JPS62284891A - Transmitter for excavation measured data - Google Patents

Transmitter for excavation measured data

Info

Publication number
JPS62284891A
JPS62284891A JP61124774A JP12477486A JPS62284891A JP S62284891 A JPS62284891 A JP S62284891A JP 61124774 A JP61124774 A JP 61124774A JP 12477486 A JP12477486 A JP 12477486A JP S62284891 A JPS62284891 A JP S62284891A
Authority
JP
Japan
Prior art keywords
signal
transmitting antenna
drill
secondary coil
electrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61124774A
Other languages
Japanese (ja)
Inventor
浅見 秀司
村木 義弘
片山 高麗生
荒嶋 徳正
水谷 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61124774A priority Critical patent/JPS62284891A/en
Publication of JPS62284891A publication Critical patent/JPS62284891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Support Of Aerials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野コ 本発明は、石油掘削やトンネル掘削時に計7fJ1した
データを伝送するための装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a device for transmitting a total of 7 fJ1 data during oil drilling or tunnel excavation.

[従来の技術] 例えば石油掘削時には、掘削を同等支障なく行うべく石
油掘削装置を制御するため、各種の地質データ、泥水デ
ータ、ビットデータ等を地中深部で計測し、計測した各
種データを地上へ伝送する必要がある。
[Conventional technology] For example, when drilling for oil, various types of geological data, muddy water data, bit data, etc. are measured deep underground in order to control the oil drilling rig so that the drilling can be performed without any problems. need to be transmitted to.

掘削計測データを伝送するようにした石油掘削装置を第
9図により説明すると、図中1は石油掘削リグ、2はケ
ーシング、3は鉄、鋳鋼等の導電性材料から成るドリル
パイプ、4はドリルパイプ3下端に回転自在に取付けら
れたドリルビット、5は各種のデータを計測する多数の
センサを配設したセンサ部、6は計測した各種のデータ
を無線で伝送するための送信アンテナ部、7は各種の機
器やセンサに動力を供給するための電池部、8は地上に
伝送されたデータを信号として受信する受信アンテナ部
、9は受信アンテナ部8で受信された信号を増幅する増
幅器、10は受信した信号を復調する信号復調器、11
は信号復調器lOよりの信号を処理するための、コンピ
ュータを含む信号処理装置、12は表示、プリンタ等の
出力装置、13は地表である。
An oil drilling rig configured to transmit drilling measurement data will be explained with reference to FIG. 9. In the figure, 1 is an oil drilling rig, 2 is a casing, 3 is a drill pipe made of conductive material such as iron or cast steel, and 4 is a drill. A drill bit rotatably attached to the lower end of the pipe 3; 5 a sensor section equipped with a number of sensors for measuring various data; 6 a transmitting antenna section for wirelessly transmitting various measured data; 7 8 is a receiving antenna section that receives data transmitted to the ground as a signal; 9 is an amplifier that amplifies the signal received by the receiving antenna section 8; 10 is a battery section for supplying power to various devices and sensors; 11 is a signal demodulator that demodulates the received signal;
12 is a signal processing device including a computer for processing the signal from the signal demodulator IO; 12 is an output device such as a display or printer; and 13 is the ground surface.

送信アンテナ部6の従来の一例は第1θ図に示され、図
中14はドリルパイプ3の一部をプラスチック、金属繊
維強化プラスチック(FRM)等の電気的絶縁性を示す
材料とした電気的絶縁体部、15はドリルバイブ3の電
気的絶縁体部14内にドリルバイブ3と同心状に収納さ
れた中空円筒状のトランスであり、該トランス15はヒ
ステリシス損失が少ないパーマロイ、シリコンスチール
等の磁性材料から形成されている。又1Bはトランス1
5の長手方向に沿い巻かれた一部コイル、17は同様に
トランス15の長手方向に沿い巻かれた二次コイル、1
8は増幅器、19はパラレル信号をシリーズ信号に変換
する回路及びその信号を変調する回路を含む回路、20
は種々のデータを計測する多数のセンサから成るセンサ
群であり、増幅器18は一部コイル16に接続され、二
次コイル17はドリルバイブ3の導電性材料の部分に接
続されている。増幅器18、回路19、センサ群20は
何れもドリルパイプ3内に収納されている。
A conventional example of the transmitting antenna section 6 is shown in Fig. 1θ, in which 14 is an electrically insulating structure in which a part of the drill pipe 3 is made of an electrically insulating material such as plastic or metal fiber reinforced plastic (FRM). The body part 15 is a hollow cylindrical transformer housed concentrically with the drill vibe 3 in the electrical insulator part 14 of the drill vibe 3. The transformer 15 is made of a magnetic material such as permalloy or silicon steel with low hysteresis loss. formed from material. Also, 1B is transformer 1
5 is a partial coil wound along the longitudinal direction of the transformer 15; 17 is a secondary coil similarly wound along the longitudinal direction of the transformer 15;
8 is an amplifier; 19 is a circuit including a circuit for converting a parallel signal into a series signal and a circuit for modulating the signal; 20
is a sensor group consisting of a large number of sensors that measure various data, and the amplifier 18 is partially connected to the coil 16, and the secondary coil 17 is connected to the conductive material part of the drill vibe 3. The amplifier 18, the circuit 19, and the sensor group 20 are all housed within the drill pipe 3.

センサ群20で順次計測された掘削時の計測データは回
路19でパラレル信号をシリーズ信号に変換されると共
に変調され、増幅器18で増幅され、一次コイル16と
二次コイル17間でインピーダンス変換されて送信アン
テナ部8から電磁波として発信、伝送され、地上の受信
アンテナ部8で受信されて増幅され、信号復調器lOで
復調され、信号処理装置11で処理されたうえ出力装置
12に表示或いはプリントされる。
The measurement data during excavation sequentially measured by the sensor group 20 is converted from a parallel signal to a series signal in the circuit 19 and modulated, amplified by the amplifier 18, and impedance converted between the primary coil 16 and the secondary coil 17. It is transmitted and transmitted as an electromagnetic wave from the transmitting antenna section 8, received and amplified by the receiving antenna section 8 on the ground, demodulated by the signal demodulator IO, processed by the signal processing device 11, and then displayed or printed on the output device 12. Ru.

又送信アンテナ部6の従来の他の例は第11図に示され
、図中21はドリルバイブ3の所要位置に穿設した孔に
嵌合させたプラスチック、F、RM等の環状の電気的絶
縁体部、22は電気的絶縁体部21の孔に嵌入させた銅
、鉄鋼材料等から形成された電気、的導体部、23.2
4は電気的導体部22設置部のドリルパイプ3内外周部
に固着したプラスチック、FRM等の電気的絶縁体部で
あり、二次コイル17の一端はドリルバイブ3に、又他
端は電気的導体部22に接続されている。この場合も増
幅器18で増幅された計測信号のデータは一部コイル1
Bと二次コイル17間でインピーダンス変換されて送信
アンテナ部θから電磁波として発信、伝送され、第9図
に示す受信アンテナ部8に受信される。
Another conventional example of the transmitting antenna section 6 is shown in FIG. The insulator part 22 is an electrical conductor part 23.2 formed of copper, steel, etc., fitted into the hole of the electrical insulator part 21.
4 is an electrical insulator such as plastic or FRM fixed to the inner and outer circumferential parts of the drill pipe 3 at the installation part of the electrical conductor 22; one end of the secondary coil 17 is connected to the drill vibe 3, and the other end is electrically insulating. It is connected to the conductor section 22. In this case as well, part of the data of the measurement signal amplified by the amplifier 18 is
The impedance is converted between B and the secondary coil 17, and the electromagnetic wave is emitted and transmitted from the transmitting antenna section θ, and is received by the receiving antenna section 8 shown in FIG.

[発明が解決しようとする問題点] しかしながら、上述の石油掘削装置の伝送装置では、信
号SとノイズNの比率であるSN比がノイズの増大等に
より低下すると、地上では正確な計測データを得るのが
困難であるという問題があった。
[Problems to be Solved by the Invention] However, in the oil drilling equipment transmission device described above, if the S/N ratio, which is the ratio of the signal S to the noise N, decreases due to an increase in noise, accurate measurement data cannot be obtained on the ground. The problem was that it was difficult to

本発明は上述の実情に鑑み、送信アンテナ部から発信す
る計測データからノイズの影響を除去することを目的と
してなしたものである。
In view of the above-mentioned circumstances, the present invention has been made with the object of removing the influence of noise from measurement data transmitted from a transmitting antenna section.

[問題点を解決するための手段] 本発明は先端に地中を掘削するドリルビットを備えたド
リルバイブに、一次コイル及び二次コイルを備えたトラ
ンスを収納すると共に一部コイルをセンサ側に、又二次
コイルをドリルパイプ側に夫々接続してドリルパイプ部
に送信アンテナ部を形成せしめ、二次コイルとドリルバ
イブとを基準電位を形成させるための導線により接続し
て送信アンテナ部をバランス形とした構成を備えている
[Means for Solving the Problems] The present invention includes a drill vibrator equipped with a drill bit for drilling underground at its tip, housing a transformer having a primary coil and a secondary coil, and placing a part of the coil on the sensor side. In addition, the secondary coils are connected to the drill pipe side to form a transmitting antenna part on the drill pipe part, and the secondary coil and the drill vibe are connected by a conductive wire to form a reference potential to balance the transmitting antenna part. It has a formal structure.

[作   用] 送信アンテナ部には安定した基準電位が形成されるため
、送信アンテナ部からはノイズの減少した出力が伝送さ
れる。
[Function] Since a stable reference potential is formed in the transmitting antenna section, an output with reduced noise is transmitted from the transmitting antenna section.

[実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図及び第2図は本発明の第1実施例で、送信アンテ
ナ部6には、ドリルバイブ3と同じく鉄、鋳鋼製でドリ
ルバイブ3と略同−内外径の電気的導体部23、該電気
的導体部23の1下端に固着されドリルバイブ3と略同
−内外径の特殊なセラミックス等誘電物質で作られた上
下1対の不電導体部24がドリルバイブ3と一体的に固
着され、上方の不電導体部24の上方及び下方の不電導
体部24の下方には、ドリルバイブ3の内外周を部分的
に被覆しショートを防止するため、ゴム、プラスチック
等の絶縁材25が嵌合されている。
1 and 2 show a first embodiment of the present invention, in which the transmitting antenna section 6 includes an electrical conductor section 23 made of iron or cast steel and having approximately the same inner and outer diameter as the drill vibe 3; A pair of upper and lower non-electrical conductor parts 24 made of a dielectric material such as special ceramics and having approximately the same inner and outer diameters as the drill vibe 3 are fixed to the lower end of the electrical conductor part 23 and are integrally fixed to the drill vibe 3. Insulating materials 25 made of rubber, plastic, etc. are placed above the upper non-conductive conductor part 24 and below the lower non-conductive conductor part 24 to partially cover the inner and outer peripheries of the drill vibe 3 and prevent short circuits. are fitted.

トランス28には一部コイル27、二次コイル28が巻
付けられ、一次コイル27は第1θ図及び第11図に示
す増幅器18に接続され、二次コイル28は、ドリルパ
イプ3の上方の絶縁材25嵌合部上方及びドリルバイブ
3の下方の絶縁材25嵌合部下方に接続され、二次コイ
ル28のトランス26に対する巻付は部の士の部分に接
続した導線29は電気的導体部23に接続されている。
A part of the coil 27 and a secondary coil 28 are wound around the transformer 28. The primary coil 27 is connected to the amplifier 18 shown in FIG. 1θ and FIG. The conductive wire 29 connected to the upper part of the fitting part of the material 25 and the lower part of the fitting part of the insulating material 25 below the drill vibe 3, and the winding of the secondary coil 28 around the transformer 26 is connected to the part between the parts. It is connected to 23.

トランス26等は図ではパイプ外に書いであるが、実際
にはパイプ内に収納されている。
Although the transformer 26 and the like are shown outside the pipe in the figure, they are actually housed inside the pipe.

第10図或いは第11図に示すセンサ群20で計測され
、増幅器18で増幅された電気信号は一部コイル27に
通電され、インピーダンス変換された電気信号は二次コ
イル28からドリルバイブ3のコイル接続部に掛かり、
ドリルバイブ3の上下の二次コイル28接続部間に電界
が働く。このため電磁波が発生して地上へ送られ、第9
図の受信アンテナ部8に捕捉される。
The electric signal measured by the sensor group 20 shown in FIG. 10 or FIG. It hangs on the connection part,
An electric field acts between the connection parts of the upper and lower secondary coils 28 of the drill vibrator 3. As a result, electromagnetic waves are generated and sent to the ground,
The signal is captured by the receiving antenna section 8 shown in the figure.

不電導体部24に挾まれた電気的導体部23には二次コ
イル28との間に導線29が接続されているため、該電
気的導体部23及び該電気的導体部23と同一レベルの
地中が等電位面となり安定な基準電位が定まる。このた
め、送信アンテナ部6から発信される信号中のノイズが
減少する。
Since a conductive wire 29 is connected between the electrical conductor portion 23 sandwiched between the non-electrical conductor portions 24 and the secondary coil 28, the conductor wire 29 is connected to the electrical conductor portion 23 and the electrical conductor portion 23 on the same level as the electrical conductor portion 23. The underground becomes an equipotential surface and a stable reference potential is determined. Therefore, noise in the signal transmitted from the transmitting antenna section 6 is reduced.

送信アンテナ部6から発信される信号の状況を第3図(
イ)(0)により説明すると、導線29がない場合には
基準電位が定まらず、基準電位が第3図(0)に示すよ
うに時間と共に変動し、これがノイズの原因となるが、
導線29を設けることにより、第3図〈イ)に示すよう
に基準電位は安定して時間と共に変動しなくなるためノ
イズが減少する。
The situation of the signal transmitted from the transmitting antenna section 6 is shown in Figure 3 (
b) To explain using (0), if there is no conductor 29, the reference potential is not fixed, and the reference potential fluctuates over time as shown in FIG. 3 (0), which causes noise.
By providing the conducting wire 29, the reference potential becomes stable and does not fluctuate over time, as shown in FIG. 3(a), so that noise is reduced.

第4図は本発明の第2実施例で、電気的導体部23は複
数として各電気的導体部23の上下に夫々不電導体部2
4が一体的に固着され、パイプ長手方向中央の電気的導
体部23には導線29が接続され、他の電気的導体部2
3には一端が二次コイル28に接続された導線30が接
続されている。
FIG. 4 shows a second embodiment of the present invention, in which a plurality of electrical conductor parts 23 are provided, and two non-electric conductor parts 2 are provided above and below each electrical conductor part 23.
4 are integrally fixed, a conductive wire 29 is connected to the electrical conductor section 23 at the center in the longitudinal direction of the pipe, and the other electrical conductor sections 2
3 is connected to a conducting wire 30 whose one end is connected to the secondary coil 28.

斯かる構成とすることにより、パイプ長手方向中央の電
気的導体部23の部分では基準電位が定まるため、送信
アンテナ部6からはノイズの少ない信号が出力され、又
電界は上下の二次コイル28接続部間及び上下の導線3
0接続部間で発生するうえ、二次コイル28接続部間は
間隔が大きくなるためアンテナ有効長さが長くなり、従
って送信アンテナ部6から発信される信号の出力が大き
くなる。
With this configuration, the reference potential is determined at the electrical conductor section 23 at the center in the longitudinal direction of the pipe, so a signal with less noise is output from the transmitting antenna section 6, and the electric field is transmitted to the upper and lower secondary coils 28. Conductor 3 between connection parts and above and below
In addition, since the distance between the secondary coil 28 connections becomes larger, the effective length of the antenna becomes longer, and therefore the output of the signal transmitted from the transmitting antenna section 6 becomes larger.

第5図は本発明の第3実施例で、図中31はドリルバイ
ブ3の長手方向へ所要の間隔で穿設した複数の孔に嵌合
されたプラスチック、FRM等の環状の電気的絶縁体部
、32は電気的絶縁体部31の孔に嵌入させた銅、鉄鋼
等から形成された電気的導体部であり、各電気的導体部
32のうち最上方と最下方の電気的導体部32には二次
コイル28が接続され、上方から2番目と下方から2番
目の電気的導体部32には一端を二次コイル28に接続
された導線30が接続され、上方から3番目と下方から
3番目の電気的導体部32には一端を二次コイル28に
接続された導線33が接続されている。
FIG. 5 shows a third embodiment of the present invention, in which reference numeral 31 denotes an annular electrical insulator made of plastic, FRM, etc., fitted into a plurality of holes drilled at required intervals in the longitudinal direction of the drill vibe 3. 32 are electrical conductor parts made of copper, steel, etc. that are fitted into holes in the electrical insulator part 31, and the uppermost and lowermost electrical conductor parts 32 of each electrical conductor part 32 are A secondary coil 28 is connected to the second electrical conductor section 32 from the top and a conductive wire 30 whose one end is connected to the secondary coil 28 is connected to the second electrical conductor section 32 from the top and the second electrical conductor section 32 from the bottom. A conducting wire 33 whose one end is connected to the secondary coil 28 is connected to the third electrical conductor portion 32 .

斯かる構成としても、導線29の部分で基準電位が定ま
るため、送信アンテナ部6からはノイズの少ない信号が
出力され、又電界は上下端部の電気的導体部32間、上
方及び下方から2番目の電気的導体部32間、上方及び
下方から3番目の電気的導体部32間で夫々発生するう
え、アンテナ有効長さも大きくなっているため、送信ア
ンテナ部8から発信される信号の出力が大きくなる。
Even with such a configuration, since the reference potential is determined at the conductor 29, a signal with less noise is output from the transmitting antenna section 6, and the electric field is generated between the electrical conductor sections 32 at the upper and lower ends, from above and below. This occurs between the third electrical conductor section 32 and between the third electrical conductor section 32 from above and below, and the effective length of the antenna is also large, so that the output of the signal transmitted from the transmitting antenna section 8 is growing.

第6図は本発明の第4実施例で、本実施例では二次コイ
ル28のトランス2B側と送信アンテナ部6との間或い
は導線30.33との二次コイル28と送信アンテナ部
6との間に夫々遅延回路34を設けた例である。I’J
、P2.P3.Pa。
FIG. 6 shows a fourth embodiment of the present invention. In this embodiment, the secondary coil 28 and the transmitting antenna section 6 are connected between the transformer 2B side of the secondary coil 28 and the transmitting antenna section 6 or between the conductive wire 30.33. This is an example in which a delay circuit 34 is provided between the two. I'J
, P2. P3. Pa.

P5.P6は二次コイルや導線の送信アンテナ部6側結
線部である。
P5. P6 is a connection part on the side of the transmitting antenna section 6 for the secondary coil or conducting wire.

今、媒質中を伝播する電磁波の予想される伝播速度をC
とし、図示してないある場所から結線部P+ +  P
 2 +  P 3 +  P 4 + P 5 + 
 P 6まてのZ軸方向の距離をZp+ 、  ZP2
 、  Zp3 。
Now, the expected propagation speed of electromagnetic waves propagating in the medium is C
and from a certain place not shown in the figure to the connection part P+ + P
2 + P 3 + P 4 + P 5 +
The distance in the Z-axis direction of P6 is Zp+, ZP2
, Zp3.

ZP4.ZPS、ZP(1とし、電界の周期をTとする
と、各結線部P2.P3.PJ、P5゜P6での遅れ時
間τ2.τ3.τ4.τ5゜τ6は となるよう二次コイルからの各結線部に与えられる出力
に時間遅れを与える。このように操作すると送信アンテ
ナ部6からの出力は前記実施例よりもより一層増大する
。基準電位は導線29の部分で定まるが、この点は前記
各実施例と同じである。
ZP4. When ZPS and ZP (1 and the period of the electric field are T, the delay time τ2.τ3.τ4.τ5゜τ6 at each connection part P2.P3.PJ, P5゜P6 is A time delay is given to the output given to the connection section. By operating in this way, the output from the transmitting antenna section 6 increases even more than in the previous embodiment. The reference potential is determined at the conductor 29, but this point is This is the same as in each embodiment.

遅延回路34がない場合とある場合の電界の強さを第7
図くイ)(ロ)により説明すると、第7図(イ)は遅延
回路なしの場合、第7図(ロ)は遅延回路ありの場合で
ある。
The strength of the electric field when there is no delay circuit 34 and when there is a delay circuit 34 is calculated as follows.
To explain using figures A) and (B), FIG. 7(A) shows the case without the delay circuit, and FIG. 7(B) shows the case with the delay circuit.

遅延回路なしの場合、各結線部PI +  P2 +P
3 、  Pa 、  P 5 、  p6での電界の
強さを−E + r −E 21−E 3 、  + 
E a 、+ E s ++E6とすると、結線部P1
〜P3の電界の強さの合計は−Eo+ −−El −E
2−E3となり、結線部P4〜P6の電界の強さの合計
はE(12−Ea +E5 +E6となり、全体の電界
の強さはE = −E 1− E 2− E 3 + 
E a + E s+E(、となるが、この場合にはプ
ラスとマイナスが相殺されるため信号の出力としては小
さくなる。
If there is no delay circuit, each connection section PI + P2 + P
3, the electric field strength at Pa, P5, p6 is −E + r −E 21 −E 3, +
If E a , + E s ++ E6, connection part P1
The total strength of the electric field at ~P3 is −Eo+ −−El −E
2-E3, and the total electric field strength of the connection parts P4 to P6 is E(12-Ea +E5 +E6, and the total electric field strength is E = -E 1- E 2- E 3 +
E a + E s + E (, but in this case, the plus and minus cancel each other out, so the signal output becomes small.

遅延回路34がある場合、結線部PIを基準として夫々
上述の式で表わされるτ1.τ2゜τ3.τ4.τ5.
τ6の時間遅れで各結線部PI、P2.P3.P4.P
S、P6から電界を発生させた場合、電界の強さは例え
ば第7図(ロ)に示すように夫々符号が等しく+El。
When the delay circuit 34 is provided, τ1. τ2゜τ3. τ4. τ5.
With a time delay of τ6, each connection portion PI, P2 . P3. P4. P
When an electric field is generated from S and P6, the strength of the electric field has the same sign as +El, as shown in FIG. 7(b), for example.

+E2 、+E3 、+Ea 、+E5 、+):6と
なり、全体の電界の強さは、E−−+−El +E2 
+E3 +Ea +Es +E6となり等符号となるた
め信号の出力は大きくなる。なお、符号が等符号となる
のは、結線部P4.PS、P6では電流波の伝播速度に
基づく遅れに加えて周期を172周期周期−遅延させて
いるためである。
+E2, +E3, +Ea, +E5, +): 6, and the overall electric field strength is E--+-El +E2
+E3 +Ea +Es +E6, so the signs are equal, so the signal output increases. Note that the signs are equal to the connection part P4. This is because in PS and P6, the period is delayed by 172 cycles in addition to the delay based on the propagation speed of the current wave.

なお、結線部p4.ps、p6の電界は結線部P、、P
2.P3より地上に近い分だけ電界が大きくなる。
Note that the connection part p4. The electric field of ps, p6 is the connection part P,,P
2. The electric field increases as it is closer to the ground than P3.

第8図は本発明の第5実施例で遅延回路34を含む回路
の詳細を示している。遅延回路34は一層コイル27の
上流側に設けられているが斯かる構成としても第6図の
ものと同様、電界強さが大きくなる。図中35はパラレ
ル信号をシリーズ信号に変換する回路及びその信号を変
調する回路、36はA/D変換器、37はD/A変換器
、38は増幅器である。
FIG. 8 shows details of a circuit including the delay circuit 34 in a fifth embodiment of the present invention. Although the delay circuit 34 is provided further upstream of the coil 27, even with such a configuration, the electric field strength increases as in the case of FIG. 6. In the figure, 35 is a circuit for converting a parallel signal into a series signal and a circuit for modulating the signal, 36 is an A/D converter, 37 is a D/A converter, and 38 is an amplifier.

なお、本発明は上述の実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[発明の効果] 本発明の掘削計測データの伝達装置は安定な基準電位が
定まるようになっているため、送信アンテナ部から出力
される信号のノイズが減少し、従って、正確な計測デー
タを効率良く得ることができるという優れた効果を奏し
得る。
[Effects of the Invention] Since the excavation measurement data transmission device of the present invention is designed to determine a stable reference potential, noise in the signal output from the transmitting antenna section is reduced, and therefore accurate measurement data can be transmitted efficiently. It can have an excellent effect of being able to obtain good results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の掘削計測データの伝送装置の第1実施
例の説明図、第2図は第1図の■方向矢視図、第3図(
イ)(ロ)は基準電位に対する信号の状態を示すグラフ
、第4図は本発明の掘削計測データの伝送装置の第2実
施例の説明図、第5図は本発明の掘°削データの伝送装
置の第3実施例の説明図、第6図は本発明の掘削計測デ
ータの伝送装置の第4実施例の説明図、第7図(イ)は
時間遅れを与えない場合の電界の強さを表わすグラフ、
第7図(0)は時間遅れを与えた場合の電界の強さを表
わすグラフ、第8図は本発明の掘削計測データの伝送装
置の第5実施例の説明′  図、第9図は石油掘削装置
の一般的な説明図、第10図は第9図の石油掘削装置に
使用する送信アンテナ部の一例の説明図、第11図は同
地の例の説明図である。 図中3はドリルパイプ、4はドリルビット、5はセンサ
部、6は送信アンテナ部、8は受信アンテナ部、23は
電気的導体部、24は不電導体部、25は絶縁材、2B
はトランス、27は一部コイル、28は二次コイル、2
9.30は導線、31は電機的絶縁体部、32は電気的
導体部、33は導線、34は遅延回路を示す。
FIG. 1 is an explanatory diagram of the first embodiment of the excavation measurement data transmission device of the present invention, FIG.
b) (b) are graphs showing the state of the signal with respect to the reference potential, Fig. 4 is an explanatory diagram of the second embodiment of the excavation measurement data transmission device of the present invention, and Fig. 5 is a graph showing the state of the signal with respect to the reference potential. FIG. 6 is an explanatory diagram of the third embodiment of the transmission device, FIG. 6 is an explanatory diagram of the fourth embodiment of the excavation measurement data transmission device of the present invention, and FIG. A graph showing the
Fig. 7 (0) is a graph showing the electric field strength when a time delay is given, Fig. 8 is an explanation of the fifth embodiment of the drilling measurement data transmission device of the present invention, and Fig. 9 is a graph showing the electric field strength when a time delay is applied. A general explanatory diagram of a drilling rig, FIG. 10 is an explanatory diagram of an example of a transmitting antenna section used in the oil drilling rig of FIG. 9, and FIG. 11 is an explanatory diagram of an example of the same location. In the figure, 3 is a drill pipe, 4 is a drill bit, 5 is a sensor section, 6 is a transmitting antenna section, 8 is a receiving antenna section, 23 is an electric conductor section, 24 is a non-conductive conductor section, 25 is an insulating material, 2B
is a transformer, 27 is a partial coil, 28 is a secondary coil, 2
9. 30 is a conductor, 31 is an electrical insulator, 32 is an electrical conductor, 33 is a conductor, and 34 is a delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1)先端に地中を掘削するドリルビットを備えたドリル
パイプに、一次コイル及び二次コイルを備えたトランス
を収納すると共に一次コイルをセンサ側に、又二次コイ
ルをドリルパイプ側に夫々接続してドリルパイプ部に送
信アンテナ部を形成せしめ、二次コイルとドリルパイプ
とを基準電位を形成させるための導線により接続して送
信アンテナ部をバランス形としたことを特徴とする掘削
計測データの伝送装置。
1) A transformer with a primary coil and a secondary coil is housed in a drill pipe with a drill bit for digging underground at the tip, and the primary coil is connected to the sensor side and the secondary coil to the drill pipe side. A transmitting antenna part is formed in the drill pipe part, and the secondary coil and the drill pipe are connected by a conductive wire for forming a reference potential, so that the transmitting antenna part is of a balanced type. Transmission device.
JP61124774A 1986-05-30 1986-05-30 Transmitter for excavation measured data Pending JPS62284891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61124774A JPS62284891A (en) 1986-05-30 1986-05-30 Transmitter for excavation measured data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61124774A JPS62284891A (en) 1986-05-30 1986-05-30 Transmitter for excavation measured data

Publications (1)

Publication Number Publication Date
JPS62284891A true JPS62284891A (en) 1987-12-10

Family

ID=14893779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61124774A Pending JPS62284891A (en) 1986-05-30 1986-05-30 Transmitter for excavation measured data

Country Status (1)

Country Link
JP (1) JPS62284891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177598A (en) * 1990-11-09 1992-06-24 Sekiyu Kodan Receiver
JP2011522141A (en) * 2008-06-03 2011-07-28 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Drill head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177598A (en) * 1990-11-09 1992-06-24 Sekiyu Kodan Receiver
JP2011522141A (en) * 2008-06-03 2011-07-28 トラクト−テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Drill head

Similar Documents

Publication Publication Date Title
US2379800A (en) Signal transmission system
US4160970A (en) Electromagnetic wave telemetry system for transmitting downhole parameters to locations thereabove
US4785247A (en) Drill stem logging with electromagnetic waves and electrostatically-shielded and inductively-coupled transmitter and receiver elements
CN201258737Y (en) Logging instrument
CA1235179A (en) Drill stem logging system with electomagnetic waves using electrostatically shielded transmitter and receiver elements
EP2237074A2 (en) Measuring equipment and method for mapping the geology in an underground formation
JPS6435274A (en) Self feeder type electrically measuring apparatus insulated from electric oscillation
US6445307B1 (en) Drill string telemetry
US10901005B2 (en) Low power based Rogowski coil
JPH07209434A (en) Micro device to measure electromagnetic property of medium and use of device thereof
US7277025B2 (en) Telescopic data coupler
JPH01502778A (en) Traction force measurement device using a traction force meter
CN111579846A (en) High-voltage direct-current detection device and detection system for buried metal pipeline
KR940002187B1 (en) Magnetic flow meter
JPS62284891A (en) Transmitter for excavation measured data
JPH10105861A (en) Sensor signal transmitting method and device therefor
US6981425B2 (en) Dynamic force measuring instrument having a foil belt transducer
CN110725681A (en) Near-bit measuring device
CN212872610U (en) High-voltage direct-current detection device and detection system for buried metal pipeline
JPS62280488A (en) Transmitter for excavation measured data
EP1345033A1 (en) Electrical transformer for voltage and current measurement based on the electromagnetic waves sensored in dielectric
WO1998023849A1 (en) Borehole data transmission system
JPS62284890A (en) Transmitter for excavation measured data
JP3057563B2 (en) Receiving electromagnetic coil
US20240141778A1 (en) Downhole electromagnetic induction communication device