲 25〜900 pprn )で測定した。
Ammonia: Resin-coated sand grains 2.
52 was charged and fired for 70 seconds, the concentration of ammonia gas generated was measured using a kita type detection tube (measurement range 25 to 900 pprn).

ホルムアルデヒド: 使用する樹脂被覆砂粒を152と し、ホルムアルデヒドガス濃度側 定用北用式検知管(1lll定範囲1〜35 ppm 
)を用いる以外は前記アンモニアガス濃度測定方法に準
じ て測定した。
Formaldehyde: The resin-coated sand grains used are 152, and the formaldehyde gas concentration side is a fixed-type detection tube (1llll fixed range 1 to 35 ppm).
) was measured according to the method for measuring ammonia gas concentration described above.

製造例1 還流冷却器、かきまぜ装置を備えた三つロフラスコにフ
ェノール100部、47%ホルマリン238部を入れ、
かきまぜなから50チ水酸化ナトリウム8.5部を加え
1反応温度80℃で3時間(30℃での水希釈度が3.
0d/P)反応させたのち、冷却し、次いでサリチル酸
でpH5,6に調整した。
Production Example 1 100 parts of phenol and 238 parts of 47% formalin were placed in a three-necked flask equipped with a reflux condenser and a stirring device.
While stirring, add 8.5 parts of 50% sodium hydroxide and react at a reaction temperature of 80°C for 3 hours (water dilution at 30°C is 3.5 parts).
After the reaction (0d/P), the mixture was cooled and the pH was adjusted to 5.6 with salicylic acid.

さらに、樹脂液が60℃を超えないように、冷却しなが
ら25%アンモニア水59部を加え、減圧脱水を行い、
本発明に係る液状レゾール樹脂(以下、樹脂Aと略記す
る)を得た。
Furthermore, 59 parts of 25% ammonia water was added while cooling the resin liquid so that the temperature did not exceed 60°C, and dehydration was performed under reduced pressure.
A liquid resol resin (hereinafter abbreviated as resin A) according to the present invention was obtained.

得られた樹脂Aは固形分が60%、粘度が130センチ
ボイズ(30℃)、遊離フェノールが0.1係であり、
遊離ホルムアルデヒドは検出されなかった。なお、遊離
フェノールは液体クロマトグラフィーにより求め、遊離
ホルムアルデヒドは塩酸ヒドロキシルアミン法により求
めた。
The resulting resin A had a solid content of 60%, a viscosity of 130 centiboise (30°C), and a free phenol content of 0.1%.
No free formaldehyde was detected. Note that free phenol was determined by liquid chromatography, and free formaldehyde was determined by the hydroxylamine hydrochloride method.

製造例2 還流冷却器、かきまぜ装置を備えた三つロフラスコにフ
ェノールxoo部、  47%ホルマリン373部を入
れ、かきまぜながら50%水酸化ナトリウム4.3部を
加え、反応温度80℃で2時間(30℃での水希釈度が
5.6ml/9 )反応させたのち、冷却し、次いで酢
酸でpH4,5に調整した。さらに樹脂液が60℃を超
えないように、冷却しながら25%アンモニア水144
部を加え、減圧脱水を行い、本発明に係る液状レゾール
樹脂(以下樹脂Bと略記する)を得た。
Production Example 2 Phenol xoo parts and 373 parts of 47% formalin were placed in a three-neck flask equipped with a reflux condenser and a stirring device, and while stirring, 4.3 parts of 50% sodium hydroxide was added, and the mixture was heated at a reaction temperature of 80°C for 2 hours ( After the reaction (water dilution rate at 30° C. was 5.6 ml/9), the mixture was cooled and the pH was adjusted to 4.5 with acetic acid. Furthermore, while cooling the resin liquid so that the temperature does not exceed 60℃, 25% ammonia water 144
1, and dehydration was performed under reduced pressure to obtain a liquid resol resin (hereinafter abbreviated as resin B) according to the present invention.

得られた(樹脂Bは固形分が59%、粘度が90センチ
ボイズ(30℃)であり、遊離フェノール及び遊離ホル
ムアルデヒドは検出されなかった。
Resin B obtained had a solids content of 59%, a viscosity of 90 centivoise (30° C.), and no free phenol or free formaldehyde was detected.

製造例3 還流冷却器、かきまぜ装置を備えた三つロフラスコにフ
ェノールtoo部、47 %ボルフ9フ509部を入れ
、かきまぜながら水酸化力ルンウム4.32を加え、反
応温度80℃で2.5時間(30℃での水希釈度が3.
177r)反応させたのち、冷却し、次いで塩酸でpH
6,5に調整して静止放置後、中和塩を除去した。次に
樹脂液が60℃を超えないように、冷却しながら25%
アンモニア水239部を加え、減圧脱水を行い、本発明
に係る液状レゾール樹脂(以下樹脂Cと略記する)を得
た。
Production Example 3 Add too much phenol and 509 parts of 47% Volf 9 to a three-bottle flask equipped with a reflux condenser and stirring device, add 4.32 parts of hydroxide with stirring, and reduce to 2.5 at a reaction temperature of 80°C. time (water dilution at 30°C is 3.
177r) After the reaction, cool and then adjust the pH with hydrochloric acid.
After adjusting the temperature to 6.5 and leaving it still, the neutralized salt was removed. Next, while cooling the resin liquid so that it does not exceed 60℃, 25%
239 parts of ammonia water was added and dehydration was performed under reduced pressure to obtain a liquid resol resin (hereinafter abbreviated as resin C) according to the present invention.

得られた樹脂Cは固形分が60%、粘度が75センチポ
イズ(30℃)であり、遊離フェノール及び遊離ホルム
アルデヒドは検出されなかった。
Resin C obtained had a solid content of 60%, a viscosity of 75 centipoise (30° C.), and free phenol and free formaldehyde were not detected.

製造例4 還流冷却器、かきまぜ装置を備えた三つロフラスコにフ
ェノールxoog、47 %ボルフ9フ244部を入れ
、かきまぜながらトリエチルアミン3.5部を加え、反
応温度90℃で45分間(30℃での水希釈度が4.2
m//?)反応させたのち、冷却し、次いでサリチル酸
でpH5,1に調整した。さらに樹脂液が60℃を超え
ないように、冷却しながら25係アンモニア水80,8
部を加え、減圧脱水を行い本発明に係る液状レゾール樹
脂(以下樹脂りと略記する。)を得た。
Production Example 4 244 parts of phenol water dilution of 4.2
m//? ) After the reaction, the mixture was cooled and then adjusted to pH 5.1 with salicylic acid. Furthermore, while cooling the resin liquid so that the temperature does not exceed 60℃,
1 part and dehydrated under reduced pressure to obtain a liquid resol resin (hereinafter abbreviated as resin) according to the present invention.

得られた樹脂りは固形分が60%、粘度が55センチポ
イズ(30℃)、遊離フェノールが2.1条であシ、遊
離ホルムアルデヒドは検出されなかった。
The resulting resin had a solids content of 60%, a viscosity of 55 centipoise (30° C.), free phenol of 2.1 g, and no free formaldehyde detected.

製造例5 サリチル酸による中和を行なわない以外は、製造例1と
同様にして対照液状レゾール樹脂(以下樹脂Eと略記す
る)を得た。
Production Example 5 A control liquid resol resin (hereinafter abbreviated as Resin E) was obtained in the same manner as Production Example 1 except that neutralization with salicylic acid was not performed.

得られた樹脂Eは固形分が60チ、粘度が230センチ
ボイズ(30℃)、遊離フェノールが0.2チであり、
遊離ホルムアルデヒドは検出されなかった。
The resulting resin E had a solid content of 60 inches, a viscosity of 230 centiboise (30°C), and a free phenol content of 0.2 inches.
No free formaldehyde was detected.

製造例6 25%アンモニア水を加えない以外は、製造例1と同様
にして対照液状レゾール樹脂(以下樹脂Fと略記する)
を得た。
Production Example 6 A control liquid resol resin (hereinafter abbreviated as Resin F) was produced in the same manner as Production Example 1 except that 25% ammonia water was not added.
I got it.

得られた樹脂Fは固形分が60係、粘度がio。The obtained resin F had a solid content of 60% and a viscosity of io.

センチボイズ(30℃)、遊離フェノールが0.2チ、
遊離ホルムアルデヒドが11.3%であった。
centiboise (30℃), free phenol 0.2t,
Free formaldehyde was 11.3%.

実施例1 遠州鉄工社製スピードミキサーに150℃に予熱したフ
ーカケイ砂5 KPと固形ノボラック樹脂(商品名;加
重機材工業製5P70ONS)70F及び製造例1で得
た樹脂A30F(配合比率70 : 30 )を添加し
て30秒間混合して充分に溶融被覆させたのち、冷却水
752と送風によって急冷しながら40秒間混合を行い
、次いでステアリン酸カルシュウム52を加えて、さら
に15秒間混合して砂粒をほぐしてから取り出し、樹脂
被覆砂粒(以下、RC8と略称する)を得た。得られた
RC8の評価結果を第1表に示す。
Example 1 Fuuka silica sand 5 KP preheated to 150°C in a speed mixer manufactured by Enshu Tekko Co., Ltd., solid novolac resin (trade name: 5P70ONS manufactured by Keikaku Jizai Kogyo) 70F, and resin A30F obtained in Production Example 1 (compounding ratio 70:30) After adding and mixing for 30 seconds to fully melt and coat, mix for 40 seconds while rapidly cooling with cooling water 752 and air blower, then add calcium stearate 52 and mix for another 15 seconds to loosen the sand grains. Then, it was taken out to obtain resin-coated sand grains (hereinafter abbreviated as RC8). The obtained evaluation results of RC8 are shown in Table 1.

実施例2〜4 固形ノボラック樹脂SP70 ONSと製造例1で得た
樹脂Aを用い、第1表に記載した配合処法によシ実施例
1と同様にしてRC8を得た。得られたRC8の評価結
果を第1表に示す。
Examples 2 to 4 RC8 was obtained in the same manner as in Example 1 using the solid novolac resin SP70 ONS and Resin A obtained in Production Example 1 according to the formulation method listed in Table 1. The obtained evaluation results of RC8 are shown in Table 1.

実施例5〜7 製造例1で得た樹脂Aに代えて、製造例2〜4で得た樹
脂B−Dを用いた以外は実施例1と同様にしてRC8を
得た。得られたRC8の評価結果を第1表に示す。
Examples 5 to 7 RC8 was obtained in the same manner as in Example 1, except that resin A obtained in Production Example 1 was replaced with resin BD obtained in Production Examples 2 to 4. The obtained evaluation results of RC8 are shown in Table 1.

比較例1 −J(州tA工@裂スピードミキサーに150℃に予熱
したフーカケイ砂5 KPと固形ノボラックm脂sp7
0 ONS 100 Fを添加して30秒間混合して充
分に溶融被覆させたのち、ヘキサミ7159と冷却水7
59を添加し、さらに送風によって急冷しながら40秒
間混合を行い、次いでステアリン酸カルシウム52を加
えてさらに15秒間混合して砂粒をほぐしてから取り出
しRC3を得た。得られたRC8の評価結果を第1表に
示す。
Comparative Example 1 -J (Shu tA Ko@Cracked speed mixer preheated to 150°C, Fuka silica sand 5 KP and solid novolac m fat sp7
After adding ONS 100 F and mixing for 30 seconds to fully melt and coat, add Hexame 7159 and cooling water 7.
59 was added thereto, and the mixture was mixed for 40 seconds while being rapidly cooled by blowing air. Then, calcium stearate 52 was added and mixed for another 15 seconds to loosen the sand grains, and then taken out to obtain RC3. The obtained evaluation results of RC8 are shown in Table 1.

比較例2〜3 製造例1で得た樹脂Aに代えて製造例5.6で得た樹脂
E及びFを用いた以外は実施例1と同様にしてRC8を
得た。得られたRC8の評i結果を第1表に示す。
Comparative Examples 2 to 3 RC8 was obtained in the same manner as in Example 1, except that resins E and F obtained in Production Example 5.6 were used in place of Resin A obtained in Production Example 1. The obtained evaluation results of RC8 are shown in Table 1.

実施例1〜7及び比較例1〜5によるRCSの評価結果
は第1表に示すとおりであって、本発明の樹脂結合剤を
用いたRCS (実施例1〜7)は、ノボラック樹脂−
へキサミン系RC9(比較例1)に比べ、鋳型作成時に
おける有害ガスの発生が著しく低減し、温時強度やペン
ドに示されるように硬化速度が大幅に向上し、著しい改
善効果を有する。
The RCS evaluation results according to Examples 1 to 7 and Comparative Examples 1 to 5 are shown in Table 1. RCS using the resin binder of the present invention (Examples 1 to 7)
Compared to hexamine-based RC9 (Comparative Example 1), the generation of harmful gases during mold creation is significantly reduced, and the curing speed as shown in the hot strength and pend is significantly improved, and has a significant improvement effect.

また、酸中和をした樹脂Aを用いたRCS (実施例1
)は、酸中和をしない樹脂Eを用いたRCS (比較例
2)に比べ、鋳型強度が著しく向上し、酸中和の効果が
顕著に認められた。さらにアンモニア処理を行わない樹
脂Fを用いたRCS (比較例3)に比べ鋳型強度や硬
化速度が著しく改善され、かつ、鋳型作成時においてア
ンモニアの発生を生じたもののホルムアルデヒドガスの
発生が著しく低減した。
In addition, RCS using acid-neutralized resin A (Example 1
) had significantly improved mold strength compared to RCS (Comparative Example 2) using Resin E without acid neutralization, and the effect of acid neutralization was clearly recognized. Furthermore, mold strength and curing speed were significantly improved compared to RCS (Comparative Example 3) using Resin F without ammonia treatment, and although ammonia was generated during mold creation, formaldehyde gas generation was significantly reduced. .

また、比較例6において、RCSを製造する際、樹脂F
中の、遊離ホルムアルデヒドの発生が著しく、その不快
さに耐え難くて実用に供しうるものではなく、本発明に
おけるアンモニア処理の効果が顕著に認められた。
In addition, in Comparative Example 6, when manufacturing RCS, resin F
The generation of free formaldehyde was significant and the discomfort was unbearable and could not be put to practical use, and the effect of the ammonia treatment in the present invention was clearly recognized.

実施例8 遠州鉄工製スピードミキサーに150°Cに予熱した再
生5号砂(流動焙焼再生砂)5kgと固形レゾール樹脂
(商品名加重機材工業製5P545N ) 135 j
i及び、製造例1で得た樹脂A25.@(配合比率90
 : 10)を添加して30秒間混合して充分に溶融被
覆させたのち、冷却水75.i7と送風によって急冷し
ながら40秒間混合を行い、次いでステアリン酸カルシ
ウム5gを加えてさらに15秒間混合して砂粒をほぐし
てから取り出しRCSを得た。得られたRCSの評価結
果を第2表に示す。
Example 8 5 kg of recycled No. 5 sand (fluidized roasted recycled sand) preheated to 150°C in a speed mixer manufactured by Enshu Iron Works and solid resol resin (trade name: 5P545N manufactured by Keiki Jizai Kogyo) 135 j
i and resin A25. obtained in Production Example 1. @ (Blending ratio 90
: Add 10) and mix for 30 seconds to fully melt and coat, then add 75.5% of cooling water. Mixing was performed for 40 seconds while quenching with i7 and air blowing, and then 5 g of calcium stearate was added and mixed for an additional 15 seconds to loosen the sand grains and then taken out to obtain RCS. The obtained RCS evaluation results are shown in Table 2.

実施例9 固形レゾール樹脂5P545N 120 gと製造例1
で得た樹脂A50,9(配合比率80:20)とする以
外は実施例8と同様にしてRCSを得た。得られたRC
Sの評価結果を第2表に示す。
Example 9 Solid resol resin 5P545N 120 g and Production Example 1
RCS was obtained in the same manner as in Example 8 except that the resin A50.9 (blending ratio 80:20) obtained in Example 8 was used. Obtained RC
The evaluation results for S are shown in Table 2.

比較例4 結合剤として固形レゾール樹脂5P545Nだけを用い
る以外は実施例8と同様にしてRCSを得た。得られた
RCSの評価結果を第2表に示す。
Comparative Example 4 RCS was obtained in the same manner as in Example 8 except that only solid resol resin 5P545N was used as the binder. The obtained RCS evaluation results are shown in Table 2.

実施例8.9及び比較例4によるRCSの評価結果は第
2表に示すとおりであり、本発明の樹脂結合剤を用いた
RCS (実施例8.9)は、従来のレゾール系RC3
(比較例4)に比べ温時強度やペンドア5ヌ大幅に向上
し、硬化特性の改善効果は顕著である。
The RCS evaluation results according to Example 8.9 and Comparative Example 4 are shown in Table 2, and the RCS using the resin binder of the present invention (Example 8.9)
Compared to (Comparative Example 4), the hot strength and pen door 5 were significantly improved, and the effect of improving the curing properties was remarkable.

実施例10 遠州鉄工製スピードミキサーに150°Cに予熱したフ
ーカケイ砂5 kgと、固形ノボラック樹脂(商品名、
加重機材工業製5P500 ) 95g及び製造例1で
得た樹脂A 8.31 (配合比率95:5)を添加し
て30秒間混合して充分に溶融被覆させたのち、ヘキサ
ミン15gと冷却水75gを添加し、さらに送風によっ
て急冷しながら40秒間混合を行い、次いでステアリン
酸カルシウム51を加えて、さらに15秒間混合して砂
粒をほぐしてから取り出しRCSを得た。得られたRC
Sの評価結果を第3表に示す。
Example 10 5 kg of fuka silica sand preheated to 150°C and solid novolac resin (trade name,
After adding 95 g of 5P500 (manufactured by Kyokai Jizai Kogyo) and 8.31 (blending ratio 95:5) of resin A obtained in Production Example 1 and mixing for 30 seconds to sufficiently melt and coat, 15 g of hexamine and 75 g of cooling water were added. Then, calcium stearate 51 was added and mixed for another 15 seconds to loosen the sand grains and then taken out to obtain RCS. Obtained RC
The evaluation results for S are shown in Table 3.

実施例11 固形ノボラック樹脂5p5oO? 0 、pと製造例1
で得た樹脂A 16.79 (配合比率90:10)と
する以外は実施例10と同様にしてRCSを得た。
Example 11 Solid novolac resin 5p5oO? 0, p and production example 1
An RCS was obtained in the same manner as in Example 10, except that the resin A obtained in Example 10 was used at 16.79 (blending ratio 90:10).

得られた評価結果を第3表に示す。The obtained evaluation results are shown in Table 3.

比較例5 結合剤として固形ノボラック樹脂5P500だけを用い
た以外は実施例10と同様にしてRCSを得た。
Comparative Example 5 RCS was obtained in the same manner as in Example 10 except that only solid novolac resin 5P500 was used as the binder.

得られたRCSの評価結果を第3表に示す。The obtained RCS evaluation results are shown in Table 3.

第3表 実施例10.11及び比較例5によるRCSの評価結果
は第3表に示すとおりであって、ノボラック樹脂−へキ
サミン系RC3(比較例5)に比べ、本発明によるRC
S (実施例10.11)は温時強度及びベンドが大幅
に向上し、硬化特性の改善効果は顕著である。
Table 3 The RCS evaluation results according to Example 10.11 and Comparative Example 5 are as shown in Table 3. Compared with novolac resin-hexamine-based RC3 (Comparative Example 5), the
S (Examples 10 and 11) had significantly improved strength and bending at elevated temperatures, and the effect of improving the curing properties was remarkable.

なお、製造例1で得た本発明に係るレゾール樹脂Aと製
造例5.6で得た対照レゾール樹脂E及び?の貯蔵安定
性について比較調査した結果を第4表に示す。
In addition, resol resin A according to the present invention obtained in Production Example 1, control resol resin E obtained in Production Example 5.6, and ? Table 4 shows the results of a comparative study on the storage stability of

第4表 *貯蔵安定性:40°Cに保たれた恒温槽の中に、樹脂
を放置しておき、水層と樹 脂層に分離するまでの日数を調 べた。
Table 4 *Storage stability: The resin was left in a constant temperature bath kept at 40°C, and the number of days until it separated into a water layer and a resin layer was determined.

以上の結果から明らかなように、酸による中和及びアン
モニアによる処理を行った本発明に係るレゾール樹脂A
は、対照レゾール樹脂より著しく貯蔵安定性が改善され
ており工業的規模で使用するに際し非常に有用な性質を
有する。
As is clear from the above results, resol resin A according to the present invention was neutralized with acid and treated with ammonia.
has significantly improved storage stability over control resole resins, a property that is very useful for use on an industrial scale.

発明の効果 以上の説明で明らかなように、本発明に係る液状レゾー
ル樹脂を従来の固形フェノール樹脂結合剤の架橋剤とし
て組み合わせ用いたフェノール系樹脂結合剤は、従来の
ノボラック型フェノール樹脂結合剤より格段に優れた硬
化性能を有し、かつ有害ガスの発生を大幅に低減しうる
ため、作業環境が改善されるだけでなく、作業能率の向
上及び公害対策費の削減を図ることができる。また、前
記液状レゾール樹脂を改質剤として組み合わせ用いる場
合にも、従来の固形フェノール樹脂結合剤より硬化性能
を著しく向上させることができるなど顕著な効果を有す
る。さらに本発明に係る液状レゾール樹脂は貯蔵安定性
に優れるために、工業的規模で使用するに際し、極めて
有益である。
Effects of the Invention As is clear from the above explanation, the phenolic resin binder using the liquid resol resin of the present invention in combination as a crosslinking agent for a conventional solid phenolic resin binder has a higher performance than the conventional novolak type phenolic resin binder. It has extremely excellent curing performance and can significantly reduce the generation of harmful gases, so it not only improves the working environment, but also improves work efficiency and reduces pollution control costs. Further, when the liquid resol resin is used in combination as a modifier, it has remarkable effects such as being able to significantly improve curing performance compared to conventional solid phenol resin binders. Furthermore, since the liquid resol resin according to the present invention has excellent storage stability, it is extremely useful when used on an industrial scale.

本発明により得られるフェノール系結合剤は、シェルモ
ールド用に好適に用いられるほか、例えば鋳型又は中子
接着用、押湯保温材用、カーボン材、グラファイト材、
不焼成レンガ材、高炉閉塞材などの耐火物用、パーティ
クルボード、ファイバーボード、ミネラルボード、合板
などの建築部材用、工業用積層材用、成形材料用、砥石
用、摩擦材料用、無機系繊維断熱材用、セラミックス用
などの各種用途における工業用樹脂結合剤としても好適
に用いられる。
The phenolic binder obtained by the present invention is suitably used for shell molds, and also for adhesion of casting molds or cores, for riser heat insulation materials, carbon materials, graphite materials,
For refractories such as unfired brick materials and blast furnace plugging materials, for building materials such as particle board, fiberboard, mineral board, and plywood, for industrial laminated materials, for molding materials, for grinding wheels, for friction materials, and inorganic fibers. It is also suitably used as an industrial resin binder in various applications such as heat insulating materials and ceramics.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ水性媒体の存在下、フェノール系化合物と
ホルムアルデヒドとをモル比1:3ないし1:8の割合
で縮合反応させ、得られた反応混合物を酸でpH4〜7
に調整したのち、この中にアンモニア及びアンモニウム
塩の中から選ばれた少なくとも1種の化合物を加えて処
理し遊離ホルムアルデヒドをヘキサメチレンテトラミン
に変換させて、実質上遊離ホルムアルデヒドを含まない
液状レゾール型フェノール樹脂を得、次いでこれを、ノ
ボラック型フェノール樹脂、レゾール型フェノール樹脂
及びベンジルエーテル型フェノール樹脂の中から選ばれ
た少なくとも1種の固形フェノール樹脂に対し、該液状
レゾール型フェノール樹脂(固形分換算)が固形分全重
量に基づき少なくとも2重量%になる割合で配合するこ
とを特徴とするフェノール系樹脂結合剤の製造方法。
1 In the presence of an alkaline aqueous medium, a phenolic compound and formaldehyde are subjected to a condensation reaction at a molar ratio of 1:3 to 1:8, and the resulting reaction mixture is adjusted to pH 4 to 7 with an acid.
Then, at least one compound selected from ammonia and ammonium salts is added to the mixture to convert free formaldehyde into hexamethylenetetramine, thereby producing a liquid resol-type phenol substantially free of free formaldehyde. A resin is obtained, and then this liquid resol type phenol resin (in terms of solid content) is added to at least one solid phenol resin selected from novolac type phenol resin, resol type phenol resin, and benzyl ether type phenol resin. A method for producing a phenolic resin binder, characterized in that the binder is blended in a proportion of at least 2% by weight based on the total solid weight.
JP12778186A 1986-06-02 1986-06-02 Method for producing phenolic resin binder Expired - Fee Related JPH0725990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12778186A JPH0725990B2 (en) 1986-06-02 1986-06-02 Method for producing phenolic resin binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12778186A JPH0725990B2 (en) 1986-06-02 1986-06-02 Method for producing phenolic resin binder

Publications (2)

Publication Number Publication Date
JPS62285945A true JPS62285945A (en) 1987-12-11
JPH0725990B2 JPH0725990B2 (en) 1995-03-22

Family

ID=14968521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12778186A Expired - Fee Related JPH0725990B2 (en) 1986-06-02 1986-06-02 Method for producing phenolic resin binder

Country Status (1)

Country Link
JP (1) JPH0725990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133142A (en) * 1987-12-24 1990-05-22 Sumitomo Durez Co Ltd Binder composition for casting mold
EP0588013A2 (en) * 1992-09-17 1994-03-23 Bakelite AG Aqueous resole solution, process for its preparation and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133142A (en) * 1987-12-24 1990-05-22 Sumitomo Durez Co Ltd Binder composition for casting mold
EP0588013A2 (en) * 1992-09-17 1994-03-23 Bakelite AG Aqueous resole solution, process for its preparation and use
EP0588013A3 (en) * 1992-09-17 1994-11-17 Ruetgerswerke Ag Aqueous resole solution, process for its preparation and use.

Also Published As

Publication number Publication date
JPH0725990B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US4794051A (en) Low shrinkage phenolic molding compositions
US5032642A (en) Phenolic resin compositions
US5910521A (en) Benzoxazine polymer composition
JP4119515B2 (en) Resin coated sand for mold
US4337334A (en) Process for production of phenolic resin from bisphenol-A by-products
JPS62285945A (en) Production of phenolic resin binder
JPS62127140A (en) Resin coated sand for shell mold
EP0869980B1 (en) Reactive diluents for acid curable phenolic compositions
JP6736313B2 (en) Mold molding kit and method for manufacturing sand composition for mold molding
US4371649A (en) Process for binding aggregates with a vacuum-activated catalyst
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JPH06136082A (en) Production of phenolic resin
JP4129508B2 (en) Refractory binder
JP2001131253A (en) Method for manufacturing water-soluble phenolic resin
JPS63132917A (en) Production of quick-curing phenolic resin
JPH0859957A (en) Carbon-based composition obtained from phenol resin, binder and molded article
JPH05148409A (en) Phenolic resin molding material
WO1997049513A1 (en) Caking additive composition for forming self-hardening mold
JPH03103417A (en) Production of self-curing phenolic resin
JPH04189812A (en) Method for preparing novolak type aromatic hydrocarbon-formaldehyde resin, epoxy resin curing agent and epoxy resin composition
JP2804419B2 (en) Binder composition for mold
JPS6119330B2 (en)
JP3062211B2 (en) Method for producing self-curing phenolic resin
JPS6327103B2 (en)
JP6652050B2 (en) Phenol resin composition and cured phenol resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees