JP3329950B2 - Optical displacement measuring device - Google Patents

Optical displacement measuring device

Info

Publication number
JP3329950B2
JP3329950B2 JP19474694A JP19474694A JP3329950B2 JP 3329950 B2 JP3329950 B2 JP 3329950B2 JP 19474694 A JP19474694 A JP 19474694A JP 19474694 A JP19474694 A JP 19474694A JP 3329950 B2 JP3329950 B2 JP 3329950B2
Authority
JP
Japan
Prior art keywords
light
position detector
reflected
optical
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19474694A
Other languages
Japanese (ja)
Other versions
JPH0843019A (en
Inventor
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP19474694A priority Critical patent/JP3329950B2/en
Publication of JPH0843019A publication Critical patent/JPH0843019A/en
Application granted granted Critical
Publication of JP3329950B2 publication Critical patent/JP3329950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば光マイクロ(出
願人の登録商標)に代表される光変位測定装置に関す
る。すなわち、光源からの光を測定対象物に照射し、そ
の反射光を光検出素子で受光して位置ずれを検出し、測
定対象物の変位を測定する光変位測定装置であって、特
に反射光を光位置検出器で大きな入射角で受光する光変
位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement measuring device represented by, for example, an optical micro (registered trademark of the applicant). That is, an optical displacement measurement device that irradiates light from a light source onto a measurement object, receives the reflected light with a photodetector, detects a displacement, and measures the displacement of the measurement object. The present invention relates to an optical displacement measuring device that receives light at a large incident angle with an optical position detector.

【0002】[0002]

【従来の技術】測定対象物の変位を測定する方法とし
て、従来から三角測量方式といわれるものがある。出願
人により出願されている特願平5−109885には、
従来例として図5に示すような技術が開示されている。
光源13から照射された光を集光レンズ16で集光し、
この集光された光を投光レンズ14から測定対象物18
に斜めに照射して測定対象面に光スポットを作る。この
光スポットから反射、散乱した反射光を受光レンズ15
で集光し、光位置検出器17に導き、光位置検出器上に
光スポットの像を作る。
2. Description of the Related Art As a method of measuring a displacement of a measurement object, there is a method conventionally known as a triangulation method. Japanese Patent Application No. 5-109885 filed by the applicant includes:
As a conventional example, a technique as shown in FIG. 5 is disclosed.
The light emitted from the light source 13 is condensed by the condenser lens 16,
The collected light is transmitted from the light projecting lens 14 to the object 18 to be measured.
To form a light spot on the surface to be measured. The light reflected and scattered from the light spot is reflected by the light receiving lens 15.
To guide the light to the light position detector 17 to form an image of the light spot on the light position detector.

【0003】さらに、特願平5−109885には、従
来例の図5における投光レンズ14と受光レンズ15と
を図6に示すように1個の対物レンズ21にした技術が
開示されている。ここでは、光源19から照射された光
を出射レンズ20で集光し、この集光された光を対物レ
ンズ21から測定対象物18に照射して測定対象面に光
スポットを作る。この光スポットから反射、散乱した反
射光を対物レンズ18で集光し平行光束にして結像レン
ズ23に導き、結像レンズ23からの光軸に対して斜め
に配置された光位置検出器17上に光スポットの像を作
る。
Further, Japanese Patent Application No. 5-109885 discloses a technique in which the light projecting lens 14 and the light receiving lens 15 in FIG. 5 of the conventional example are replaced with one objective lens 21 as shown in FIG. . Here, the light emitted from the light source 19 is condensed by the emission lens 20, and the condensed light is irradiated from the objective lens 21 to the measurement object 18 to form a light spot on the measurement object surface. The reflected light scattered and reflected from this light spot is condensed by an objective lens 18 to be converted into a parallel light flux and guided to an imaging lens 23, and a light position detector 17 disposed obliquely with respect to the optical axis from the imaging lens 23. Make an image of the light spot on top.

【0004】ここでの光位置検出器17は、図7に示す
ようにポジション・センシティブ・デテクタ(PSD)
と呼ばれている光検出素子9を使用する。この光検出素
子9は、受光面上で結像された光スポットの位置を求め
ることができる電気信号を出力するものである。これに
よると、測定対象物18が図5中の矢印で示す方向に変
位すると、この変位に伴って光検出素子上での光スポッ
トの位置が変化し、相対的な光スポットの位置の比に比
例した電気信号を光検出素子の両端の出力端子から出力
する。この電気信号を演算、補正することにより、測定
対象物の位置を割り出し、変位量を求めることができ
る。具体的には図6に示すように、測定対象物18がa
1からa2へ変位するに伴って、結像レンズ23からの
光軸(光束の中心)に対して斜めに配置された光位置検
出器17への光スポットの位置が、b1からb2へと移
動する。
The light position detector 17 is a position sensitive detector (PSD) as shown in FIG.
The light detection element 9 called is used. The light detecting element 9 outputs an electric signal that can determine the position of the light spot formed on the light receiving surface. According to this, when the measuring object 18 is displaced in the direction indicated by the arrow in FIG. 5, the position of the light spot on the photodetector changes with this displacement, and the ratio of the relative position of the light spot is changed. A proportional electric signal is output from output terminals at both ends of the photodetector. By calculating and correcting this electric signal, the position of the object to be measured can be determined, and the displacement can be obtained. Specifically, as shown in FIG.
With the displacement from 1 to a2, the position of the light spot on the light position detector 17 arranged obliquely with respect to the optical axis (center of the light beam) from the imaging lens 23 moves from b1 to b2. I do.

【0005】ここで留意しておきたいことは、写真計測
の技術分野でシャインプルーグ条件として知られている
ピント合わせされた映像を得る技術がある(写真計測
法,昭和52年11月1日,共立出版株式会社発行)。
この条件からも明らかなように、本発明の光変位測定装
置では、光位置検出器の受光面への光の入射角は、測定
対象物への光の入射角を小さくするに伴ってこれを大き
くしなければならない。特に、光検出素子に入射する光
量を適当に維持し、かつ、結像光学系の収差を低減した
状態を得る条件として、図5のような光学系を採用した
光変位測定装置では、傾けて配置された光位置検出器に
入射する光の入射角は、おおむね60度以下になってい
た。
It should be noted that there is a technique for obtaining a focused image known as the Scheimpflug condition in the technical field of photo measurement (photo measurement method, November 1, 1977). , Published by Kyoritsu Publishing Co., Ltd.).
As is clear from this condition, in the optical displacement measuring device of the present invention, the angle of incidence of light on the light receiving surface of the optical position detector decreases as the angle of incidence of light on the object to be measured decreases. Must be bigger. In particular, as a condition for appropriately maintaining the amount of light incident on the photodetector and obtaining a state in which the aberration of the imaging optical system is reduced, the optical displacement measuring apparatus employing the optical system as shown in FIG. The incident angle of the light incident on the disposed light position detector was approximately 60 degrees or less.

【0006】ところが、特願平5−109885で開示
された図6のような光学系を採用すると、言い換えれば
投光レンズと受光レンズの機能を共用した光学系を採用
すると、レンズの開口数の制限から光位置検出器に入射
する光の入射角は80度程度になってしまう。
However, when an optical system as shown in FIG. 6 disclosed in Japanese Patent Application No. 5-109885 is adopted, in other words, when an optical system that shares the functions of a light projecting lens and a light receiving lens is adopted, the numerical aperture of the lens is reduced. Due to the limitation, the incident angle of light incident on the optical position detector is about 80 degrees.

【0007】[0007]

【発明が解決しようとする課題】このように、光学系の
必要性から光位置検出器へ入射する光の入射角を80度
程度とすることとなったが、これにより光位置検出器1
7の表面、つまり光検出素子9を覆っているコーティン
グ材11を透過する際の光学系の収差が大きくなり、全
体にわたって焦点が合いにくくなり、焦点の合わない部
分では検出精度が悪くなった。その上、入射角が大きく
なると、図7に示すように殆どの光が光位置検出器17
の表面で反射してしまい光検出素子9上で光スポットを
形成する光量が得られなくなった。
As described above, the incidence angle of light incident on the optical position detector is set to about 80 degrees due to the necessity of the optical system.
The aberration of the optical system when transmitting through the surface of the light-receiving element 7, that is, the coating material 11 covering the light-detecting element 9, was increased, and it was difficult to focus on the whole, and the detection accuracy was poor in the part where the light was not focused. In addition, when the incident angle increases, most of the light is emitted from the light position detector 17 as shown in FIG.
Then, the light was reflected on the surface of the photodetector 9 and the light quantity for forming a light spot on the photodetector 9 could not be obtained.

【0008】本発明は、上記課題を解決するためになさ
れたものであり、測定対象物の変位測定が精度良く行え
る光変位測定装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an optical displacement measuring device capable of measuring displacement of an object to be measured with high accuracy.

【0009】[0009]

【発明が解決するための手段】本発明の光変位測定装置
では、光源から測定対象物に光を照射し、光を照射され
た測定対象物からの反射光を光検出素子で受けて、光検
出素子からの出力値を演算することにより測定対象物の
変位量を測定する。上記目的を達成するために、この際
に特に留意した点は、入射角が大きい(例えば80度)
光が光検出素子上でスポットを形成できるようにした。
すなわち、光検出素子の受光面を覆うように光透過性部
材を備え、この光透過性部材は少なくとも反射光を受け
る入射面が光検出素子を中心とする球面状の一部を形成
しており、光透過性部材の入射面に対して垂直に入射し
た任意の反射光が実質的に全て光検出素子に入射される
ようにしたものである。
According to the optical displacement measuring apparatus of the present invention, a light source irradiates a measuring object with light, and reflected light from the illuminated measuring object is received by a light detecting element. The displacement of the measurement object is measured by calculating the output value from the detection element. At this time, in order to achieve the above object, a point to be noted is that the incident angle is large (for example, 80 degrees).
Light was allowed to form a spot on the photodetector.
That is, a light-transmitting member is provided so as to cover the light-receiving surface of the light-detecting element, and the light-transmitting member has at least an incident surface for receiving reflected light forming a part of a spherical shape centering on the light-detecting element. In this configuration, substantially all of the reflected light that is perpendicularly incident on the incident surface of the light transmitting member is incident on the photodetector.

【0010】[0010]

【作用】光源からの光はコリメートレンズにより平行光
束とされ、対物レンズを通して集光され測定対象物に照
射される。この対物レンズにより集光された光はレンズ
の光軸とある角度をなして測定対象物に照射される。照
射された光は測定対象物から反射し、この反射光は対物
レンズを通して平行光束となって結像レンズに導かれ
る。平行光束は結像レンズによって集光され、光検出素
子を覆っている光透過性部材を介して光検出素子上にス
ポットの像を形成する。光透過性部材への光の入射面は
光位置検出器の光検出素子を中心とした球面に形成され
ているから、入射面に対して法線方向から入射した光
は、実質的に全て光検出素子に集光される。したがっ
て、光検出素子に対して大きい入射角をもつ光も、表面
で反射されることがなく、光検出素子に到達できる。
The light from the light source is collimated by a collimating lens, condensed through an objective lens, and radiated onto a measurement object. The light condensed by the objective lens irradiates the measurement object at an angle with the optical axis of the lens. The irradiated light is reflected from the object to be measured, and the reflected light is guided to the imaging lens as a parallel light beam through the objective lens. The parallel light beam is condensed by the imaging lens and forms an image of a spot on the light detection element via a light transmitting member covering the light detection element. Since the light incident surface of the light transmitting member is formed as a spherical surface centering on the light detecting element of the light position detector, substantially all light incident from the normal direction to the incident surface is light. The light is focused on the detection element. Therefore, light having a large incident angle with respect to the light detecting element can reach the light detecting element without being reflected by the surface.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の実施例の構成を示す図である。光
源1から出射された光はコリメートレンズ2により平行
光束となり、パーシャルミラー3により方向を変えられ
て、そのエネルギー中心が対物レンズ4の光軸(中心
軸)に対し軸はずしに入射するようにする。一点鎖線は
対物レンズ4の光軸を示し、2点鎖線は入射光束のエネ
ルギ中心を示す。これにより対物レンズ4から測定対象
物5に向かう光束は対物レンズ4の光軸と角度θをなし
て照射される。照射された光の光スポットに一致させて
測定対象物の表面を置くと、その反射光は対物レンズ4
から平行光束となって出射され、結像レンズ6に導かれ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. The light emitted from the light source 1 is converted into a parallel light beam by the collimating lens 2, the direction is changed by the partial mirror 3, and the energy center of the light is incident off the optical axis (center axis) of the objective lens 4. . An alternate long and short dash line indicates the optical axis of the objective lens 4, and an alternate long and two short dash line indicates the energy center of the incident light beam. As a result, the light beam traveling from the objective lens 4 toward the measurement object 5 is emitted at an angle θ with the optical axis of the objective lens 4. When the surface of the object to be measured is placed in accordance with the light spot of the irradiated light, the reflected light is
The light is emitted as a parallel light beam from the lens and guided to the imaging lens 6.

【0012】反射光は結像レンズ6によって集光され、
光位置検出器7の光検出素子9上に光スポットの像が作
られる。この光位置検出器7は、光検出素子9を覆うよ
うに光透過性部材8が形成される(例えば、材質はアク
リル樹脂で光検出素子9を包み覆うように一体成形した
もの)。光透過性部材8への光の入射面は光位置検出器
7の光検出素子9を中心とした(厳密にいえば光検出素
子9の受光面の中央を中心とした)球面に形成されてい
るから、入射面に対して法線方向から入射した光は、実
質的に全て光検出素子9に集光される。したがって、光
検出素子9に対して大きい入射角をもつ光も、光検出素
子9を覆う部材、つまり光透過性部材8の表面で反射さ
れることがなく、光検出素子9に到達できる。
The reflected light is condensed by the imaging lens 6,
An image of the light spot is formed on the light detecting element 9 of the light position detector 7. In the light position detector 7, a light transmissive member 8 is formed so as to cover the light detection element 9 (for example, a material is integrally formed so as to cover and cover the light detection element 9 with an acrylic resin). The light incident surface of the light transmissive member 8 is formed into a spherical surface centered on the light detecting element 9 of the light position detector 7 (strictly speaking, centered on the center of the light receiving surface of the light detecting element 9). Therefore, substantially all the light incident on the incident surface from the normal direction is converged on the photodetector 9. Therefore, light having a large incident angle with respect to the light detecting element 9 can reach the light detecting element 9 without being reflected by the member covering the light detecting element 9, that is, the surface of the light transmitting member 8.

【0013】次に図2、図3に光位置検出器7の第2の
実施例を示す。光位置検出器7の光検出素子9を覆う光
透過性部材8の形状は、光検出素子9を中心とした球面
に形成されているが、結像レンズ6からの光が入射する
範囲だけ形成されていればよく、図2、図3に示すよう
に不必要な部分をカットしたものでも十分に機能を満足
する。
Next, FIGS. 2 and 3 show a second embodiment of the optical position detector 7. FIG. The shape of the light transmissive member 8 covering the light detecting element 9 of the light position detector 7 is formed in a spherical shape with the light detecting element 9 as a center, but formed only in a range where light from the imaging lens 6 is incident. It is sufficient that the unnecessary portions are cut as shown in FIGS. 2 and 3, and the function is sufficiently satisfied.

【0014】図4は光位置検出器7のその他の実施例を
示す。本実施例は、市販品の光位置検出器7を改造して
使用する場合のものである。一般的に光位置検出器7の
構成は基台10の上に光検出素子9が載置され、保護材
を兼ねた光透過性のコーティング材11により固定され
ている。このコーティング材11の上面に、光検出素子
9を中心とした球状に形成された光透過性部材8を、コ
ーティング材11と屈折率がほぼ同一の材質の接着剤1
2を用いて固定する。これにより同一の材質で形成され
た光透過性部材8を用いた場合と同等の性能を有し、光
検出素子9に対して大きい入射角をもつ光も、表面で反
射されることがなく、光検出素子9に到達できる。球状
の光透過性部材8は、成形あるいは切削によって作られ
るが、塊状の材料からへきかいさせたものを使用しても
よい。
FIG. 4 shows another embodiment of the optical position detector 7. In this embodiment, a commercially available optical position detector 7 is modified and used. In general, the configuration of the light position detector 7 is such that a light detecting element 9 is mounted on a base 10 and is fixed by a light transmitting coating material 11 also serving as a protective material. On the upper surface of the coating material 11, a light-transmitting member 8 formed in a spherical shape centering on the light detecting element 9 is bonded to an adhesive 1 made of a material having substantially the same refractive index as the coating material 11.
Fix using 2. Thereby, it has the same performance as the case where the light transmitting member 8 formed of the same material is used, and light having a large incident angle with respect to the light detecting element 9 is not reflected on the surface. The light detection element 9 can be reached. The spherical light-transmissive member 8 is formed by molding or cutting, but may be a material that is cleaved from a massive material.

【0015】[0015]

【発明の効果】この発明によれば光位置検出器の光検出
素子の受光面を光透過性部材で覆うようにし、光透過性
部材への光(変位を測定する測定対象物からの反射光)
の入射面は光位置検出器の光検出素子を中心とした球面
を形成し、したがって、入射面に対して法線方向から入
射した光は、実質的に全て光検出素子に集光されるよう
にした。したがって、光検出素子に対しては大きな入射
角をもつ光も、表面で反射されることがなく、光検出素
子に到達できるようにしたから、特願平5−10988
5で開示したような投光レンズと受光レンズを1つの対
物レンズとした構成をもち、光検出素子に対して高入射
角を必要とする光変位測定装置においても、収差のない
結像を可能とし、それによって高精度の変位測定ができ
るようになった。
According to the present invention, the light receiving surface of the light detecting element of the light position detector is covered with the light transmitting member, and the light (reflected light from the object to be measured for measuring the displacement) is reflected on the light transmitting member. )
Of the light position detector forms a spherical surface centered on the light detecting element of the light position detector, so that substantially all light incident from the normal direction to the incident surface is collected on the light detecting element. I made it. Accordingly, light having a large incident angle with respect to the light detecting element can reach the light detecting element without being reflected by the surface.
5. It has a configuration in which the light projecting lens and the light receiving lens are integrated into one objective lens as disclosed in No. 5, and enables image formation without aberration even in a light displacement measuring device that requires a high incident angle with respect to the light detecting element. This made it possible to measure displacement with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光変位測定装置の光学系の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an optical system of an optical displacement measuring device.

【図2】光位置検出器を示す平面図である。FIG. 2 is a plan view showing an optical position detector.

【図3】光位置検出器を示す正面図である。FIG. 3 is a front view showing an optical position detector.

【図4】光位置検出器のその他の実施例を示す図であ
る。
FIG. 4 is a diagram showing another embodiment of the optical position detector.

【図5】光変位測定装置の従来例を示す図である。FIG. 5 is a diagram showing a conventional example of an optical displacement measuring device.

【図6】光変位測定装置の従来例を示す図である。FIG. 6 is a diagram showing a conventional example of an optical displacement measuring device.

【図7】光位置検出器の従来例を示す図である。FIG. 7 is a diagram showing a conventional example of an optical position detector.

【符号の説明】[Explanation of symbols]

1…光源、2…コリメートレンズ、3…パーシャルミラ
ー、4…対物レンズ、5…測定対象物、6… 結像レン
ズ、7…光位置検出器、8…光透過性部材、9…光検出
素子、10…基台、11…コーティング材、12…接着
剤、
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Collimating lens, 3 ... Partial mirror, 4 ... Objective lens, 5 ... Measurement object, 6 ... Imaging lens, 7 ... Optical position detector, 8 ... Light transmissive member, 9 ... Light detection element , 10 ... Base, 11 ... Coating material, 12 ... Adhesive,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−57914(JP,A) 特開 昭62−126376(JP,A) 特開 昭61−265744(JP,A) 特開 昭62−69111(JP,A) 特開 平7−208918(JP,A) 特開 平6−300519(JP,A) 実開 平2−17708(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 G01C 3/00 - 3/32 G02B 7/28 - 7/40 G03B 13/32 - 13/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-57914 (JP, A) JP-A-62-126376 (JP, A) JP-A-61-265744 (JP, A) JP-A-62 69111 (JP, A) JP-A-7-208918 (JP, A) JP-A-6-300519 (JP, A) JP-A-2-17708 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 G01C 3/00-3/32 G02B 7/28-7/40 G03B 13/32-13/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象物(5)に光を照射する光源
(1)と、 光を照射された前記測定対象物からの反射光を斜めから
受けるように配置されたPSD(9)とを有し、該PS
からの出力値を演算することにより前記測定対処物の
変位量を測定する光変位測定装置において、 前記PSDの受光面を覆う光透過性部材(8)を備え、
この光透過性部材は少なくとも反射光を受ける入射面が
前記PSDの中央を中心とする球面状の一部を形成して
おり、前記入射面に対して垂直に入射した任意の前記反
射光が前記PSD上でスポットを形成するようになって
いることを特徴とする光変位測定装置。
1. A light source (1) for irradiating light to a measurement object (5), and reflected light from the measurement object irradiated with light is obliquely reflected.
And a PSD (9) arranged to receive the PS.
An optical displacement measuring device for measuring an amount of displacement of the object to be measured by calculating an output value from D , comprising: a light transmitting member (8) covering a light receiving surface of the PSD ;
The light transmitting member forms a part of a spherical incident surface for receiving at least a reflected light is centered on the center of the PSD, the any of the reflected light incident perpendicular to the incidence plane An optical displacement measuring device , wherein a spot is formed on a PSD .
JP19474694A 1994-07-27 1994-07-27 Optical displacement measuring device Expired - Fee Related JP3329950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19474694A JP3329950B2 (en) 1994-07-27 1994-07-27 Optical displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19474694A JP3329950B2 (en) 1994-07-27 1994-07-27 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JPH0843019A JPH0843019A (en) 1996-02-16
JP3329950B2 true JP3329950B2 (en) 2002-09-30

Family

ID=16329546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19474694A Expired - Fee Related JP3329950B2 (en) 1994-07-27 1994-07-27 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JP3329950B2 (en)

Also Published As

Publication number Publication date
JPH0843019A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
EP0273717B1 (en) Method and apparatus for noncontact automatic focusing
US6198862B1 (en) Optical position detector
EP0234562B1 (en) Displacement sensor
US4397547A (en) Lens module for an opto-electronic range finder
JP4133884B2 (en) Optical displacement measuring instrument
JP4127579B2 (en) Light wave distance meter
JP4652745B2 (en) Optical displacement measuring instrument
JP3329950B2 (en) Optical displacement measuring device
JPS63149513A (en) Optical displacement measuring method
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JP3200927B2 (en) Method and apparatus for measuring coating state
US5636189A (en) Astigmatic method for detecting a focussing error in an optical pickup system
JPS58139043A (en) Measuring device for condensing performance of lens
JPS6370110A (en) Distance measuring apparatus
US20240128385A1 (en) Light Receiving Device
JPH0321502Y2 (en)
JP3204726B2 (en) Edge sensor
JP2544789B2 (en) Optical displacement measuring device
JPH09236408A (en) Focal position detecting device
JPH08304019A (en) Focus detection apparatus
JP2722247B2 (en) measuring device
EP0509848A2 (en) Measuring the cross-sectional distribution of the refractive index of an optical waveguide
JPS62293103A (en) Surface displacement measuring instrument
JPH03123812A (en) Surface wavy sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees