JPS62285002A - Optical displacement sensor - Google Patents

Optical displacement sensor

Info

Publication number
JPS62285002A
JPS62285002A JP12951786A JP12951786A JPS62285002A JP S62285002 A JPS62285002 A JP S62285002A JP 12951786 A JP12951786 A JP 12951786A JP 12951786 A JP12951786 A JP 12951786A JP S62285002 A JPS62285002 A JP S62285002A
Authority
JP
Japan
Prior art keywords
light
displacement
amount
scattered light
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12951786A
Other languages
Japanese (ja)
Inventor
Tetsuo Adachi
哲郎 足立
Takashi Miyoshi
隆志 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12951786A priority Critical patent/JPS62285002A/en
Publication of JPS62285002A publication Critical patent/JPS62285002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To enable highly accurate measurement of an amount of displacement economically, by obtaining the amount of displacement using two detecting signals. CONSTITUTION:A sensor is composed of cylindrical glass bolts 6a, 6b provided with light-receiving surfaces exposed to the bottom of a light guide holder 3 and light-receiving elements 7a, 7b arranged on the upper ends of them. These bolts 6a, 5b guide beams of light irradiated from the bottom surfaces of them to the elements 7a, 7b. By these arrangements, a displacement of a specimen relative to the reference point P causes increase or decrease of quantity of scattered light in accordance with this displacement. This is amplified 13 and converted by a detecting circuit 14 to a displacement quantity signal for issuance as an output. This signal represents a displacement value obtained based upon a quantity of the scattered light. Consequently, 12 the displacement quantity signal issued out of the circuit 14 is obtained based upon two quantities of the scattered light, high accuracy can be available. Further, highly accurate displacement amount signal unaffected by the change of the quantity of scattered light can be produced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は被測定対象物の変位量を非接触で光学的に検出
する光学式変位量センサに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical displacement sensor that optically detects the displacement of an object to be measured in a non-contact manner.

〔従来の技術〕[Conventional technology]

従来から、被測定対象物(以下、対象物という)に照射
した光の散乱光から変位検出するものが提案されている
。例えば実開昭61−30878号においては、1つの
発光素子と2つの受光素子とを組み合わせ、対象物から
の反射光量を2つの受光素子の受光量として検出し検出
信号を出力するものが提案されている。また、第8図に
示す様に発光ダイオード81の光をレンズ82を通して
対象物に照射し、散乱した反射光を受光レンズ83によ
り光位置検出素子84上にスポットとして結像させるも
のがある。これは対象物の変位に伴ってスポットの位置
が移動することを利用して、対象物の変位を検出するも
のである。
BACKGROUND ART Conventionally, methods have been proposed that detect displacement from scattered light of light irradiated onto an object to be measured (hereinafter referred to as the object). For example, Utility Model Application No. 61-30878 proposes a device that combines one light-emitting element and two light-receiving elements, detects the amount of light reflected from an object as the amount of light received by the two light-receiving elements, and outputs a detection signal. ing. Furthermore, as shown in FIG. 8, there is a device in which light from a light emitting diode 81 is irradiated onto an object through a lens 82, and the scattered reflected light is imaged as a spot on an optical position detection element 84 by a light receiving lens 83. This detects the displacement of the object by utilizing the fact that the spot position moves with the displacement of the object.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前者のように反射光量を用いるものは、安価
なシステムが構成できるが、対象物の表面状態等により
反射光量が変化するため、高精度な測定が難しいという
問題点がある。また後者は、反射光のスポットの位置を
直接測定するため、比較的高価な光位置検出素子、ある
いは信号処理回路等が必要となり、全体として高価なシ
ステムとなりやすいという問題点がある。
However, although the former method, which uses the amount of reflected light, can construct an inexpensive system, it has the problem that highly accurate measurement is difficult because the amount of reflected light changes depending on the surface condition of the object. Furthermore, since the latter method directly measures the position of the spot of reflected light, it requires a relatively expensive optical position detection element or a signal processing circuit, resulting in a problem that the system as a whole tends to be expensive.

本発明は上記問題点に鑑みてなされたもので、安価で、
しかも精度の良い変位量の測定が可能な光学式変位量セ
ンサを提供することを目的とする。
The present invention was made in view of the above problems, and is inexpensive.
Moreover, it is an object of the present invention to provide an optical displacement sensor that can measure displacement with high accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、 被測定対象物に向かって光を照射する発光手段と、 被測定対象物からの散乱光を透過すべく第1゜第2の検
出穴の形成されたマスク部材と、前記マスク部材の前記
第1検出穴から透過した前記散乱光を受けて、この散乱
光量に応じた第1検出信号を出力し、かつ前記被測定対
象物が前記発光手段から遠方に変位するとこの変位量に
応じて前記散乱光量が増加する位置に設けられる第1受
光手段と、 前記マスク部材の前記第2検出穴から透過した前記散乱
光を受けて、この散乱光量に応じた第2検出信号を出力
し、かつ前記被測定対象物が前記発光手段から遠方に変
位するとこの変位量に応じて前記散乱光量が減少する位
置に設けられる第2受光手段と、 前記第1.第2検出信号を入力して、この第1゜第2検
出信号に基づいて前記被測定対象物の変位量を求める検
出回路と を備えることを特徴とする。
In order to achieve the above object, the present invention includes a light emitting means for irradiating light toward an object to be measured, and a first and second detection hole formed to transmit scattered light from the object to be measured. receiving the scattered light transmitted through the mask member and the first detection hole of the mask member, and outputting a first detection signal according to the amount of the scattered light; and the object to be measured is located far from the light emitting means. a first light receiving means provided at a position where the amount of scattered light increases according to the amount of displacement when the mask member is displaced; a second light receiving means that outputs a second detection signal and is provided at a position where the amount of scattered light decreases in accordance with the amount of displacement when the object to be measured is displaced away from the light emitting means; The present invention is characterized by comprising a detection circuit which receives a second detection signal and calculates the amount of displacement of the object to be measured based on the first and second detection signals.

〔発明の作用・効果〕[Action/effect of the invention]

本発明の上記構成によれば、対□象物が前記発光手段よ
り遠方に変位すると、第1受光手段はその変位量に応じ
て増加する散乱光量に対応した第1検出信号を出力し、
第2受光手段はその変位量に応じて減少する散乱光量に
対応した第2検出信号を出力する。よって前記検出回路
は、第1.第2検出信号、つまり2つの検出信号に基づ
いて対象物の変位量を求める泥め、精度の良い測定がで
きる。また、前記第1.第2受光手段は、単に散乱光量
に対応した検出信号を出力するものが用いることができ
るため、本発明は従来の様にスポット位置を直接測定す
る比較的高価な光位置検出を必要とせず、安価なセンサ
を提供することができる。
According to the above configuration of the present invention, when the target object is displaced away from the light emitting means, the first light receiving means outputs the first detection signal corresponding to the amount of scattered light that increases according to the amount of displacement,
The second light receiving means outputs a second detection signal corresponding to the amount of scattered light that decreases in accordance with the amount of displacement thereof. Therefore, the detection circuit has the first. It is possible to measure the displacement of the object with high accuracy based on the second detection signal, that is, the two detection signals. In addition, the above-mentioned No. 1. Since the second light receiving means can be one that simply outputs a detection signal corresponding to the amount of scattered light, the present invention does not require relatively expensive optical position detection that directly measures the spot position as in the past. An inexpensive sensor can be provided.

〔実施例〕〔Example〕

以下本発明の第1実施例を図面に基づいて説明する。 A first embodiment of the present invention will be described below based on the drawings.

第1図は第1実施例の側面断面図、第2図は第1図のイ
矢視図、第3図は第1実施例の光学素子の配置を示す模
式構成図、第4図、第5図は作用説明に供する原理図、
第6図は出力特性を示す特性図である。
1 is a side cross-sectional view of the first embodiment, FIG. 2 is a view in the direction of the arrow in FIG. 1, FIG. 3 is a schematic configuration diagram showing the arrangement of optical elements of the first embodiment, Figure 5 is a principle diagram used to explain the action.
FIG. 6 is a characteristic diagram showing the output characteristics.

第1図、第2図において、符号1はマスク部材となるマ
スク板で、マスク板1には直径数鰭の円形の第1検出穴
1a、第2検出六1b、光照射穴ICが形成されている
。ここで第1検出穴1aと第2樟出穴1bは同一直径で
、光照射穴1cより小さい直径に設定されている。マス
ク板1は先端ベース2の円筒部2aと同軸的に固着され
、先端ベース2は4本のビス11によって光ガイドホル
ダ3に一体に固定されている。
In FIGS. 1 and 2, reference numeral 1 denotes a mask plate serving as a mask member, and the mask plate 1 has a circular first detection hole 1a, a second detection hole 1b, and a light irradiation hole IC each having a diameter of several fins. ing. Here, the first detection hole 1a and the second camphor hole 1b have the same diameter, and are set to a smaller diameter than the light irradiation hole 1c. The mask plate 1 is fixed coaxially to the cylindrical portion 2a of the tip base 2, and the tip base 2 is integrally fixed to the light guide holder 3 with four screws 11.

光ガイドホルダ3の上端部にはレンズホルダ4が固定さ
れるとともに、その外周に沿ってホルダ3.4の上部を
覆うセンサカバー5が固定されている。
A lens holder 4 is fixed to the upper end of the light guide holder 3, and a sensor cover 5 that covers the upper part of the holder 3.4 is fixed along its outer periphery.

光ガイドホルダ3には、ホルダ3の下端に露出した受光
面を有する円柱ガラス棒6a、6b及びガラス棒6a、
6bのそれぞれの上端面に近接して同軸的に配置された
受光素子7a、7bが設けられている。ガラス棒5a、
6bはその下端面から入射する光を、その上端面側に設
けられた受光素子7a、7bに導くもので、直径4鶴程
度の石英ガラス棒を用いている。また、受光素子7a。
The light guide holder 3 includes cylindrical glass rods 6a and 6b having light-receiving surfaces exposed at the lower end of the holder 3, and a glass rod 6a.
Light receiving elements 7a and 7b are provided coaxially and close to the upper end surface of each of the light receiving elements 6b. glass rod 5a,
Reference numeral 6b guides light incident from the lower end surface to light receiving elements 7a and 7b provided on the upper end surface side, and uses a quartz glass rod with a diameter of about 4 cranes. Moreover, the light receiving element 7a.

7bは受光量に応じた電気検出信号を出力する素子で、
例えばシリコンホトダイオードを用いる。
7b is an element that outputs an electrical detection signal according to the amount of received light;
For example, a silicon photodiode is used.

ここでガラス棒6aと受光素子7aにより第1受光手段
が構成され、ガラス棒6bと受光素子7bにより第2受
光手段が構成される。
Here, the glass rod 6a and the light receiving element 7a constitute a first light receiving means, and the glass rod 6b and the light receiving element 7b constitute a second light receiving means.

レンズホルダ4には、発光素子8、集光用凸レンズ9、
レンズ押さえリング10が同軸的に設けられている。こ
こで発光素子8から発光された光は、レンズ9、光ガイ
ドホルダ3の中央円筒部3a、マスク板1の光照射穴I
Cを介して被測定対象物に照射されるように、上記構成
が配設されている。尚、12は受光素子lOの駆動回路
、13は受光素子7a、7bの検出信号を増幅する増幅
回路、14は受光素子7a、7bからの検出信号に基づ
いて対象物の変位に応じた出力信号を出力する検出回路
である。
The lens holder 4 includes a light emitting element 8, a convex condensing lens 9,
A lens holding ring 10 is provided coaxially. Here, the light emitted from the light emitting element 8 is transmitted through the lens 9, the central cylindrical portion 3a of the light guide holder 3, and the light irradiation hole I of the mask plate 1.
The above configuration is arranged so that the object to be measured is irradiated with the light through C. In addition, 12 is a drive circuit for the light receiving element 1O, 13 is an amplifier circuit for amplifying the detection signals of the light receiving elements 7a and 7b, and 14 is an output signal according to the displacement of the object based on the detection signals from the light receiving elements 7a and 7b. This is a detection circuit that outputs .

次に第3図〜第5図に基づいて、上記光学素子の配置を
詳細に説明する。
Next, the arrangement of the optical elements will be explained in detail based on FIGS. 3 to 5.

第3図において、発光素子8、レンズ9等により構成さ
れる発光手段の照射光の光軸をlとすると、マスク板1
の第1検出穴1aと第2検出六1bは光軸lに対して線
対称の位置に、その中心がある。また光軸!上の基準点
Pと第1検出穴1aの中心、基準点Pと第2検出六1b
の中心をそれぞれ結び延長した線を基準線m、nとする
と、ガラス棒6a、6bはそれぞれ基準線m、nと平行
で、かつQ、 Rにて外接するように配設されている。
In FIG. 3, if the optical axis of the irradiated light from the light emitting means constituted by the light emitting element 8, lens 9, etc. is l, then the mask plate 1
The centers of the first detection hole 1a and the second detection hole 1b are symmetrical with respect to the optical axis l. Another optical axis! The upper reference point P and the center of the first detection hole 1a, the reference point P and the second detection hole 1b
Assuming that the lines obtained by connecting and extending the centers of are reference lines m and n, the glass rods 6a and 6b are arranged parallel to the reference lines m and n, respectively, and circumscribed at Q and R, respectively.

ここでガラス棒6aは基準線mに対して光軸lの方向、
つまり内側にて外接するように配設され、一方ガラス棒
6bは基準線nに対して光軸lと反対方向、つまり外側
にて外接するように配設されている。尚、基準点Pと外
接点Qの距離、及び基準点Pと外接点Rの距離は、等距
離にすることが好ましいが、これらの距離が異なる時は
、ガラス棒6a、6bの直径を変更して受光素子7a。
Here, the glass rod 6a is in the direction of the optical axis l with respect to the reference line m,
In other words, the glass rod 6b is arranged so as to be circumscribed on the inside, while the glass rod 6b is arranged so as to be circumscribed on the outside in a direction opposite to the optical axis l with respect to the reference line n. It is preferable that the distance between the reference point P and the external contact point Q and the distance between the reference point P and the external contact point R be equal distances, but if these distances are different, the diameters of the glass rods 6a and 6b may be changed. and the light receiving element 7a.

7bの受光量が等しくなるように調整すればよい。Adjustment may be made so that the amount of light received by the light beams 7b becomes equal.

第4図は上記位置関係を示す模式図であって、図中符号
6a、6bはガラス棒6a、6bの下端面の受光口、つ
まり第1受光手段、第2受光手段の検出スポット領域(
以下検出スポットという)を示す。このように第1受光
手段の検出スポット6aは基準線mと外接し、かつ光軸
β側(内側)に位置し、一方第2受光手段の検出スボッ
)6bは基準線lと外接し、かつ光軸βと反対方向(外
側)に位置するように配置されることになる。
FIG. 4 is a schematic diagram showing the above-mentioned positional relationship, and symbols 6a and 6b in the figure represent light receiving ports on the lower end surfaces of the glass rods 6a and 6b, that is, detection spot areas of the first light receiving means and the second light receiving means (
(hereinafter referred to as a detection spot). In this way, the detection spot 6a of the first light receiving means circumscribes the reference line m and is located on the optical axis β side (inside), while the detection spot 6b of the second light receiving means circumscribes the reference line l, and It is arranged so as to be located in the opposite direction (outside) to the optical axis β.

次に上記構成に基づいて第4図、第5図、第6図等でそ
の作用を説明する。今、第4図の基準点Pを含む平面に
均一散乱面を有する対称物が存在すると、発光素子8か
ら光軸lに沿って対象物に照射された照射光は、対象物
上(点P)で均一散乱光として反射される。散乱光はマ
スク板1の第1検出穴1a、第2検出六1bを介して、
それぞれ基準線m、nに沿って進み、検知スポット6a
Next, the operation will be explained based on the above configuration with reference to FIGS. 4, 5, 6, etc. Now, if there is a symmetrical object having a uniform scattering surface on a plane including the reference point P in FIG. ) is reflected as uniformly scattered light. The scattered light passes through the first detection hole 1a and the second detection hole 1b of the mask plate 1,
Proceeding along the reference lines m and n, respectively, to the detection spot 6a
.

6bの近傍で散乱光スポットを形成する。散乱光スポッ
トの領域は点Q、  Rを中心とする点線円にて図示さ
れ、この散乱光スポットを検出スポット6a、6bとが
重なる部分の面積が、受光素子7a、7bが受光する受
光量に対応し、これは斜線で図示されている。このよう
に対象物が基準点Pに存在すると、第5図(ii)に示
す様に、検出スポット6a、6bは等しい面積の散乱光
、つまり同一光量の散乱光を受光する。
A scattered light spot is formed near 6b. The area of the scattered light spot is illustrated by a dotted circle centered on points Q and R, and the area where this scattered light spot overlaps with the detection spots 6a and 6b is determined by the amount of light received by the light receiving elements 7a and 7b. Correspondingly, this is illustrated with diagonal lines. When the object is present at the reference point P in this manner, the detection spots 6a and 6b receive scattered light of equal area, that is, the same amount of scattered light, as shown in FIG. 5(ii).

ここで、第4図の基準点Pより下方向(黒色矢印方向)
に対象物が変位すると、2つの散乱光スポットは共に内
側方向(黒色矢印方向)へ変位する。すると基準線mよ
り内側になる検出スポット6aでは散乱光量(ρA)が
増加し、基準線nより外側にある検出スポット6bでは
散乱光量(ρ8)が減少する。一方、対象物が基準点P
より上方向(白色矢印方向)へ変位すると、散乱光スポ
ットは逆方向(白色矢印方向)へ変位し、検出スポット
6a、検出スポット6bでの散乱光量は上述と逆に変化
する。
Here, below the reference point P in Fig. 4 (in the direction of the black arrow)
When the object is displaced, both of the two scattered light spots are displaced inward (in the direction of the black arrow). Then, the amount of scattered light (ρA) increases at the detection spot 6a located inside the reference line m, and the amount of scattered light (ρ8) decreases at the detection spot 6b located outside the reference line n. On the other hand, the object is the reference point P
When displaced further upward (in the direction of the white arrow), the scattered light spot is displaced in the opposite direction (in the direction of the white arrow), and the amount of scattered light at the detection spot 6a and the detection spot 6b changes in the opposite manner to that described above.

第5図は検出スポット5a、5bと、対象物の変位に伴
う散乱光スポットの変位位置を示す。第5図(i)は対
象物が上方向に変位して散乱光スポットが最も外側に位
置した状態を示し、第5図(ii )は基準点Pに対象
物が存在する時の散乱光スポットの位置を示し、第5図
(iii )は対象物が下方向に変位して散乱光スポッ
トが最も内側に位置した状態を示す。
FIG. 5 shows the detection spots 5a and 5b and the displacement position of the scattered light spot due to the displacement of the object. Figure 5 (i) shows a state where the object is displaced upward and the scattered light spot is located at the outermost position, and Figure 5 (ii) shows the scattered light spot when the object is present at the reference point P. FIG. 5(iii) shows a state in which the object is displaced downward and the scattered light spot is located at the innermost position.

第6図は、基準点Pに対する対象物の変位量と、検出ス
ポット6a、6bで受光されるそれぞれの散乱光量ρ1
.ρ、の関係を示す。尚、変位量は基準点Pに対して下
方向の変位を正の値とし、散乱光量ρ、、ρ、は検出ス
ポットと散乱光スポットが一致した時の散乱光量を1.
0としている。
FIG. 6 shows the amount of displacement of the object with respect to the reference point P and the amount of scattered light ρ1 received at the detection spots 6a and 6b.
.. The relationship between ρ and ρ is shown. Note that the amount of displacement is defined as the downward displacement with respect to the reference point P as a positive value, and the amount of scattered light ρ,, ρ is the amount of scattered light when the detection spot and the scattered light spot coincide with 1.
It is set to 0.

以上述べた様に対象物が基準点Pに対して変位すると、
受光素子7a、7bは第6図に示す散乱光量ρ、、ρ、
にそれぞれ対応した光を受光して検出信号を出力する。
As mentioned above, when the object is displaced with respect to the reference point P,
The light receiving elements 7a and 7b have scattered light amounts ρ, ρ, shown in FIG.
It receives light corresponding to each and outputs a detection signal.

つまり受光素子7aは、この変位に伴って散乱受光量(
ρA)が増加し、受光素子7bは、変位に伴って散乱受
光量(ρ、)が減少する。これは増幅回路13で増幅さ
れ、検出回路14で変位量信号に変換されて出力される
In other words, the light receiving element 7a receives scattered light (
ρA) increases, and the amount of scattered light received by the light receiving element 7b (ρ,) decreases as the light receiving element 7b is displaced. This is amplified by the amplifier circuit 13, converted into a displacement amount signal by the detection circuit 14, and output.

変位量信号は、散乱光量ρヶ、ρ、に基づいて求められ
る変位量値ρ、−ρ1、又は(ρ8−ρヶ)/(ρ、+
ρm)である。よって検出回路14から出力された変位
量信号は、2つの散乱光量ρ、。
The displacement signal is a displacement value ρ, −ρ1, or (ρ8−ρ)/(ρ, +
ρm). Therefore, the displacement amount signal output from the detection circuit 14 has two scattered light amounts ρ.

ρ、に基づいて求められるため精度が高い、又変位量信
号を(ρ8−ρA)/(ρ、十ρ8)とすると、散乱光
量の変化つまり対象物の反射率変化に依存することのな
い精度良い変位量信号を出力することができる。
The accuracy is high because it is calculated based on ρ, and if the displacement signal is (ρ8-ρA)/(ρ, 10ρ8), the accuracy is independent of changes in the amount of scattered light, that is, changes in the reflectance of the object. A good displacement signal can be output.

次に第7図に基づいて第2実施例を説明する。Next, a second embodiment will be described based on FIG.

これは前記第1実施例の発光素子8の代りに、外部に設
けられた発光源から光を、その端面まで導く発光用光フ
ァイバ18を用い、またガラス棒6a、6bと受光素子
7a、7bの代りに、受光用光ファイバ16a、16b
を用いて、対象物からの散乱光をセンサの外部まで導い
て、外部に設けられた受光素子(図示せず)によって散
乱光を検出するものである。尚、それらの光学的な配置
関係は第1実施例と同様であるので説明は省略する。
In this embodiment, instead of the light emitting element 8 of the first embodiment, a light emitting optical fiber 18 is used which guides light from an external light source to its end face, and glass rods 6a, 6b and light receiving elements 7a, 7b are used. Instead, the light-receiving optical fibers 16a, 16b
is used to guide scattered light from an object to the outside of the sensor, and the scattered light is detected by a light receiving element (not shown) provided outside. Incidentally, since the optical arrangement relationship thereof is the same as that in the first embodiment, a description thereof will be omitted.

このように光ファイバを用いることで受、発光素子をセ
ンサ本体部分から分離して配置できるので、本体部分を
小型化にできる等のメリットがある。
By using an optical fiber in this manner, the receiving and light emitting elements can be arranged separately from the sensor main body, which has the advantage of allowing the main body to be made smaller.

尚、上述した実施例においては、マスク1に設けられた
第1検出穴1a、第2検出六1bは光軸lに対して線対
称に設けたが、非対称の位置に設けてもよい。ただし、
このとき検出穴の位置に対応して、受光側の光学素子の
配置も変更し、第6図に示す特性を得るように適切に配
置変更する。
In the embodiment described above, the first detection hole 1a and the second detection hole 1b provided in the mask 1 are provided line-symmetrically with respect to the optical axis l, but they may be provided in asymmetrical positions. however,
At this time, the arrangement of the optical element on the light receiving side is also changed in accordance with the position of the detection hole, and the arrangement is appropriately changed so as to obtain the characteristics shown in FIG.

また、前述した実施例の□第1検出穴1a、第2検出六
1bの代りに光学レンズを用いてもよい。
Further, an optical lens may be used in place of the first detection hole 1a and the second detection hole 1b in the above-described embodiment.

例えば適当な焦点距離を持つ凸レンズを用いることによ
り、対象物からの散乱光スポットの変位を拡大して、高
精度に測定することもできる。
For example, by using a convex lens with an appropriate focal length, the displacement of the scattered light spot from the object can be magnified and measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す側面断面図、第2図
は第1図のイ矢視図、第3図は第1図の光学素子の配置
を示す模式構成図、第4図、第5図は作用の説明に供す
る原理図、第6図は対象物の変位量に対して受光素子(
7a、  7 b)が受光する散乱光量(ρ4.ρ8)
の特性を示す特性図、第7図は本発明の第2実施例を示
す側面断面図、第8図は従来の一例を示す模式構成図で
ある。 1・・・第1検出穴(1a)と第2検出穴(1b)を有
するマスク、5a、5a・・・第1受光手段を構成する
ガラス棒と受光素子、6b、7b・・・第2受光手段を
構成するガラス棒と受光素子、8・・・発光素子、9・
・・集光レンズ。 代理人弁理士 岡  部   隆 O 第4図 第5図 釦該渣PA、h 第6図 第7図 j 第8図
1 is a side cross-sectional view showing a first embodiment of the present invention, FIG. 2 is a view in the direction of the arrow in FIG. 1, FIG. 3 is a schematic configuration diagram showing the arrangement of the optical elements in FIG. 1, and FIG. Figure 5 is a principle diagram used to explain the action, and Figure 6 shows how the light receiving element (
Amount of scattered light received by 7a, 7b) (ρ4.ρ8)
FIG. 7 is a side sectional view showing a second embodiment of the present invention, and FIG. 8 is a schematic configuration diagram showing a conventional example. 1... Mask having a first detection hole (1a) and a second detection hole (1b), 5a, 5a... Glass rod and light receiving element constituting the first light receiving means, 6b, 7b... Second Glass rod and light receiving element constituting the light receiving means, 8... Light emitting element, 9...
··Condenser lens. Representative patent attorney Takashi Okabe O Figure 4 Figure 5 Button PA, h Figure 6 Figure 7 j Figure 8

Claims (1)

【特許請求の範囲】  被測定対象物に向かって光を照射する発光手段と、 被測定対象物からの散乱光を透過すべく第1、第2の検
出穴の形成されたマスク部材と、 前記マスク部材の前記第1検出穴から透過した前記散乱
光を受けて、この散乱光量に応じた第1検出信号を出力
し、かつ前記被測定対象物が前記発光手段から遠方に変
位するとこの変位量に応じて前記散乱光量が増加する位
置に設けられた第1受光手段と、 前記マスク部材の前記第2検出穴から透過した前記散乱
光を受けて、この散乱光量に応じた第2検出信号を出力
し、かつ前記被測定対象物が前記発光手段から遠方に変
位するとこの変位量に応じて前記散乱光量が減少する位
置に設けられる第2受光手段と、 前記第1、第2検出信号を入力して、この第1、第2検
出信号に基づいて前記被測定対象物の変位量を求める検
出回路と を備えることを特徴とする光学式変位量センサ。
[Scope of Claims] A light emitting means for irradiating light toward an object to be measured; a mask member in which first and second detection holes are formed to transmit scattered light from the object to be measured; Upon receiving the scattered light transmitted through the first detection hole of the mask member, a first detection signal corresponding to the amount of scattered light is output, and when the object to be measured is displaced away from the light emitting means, the amount of displacement is detected. a first light receiving means provided at a position where the amount of the scattered light increases in accordance with the amount of the scattered light; a second light receiving means provided at a position where the amount of scattered light decreases in accordance with the amount of displacement when the object to be measured is displaced away from the light emitting means; and inputting the first and second detection signals. and a detection circuit that determines the displacement of the object to be measured based on the first and second detection signals.
JP12951786A 1986-06-04 1986-06-04 Optical displacement sensor Pending JPS62285002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12951786A JPS62285002A (en) 1986-06-04 1986-06-04 Optical displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12951786A JPS62285002A (en) 1986-06-04 1986-06-04 Optical displacement sensor

Publications (1)

Publication Number Publication Date
JPS62285002A true JPS62285002A (en) 1987-12-10

Family

ID=15011454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12951786A Pending JPS62285002A (en) 1986-06-04 1986-06-04 Optical displacement sensor

Country Status (1)

Country Link
JP (1) JPS62285002A (en)

Similar Documents

Publication Publication Date Title
JP3450388B2 (en) Optical shape measuring device
JPH0314124B2 (en)
JPH06509415A (en) probe
EP0234562B1 (en) Displacement sensor
JPH0650743A (en) Electronic optical sensor for measuring straight-line value
JPS62285002A (en) Optical displacement sensor
JPH0249558Y2 (en)
JP3510215B2 (en) Tilt angle detecting device and tilt angle measuring method in one-dimensional measuring direction
JPH0786407B2 (en) Optical fiber movement amount measuring device
JPS58158619A (en) Adjusting method of photosensor
JPH0321502Y2 (en)
JPH01284742A (en) Surface defect detecting device
JPH0310729Y2 (en)
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
JPH0516509Y2 (en)
JPS6225210A (en) Distance detecting equipment
SU1471067A2 (en) Photoelectric transducer for alignment of parts
JP3955400B2 (en) Dimensional measuring device
SU603842A1 (en) Photoelectric meter of semiconductor plate deelection
JP3329950B2 (en) Optical displacement measuring device
SU1684594A2 (en) Instrument to control the quality of the cylindrical surface
SU1696853A1 (en) Optical relocation transducer
SU1765689A1 (en) Optical displacement transducer
JPH022902A (en) Posture control sensor
JPH03123812A (en) Surface wavy sensor