JPS6228417B2 - - Google Patents

Info

Publication number
JPS6228417B2
JPS6228417B2 JP3315083A JP3315083A JPS6228417B2 JP S6228417 B2 JPS6228417 B2 JP S6228417B2 JP 3315083 A JP3315083 A JP 3315083A JP 3315083 A JP3315083 A JP 3315083A JP S6228417 B2 JPS6228417 B2 JP S6228417B2
Authority
JP
Japan
Prior art keywords
specific gravity
heavy liquid
particles
measured
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3315083A
Other languages
Japanese (ja)
Other versions
JPS59159049A (en
Inventor
Akyoshi Masuko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP3315083A priority Critical patent/JPS59159049A/en
Publication of JPS59159049A publication Critical patent/JPS59159049A/en
Publication of JPS6228417B2 publication Critical patent/JPS6228417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコロイド粒子の比重を測定する方法に
係り、詳細には、微細粒子を透明液中に分散せし
め、遠心力の場においてその沈降または浮上の状
況を液の吸光度の経時変化によつて測定し、また
微細粒子の粒度分布等を測定する粒度分布測定装
置を用いて、コロイド粒子の比重を簡便かつ確実
に測定する方法に関する。 自動車等の車両に搭載する内燃機関において
は、燃料消費率の低下、排ガスによる公害の防除
等の厳しい要求を満足するために、そのシリンダ
内における燃焼状況について各種の分析研究が行
なわれている。その一環として、燃焼の結果とし
て生成される炭素の微粒子の性質を探究すること
が必要となつてきている。この炭素の微粒子は機
関の潤滑油に混入して回収されるが、通常この微
粒子の粒径はきわめて小さく、潤滑油中にコロイ
ド状になつて分散している。 この炭素の微粒子の成因や組成を探究するには
その真比重を知ることが大切であるが、このよう
なコロイド粒子は従来次に述べるような理由で、
その真比重を求めることが困難であつた。すなわ
ち、このようなコロイド粒子を液から分離して空
気中に取出し、その体積と重量とを測定して比重
を求めても、各粒子間には空気が含有されている
ため、見掛けの比重は測定できても真比重は求め
ることができない。また、粒子状物体は、その推
定真比重に近い比重を持つ多種の液体を調合し、
その中に混入して沈降または浮上の状況を観察し
てその真比重を知ることができるが、コロイド粒
子は液中における分散活動がきわめて激しいた
め、沈降または浮上の状況の観察が難しく、この
方法もとることができない。 本発明はコロイド粒子の比重測定の以上述べた
困難性を解消し、簡便かつ確実にコロイド粒子の
比重を測定しうる方法を提供することを目的とし
ている。 本発明は粒状物体を含有した液を遠心力の場に
置き、その液の中央部付近の吸光度の経時変化を
測定することによつて、粒状物体の沈降または浮
上の割合、粒状物体の粒度分布等を測定しうる粒
度分布測定装置を用い、数種の重液を調合した中
から被測定粒子の真比重に最も近接し、かつ真比
重よりも軽いものと重いものとの2種を選定し、
その両者に対する被測定粒子の沈降または浮上の
割合から真比重を求めることによつて前記目的を
達成している。 以上図面に基いて本発明の実施例について説明
する。第1図は本発明に使用する粒度分布測定装
置の概略の構成を例示した図である。同図におい
て、ほぼ円板状をなす回転デイスク1の中央部は
駆動装置2に連結されており、駆動装置2はモー
タ、増速機等から成つている。回転デイスク1の
周辺部には遠心沈降用セル3を取付けるための溝
1Aが設けられており、回転デイスク1の溝1A
に近接してランプ4がケース等(図示していな
い。)に固定して取付けられている。第2図イは
遠心沈降用セル3に用いられるセルの概略の構造
を示す斜視図であり、ロはこのセルに使用する蓋
を示した斜視図である。同図において、遠心沈降
用セル3は筒状(図示のものは四角筒状)の容器
であり、その口の部分には蓋5が取付けられるよ
うになつている。蓋5は平板5Aと容器内に挿入
される泡取り5Bとから成つている。遠心沈降用
セル3に蓋5をしたとき、その泡取り5Bの端部
の位置はイ図において2点鎖線で示されている
が、この2点鎖線から図の下部が被測定物を収納
する部分であり、この部分ののほぼ中央で、筒軸
に対して対称な2個所P,Q部は透明な窓部とな
つている。勿論遠心沈降用セル3の全体を透明材
から成形してもよく、その場合は特に窓部を設け
る必要はない。回転デイスク1の溝1Aには遠心
沈降用セル3を、その蓋5を中心側にし、1対の
透明窓をデイスク1の面に平行な状態で取付ける
が、溝1Aの前記透明窓に接する部分は通孔また
は透明窓となつており、したがつてランプ4の光
はこれらの透明窓を通過してデイスク1の反対側
に到達する(第1図参照)。またランプ4の回転
デイスク1に対する反対側にはランプ4の光を受
光しうる位置に受光素子6Aが設置され、またラ
ンプ4の光を直接受光しうる位置に受光素子6B
(ドリフト補正用に使用される。)が設けられてい
る。またこの粒度分布測定装置には計算表示機構
7が設けられており、計算表示機構7には各受光
素子6A,6Bから信号が入力するようになつて
いる。さらに回転デイスク1に近接して位置検出
器8が設置されており、この位置検出器8は回転
デイスク1が回転しているときは、遠心沈降用セ
ル3の位置を検出し、それがランプ4に最も近接
したときにのみランプ4が発光するようにランプ
4の回路に信号を送つている。 いま遠心沈降用セル3に透明液中に被測定微粒
子を分散せしめて収納し、回転デイスク1を回転
せしめれば、計算表示機構7は各受光素子6A〜
6Bからの信号を受けて遠心沈降用セル3の吸光
度の経時変化を計算し表示することができ、また
これらのデータとストークスの法則とから、被測
定微粒子の粒度分布を測定することができる。第
3図はこのようにして得られた吸光度の経時変化
の一例を示すグラフである。 回転デイスク1の最高回転数はデイスク1の有
効径(遠心沈降用セル取付部の平均径)が20〜30
cm程度で5000rpm以上が望ましく、有効径がこれ
より小さくなれば数万〜10万rpm程度にすること
が望まれる。いま有効径25cm、回転数を5000rpm
とすれば遠心加速度αは次の式で計算される。 α=rω=536〔m/s2〕 この加速度と重力の加速度との比Zは次の通りと
なる。 Z=536/9.8〓=55 次に以上述べた粒度分布測定装置を用いて、コ
ロイド粒子の比重を測定する方法について工程順
序を追つて説明する。 (a) 先ず被測定コロイド粒子の推定真比重に近接
した数種の真比重を有する重液を調合する。前
記した炭素のコロイド粒子にあつてはその真比
重が1.75度であると推定されるので、CCl4(比
重=1.599)と、C2H4Br2(比重=2.18)とを適
宜の比率で混合して混合液(重液)を調整す
る。この調整は重液の比重がきわめて正確であ
る必要はないので、ピペツトで簡便に調合して
差支えない。これらの重液に被測定コロイド液
を滴下して撹拌する。 (b) 以上述べた被測定コロイド粒子含有の重液を
前記粒度分布測定装置の遠心沈降用セルに入れ
て所定時間デイスクを回転せしめる。この時間
は前記した炭素のコロイド粒子の場合を例にと
れば、5〜10分間である。前記したようにこの
装置の遠心力は重力の50倍以上にも及んでいる
から、重液内における被測定粒子の沈降または
浮上は比較的顕著であり、被測定粒子が沈降し
たのかまたは浮上したのかの区別をつけること
は比較的容易である。 (c) 前記工程(b)の観察によつて各重液の比重が被
測定粒子の真比重よりも小さいものと、大きい
ものとの区別ができる。そこで、各重液のうち
から被測定粒子の真比重よりも小さく、かつ真
比重に最も近接した比重を有する重液(X重
液)および被測定粒子の真比重よりも大きく、
かつ真比重に最も近接した比重を有する重液
(Y重液)を選定する。 (d) 前記X重液およびY重液を再度調合する。こ
の調合に際しては前工程(a)で行なつた調合より
も重液の比重を正確に出す必要があるので、メ
スシリンダを用いることが望まれる。この調合
されたX重液およびY重液に被測定粒子を含む
コロイド液を滴下撹拌する。 (e) 前記工程(d)によつて得られた被測定粒子含有
のX重液およびY重液を前記粒度分布測定装置
の遠心沈降用セルに入れて所定時間回転デイス
クを回転させる。この際の所定時間は前記工程
(b)における時間よりも長くとることが望まし
く、前記した炭素のコロイド粒子の場合を例に
とれば、30〜60分が必要である。この所定時間
経過後のX重液における被測定粒子の沈下比率
(x%)およびY重液における被測定粒子の浮
上比率(y%)を第3図に例示したような測定
開始時と終了時の吸光度の低下率から測定す
る。 (f) 次にX重液の比重(ρ)とY重液の比重
(ρ)との間に、数値xおよびyの加重平均
によつて得られた点を求めてこれを被測定粒子
の真比重とする。この真比重ρは次の式で求
められれる。 ρ=ρ+(ρ−ρ)x/x+y この真比重ρは第4図に示すような図式の解法
によつても求めることができる。 前記した炭素のコロイド粒子の場合についての
測定結果をまとめると次の第1表のようになる。
The present invention relates to a method for measuring the specific gravity of colloidal particles. Specifically, the present invention involves dispersing fine particles in a transparent liquid and measuring their sedimentation or floating status in a field of centrifugal force based on changes in the absorbance of the liquid over time. The present invention also relates to a method for simply and reliably measuring the specific gravity of colloidal particles using a particle size distribution measuring device that measures the particle size distribution of fine particles. BACKGROUND ART In internal combustion engines installed in vehicles such as automobiles, various analytical studies are being conducted on the combustion conditions within the cylinders in order to meet strict requirements such as lowering the fuel consumption rate and preventing pollution caused by exhaust gas. As part of this effort, it has become necessary to explore the properties of carbon particles produced as a result of combustion. These fine carbon particles are mixed into engine lubricating oil and recovered, but the particle size of these fine particles is usually extremely small, and they are dispersed in the lubricating oil in the form of a colloid. In order to explore the origin and composition of these fine carbon particles, it is important to know their true specific gravity.
It was difficult to determine its true specific gravity. In other words, even if such colloidal particles are separated from the liquid and taken out into the air and their volume and weight are measured to determine their specific gravity, the apparent specific gravity is Even if it can be measured, the true specific gravity cannot be determined. In addition, particulate matter can be prepared by mixing various liquids with specific gravity close to its estimated true specific gravity.
It is possible to find out the true specific gravity by mixing colloid particles into the liquid and observing how they settle or float, but because colloidal particles have extremely intense dispersion activity in the liquid, it is difficult to observe how they settle or float, and this method I can't even take it. An object of the present invention is to solve the above-mentioned difficulties in measuring the specific gravity of colloidal particles and to provide a method that can easily and reliably measure the specific gravity of colloidal particles. The present invention places a liquid containing particulate matter in a field of centrifugal force and measures the change in absorbance over time near the center of the liquid. Using a particle size distribution measuring device that can measure the particle size, etc., select two types from among several types of heavy liquids, one that is closest to the true specific gravity of the particles to be measured, and one that is lighter and one that is heavier than the true specific gravity. ,
The above objective is achieved by determining the true specific gravity from the rate of sedimentation or flotation of the particles to be measured relative to both. Embodiments of the present invention will be described above based on the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a particle size distribution measuring device used in the present invention. In the figure, the center of a rotating disk 1 having a substantially disk shape is connected to a drive device 2, and the drive device 2 includes a motor, a speed increaser, and the like. A groove 1A for attaching a centrifugal sedimentation cell 3 is provided on the periphery of the rotating disk 1.
A lamp 4 is fixedly attached to a case or the like (not shown) in the vicinity of the lamp. FIG. 2A is a perspective view showing the general structure of a cell used in the centrifugal sedimentation cell 3, and FIG. 2B is a perspective view showing a lid used in this cell. In the figure, the centrifugal sedimentation cell 3 is a cylindrical container (the one shown is square cylindrical), and a lid 5 is attached to the opening of the container. The lid 5 consists of a flat plate 5A and a bubble remover 5B inserted into the container. When the centrifugal sedimentation cell 3 is covered with a lid 5, the position of the end of the bubble remover 5B is indicated by a two-dot chain line in Figure A, and the lower part of the figure from this two-dot chain line stores the object to be measured. The two portions P and Q, which are symmetrical with respect to the cylinder axis and are approximately in the center of this portion, are transparent windows. Of course, the entire centrifugal sedimentation cell 3 may be molded from a transparent material, and in that case there is no particular need to provide a window. A centrifugal sedimentation cell 3 is installed in the groove 1A of the rotary disk 1, with its lid 5 on the center side, and a pair of transparent windows are installed parallel to the surface of the disk 1. are through holes or transparent windows, so that the light from the lamp 4 passes through these transparent windows and reaches the opposite side of the disk 1 (see FIG. 1). Further, on the opposite side of the lamp 4 to the rotary disk 1, a light receiving element 6A is installed at a position where it can receive the light from the lamp 4, and a light receiving element 6B is installed at a position where it can directly receive the light from the lamp 4.
(used for drift correction) is provided. Further, this particle size distribution measuring apparatus is provided with a calculation display mechanism 7, into which signals are input from each of the light receiving elements 6A and 6B. Furthermore, a position detector 8 is installed close to the rotary disk 1, and when the rotary disk 1 is rotating, this position detector 8 detects the position of the centrifugal sedimentation cell 3, and it detects the position of the centrifugal sedimentation cell 3. A signal is sent to the circuit of the lamp 4 so that the lamp 4 emits light only when it is closest to the lamp. Now, if the particles to be measured are dispersed and stored in a transparent liquid in the centrifugal sedimentation cell 3, and the rotary disk 1 is rotated, the calculation display mechanism 7 will be able to display each of the light receiving elements 6A to 6A.
In response to the signal from 6B, the change in absorbance of the centrifugal sedimentation cell 3 over time can be calculated and displayed, and from these data and Stokes' law, the particle size distribution of the particles to be measured can be measured. FIG. 3 is a graph showing an example of the change in absorbance over time obtained in this manner. The maximum rotation speed of rotating disk 1 is when the effective diameter of disk 1 (average diameter of the centrifugal sedimentation cell attachment part) is 20 to 30.
It is desirable to set the speed at 5000 rpm or more in cm, and if the effective diameter becomes smaller than this, it is desirable to set the speed at about tens of thousands to 100,000 rpm. Now the effective diameter is 25cm and the rotation speed is 5000rpm.
Then, the centrifugal acceleration α is calculated by the following formula. α=rω 2 =536 [m/s 2 ] The ratio Z between this acceleration and the acceleration of gravity is as follows. Z=536/9.8=55 Next, a method for measuring the specific gravity of colloidal particles using the particle size distribution measuring device described above will be explained step by step. (a) First, heavy liquids having several kinds of true specific gravity close to the estimated true specific gravity of the colloid particles to be measured are prepared. The true specific gravity of the carbon colloidal particles described above is estimated to be 1.75 degrees, so CCl 4 (specific gravity = 1.599) and C 2 H 4 Br 2 (specific gravity = 2.18) were mixed in an appropriate ratio. Mix to prepare mixed liquid (heavy liquid). This adjustment does not require that the specific gravity of the heavy liquid be extremely accurate, so it may be conveniently prepared using a pipette. The colloid liquid to be measured is dropped into these heavy liquids and stirred. (b) The heavy liquid containing colloidal particles to be measured as described above is put into the centrifugal sedimentation cell of the particle size distribution measuring device and the disk is rotated for a predetermined period of time. For example, in the case of the carbon colloid particles described above, this time is 5 to 10 minutes. As mentioned above, the centrifugal force of this device is more than 50 times the force of gravity, so the sedimentation or floating of the particles to be measured in the heavy liquid is relatively significant, and it is difficult to determine whether the particles to be measured have settled or floated. It is relatively easy to distinguish between the two. (c) Through the observation in step (b), it is possible to distinguish between those whose specific gravity is smaller than the true specific gravity of the particles to be measured and those whose specific gravity is larger than the true specific gravity of the particles to be measured. Therefore, among the heavy liquids, a heavy liquid (X heavy liquid) having a specific gravity smaller than the true specific gravity of the particles to be measured and closest to the true specific gravity, and a heavy liquid having a specific gravity larger than the true specific gravity of the particles to be measured,
A heavy liquid (Y heavy liquid) having a specific gravity closest to the true specific gravity is selected. (d) Mix the X heavy liquid and Y heavy liquid again. In this blending, it is necessary to determine the specific gravity of the heavy liquid more accurately than in the blending performed in the previous step (a), so it is desirable to use a graduated cylinder. A colloidal liquid containing particles to be measured is added dropwise to the prepared X heavy liquid and Y heavy liquid and stirred. (e) The X heavy liquid and the Y heavy liquid containing particles to be measured obtained in step (d) are placed in a centrifugal sedimentation cell of the particle size distribution measuring device and the rotary disk is rotated for a predetermined period of time. The predetermined time at this time is
It is desirable to take a longer time than in (b), and in the case of the carbon colloid particles described above, 30 to 60 minutes is required. After this predetermined period of time has elapsed, the sinking ratio (x%) of the particles to be measured in the X heavy liquid and the floating ratio (y%) of the particles to be measured in the Y heavy liquid are determined at the start and end of the measurement as illustrated in Figure 3. It is measured from the rate of decrease in absorbance. (f) Next, find a point between the specific gravity of the X heavy liquid (ρ 1 ) and the specific gravity of the Y heavy liquid (ρ 2 ) by taking the weighted average of the numerical values x and y, and use this to Let it be the true specific gravity of the particle. This true specific gravity ρ 0 is determined by the following formula. ρ 01 +(ρ 2 −ρ 1 )x/x+y This true specific gravity ρ 0 can also be obtained by solving a diagram as shown in FIG. The measurement results for the carbon colloid particles described above are summarized in Table 1 below.

【表】 以上の実施例は主として炭素のコロイド粒子に
ついてその真比重の測定方法を述べているが、そ
の他のコロイド粒子についても本発明が有効に実
施できることは論ずるまでもない。ただしこの
際、重液を調合するためには、場合により、
CCl4、C2H4Br2以外の適切な液を用いなければな
らず、また前記した工程(b)、工程(e)における所定
時間も適宜その粒子に応じた時間を選定しなけれ
ばならないことは勿論である。 本発明はコロイド粒子をその推定比重に近接し
た重液中に分散せしめ、重力の数十倍以上の遠心
力の場においてその重液中の浮上または沈降の状
況を光の吸光度によつて測定することによつて極
めて簡便でかつ正確にその真比重を測定すること
を可能としており、内燃機関の燃焼状況の分析研
究等に大きな寄与を果すものである。また食品、
衣料品等もコロイドと密接な関係があると云われ
ているので、この発明はわれわれの日常生活にも
大きな寄与を果すことは疑いのないところであ
る。
[Table] Although the above examples mainly describe the method for measuring the true specific gravity of colloidal particles of carbon, it goes without saying that the present invention can be effectively practiced with respect to other colloidal particles. However, in this case, in order to mix the heavy liquid, depending on the case,
Appropriate liquids other than CCl 4 and C 2 H 4 Br 2 must be used, and the predetermined times in steps (b) and (e) described above must be appropriately selected depending on the particles. Of course. The present invention involves dispersing colloidal particles in a heavy liquid whose estimated specific gravity is close to that of the colloid particles, and measuring the floating or settling status of the colloid particles in the heavy liquid by light absorbance in a field of centrifugal force tens of times greater than gravity. This makes it possible to measure the true specific gravity extremely simply and accurately, making a great contribution to the analysis and research of combustion conditions in internal combustion engines. Also food,
Since clothing and other items are said to be closely related to colloids, there is no doubt that this invention will make a significant contribution to our daily lives.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する粒度分布測定装置の
概略の構成を示した図、第2図イは遠心沈降用セ
ルの斜視図ロはそれに使用する蓋の斜視図、第3
図は粒度分布測定装置によつて表示された吸光度
の経時変化を示した図、第4図は被測定粒子の真
比重を求める図式の解法を示した図である。 1…回転デイスク、1A…溝、2…駆動装置、
3…遠心沈降用セル、4…ランプ、5…蓋、5A
…平板、5B…泡取り、6A,6B…受光素子、
7…計算表示機構。
Fig. 1 is a diagram showing the general configuration of the particle size distribution measuring device used in the present invention, Fig. 2 A is a perspective view of a cell for centrifugal sedimentation, B is a perspective view of a lid used therein, and Fig. 3
The figure shows the change over time in the absorbance displayed by the particle size distribution measuring device, and FIG. 4 shows a graphical solution method for determining the true specific gravity of the particles to be measured. 1... Rotating disk, 1A... Groove, 2... Drive device,
3...Centrifugal sedimentation cell, 4...Lamp, 5...Lid, 5A
... flat plate, 5B... bubble remover, 6A, 6B... light receiving element,
7...Calculation display mechanism.

Claims (1)

【特許請求の範囲】 1 モータ等の駆動装置によつて回転する回転デ
イスクと、筒状の容器であつてその中央部付近に
筒軸に対して対称に配置された1対の透明な窓部
を有し前記デイスクに取付けられている遠心沈降
用セルと、該遠心沈降用セルの窓部に近接して設
けられているランプと、該ランプから発光された
光を前記遠心沈降用セルの1対の窓部を経由して
受光する受光素子および前記ランプから発光され
た光を直接受光する受光素子と、前記計2個の受
光素子から送られたデータに基いて前記遠心沈降
用セルに収納された被測定物の沈降または浮上割
合、粒度分布等の測定値を解析表示する計算表示
機構とを有する粒度分布測定装置を用い、次の(a)
〜(f)の工程手順に従つて行なうコロイド粒子の比
重測定法。 (a) 被測定コロイド粒子の推定真比重に近接した
数種の比重を有する重液を調合し、これに被測
定粒子を含むコロイド液を滴下撹拌する (b) 前記工程(a)によつて得られた被測定粒子含有
の各重液を前記粒度分布測定装置の遠心沈降用
セルに入れ、所定時間回転デイスクを回転せし
めた後、各重液における被測定粒子の沈降また
は浮上の状況を観察する (c) 前記工程(b)の観察により、各重液のうちから
被測定粒子の真比重よりも小さく、かつ真比重
に最も近接した比重を有する重液(X重液)お
よび、被測定粒子の真比重よりも大きく、かつ
真比重に最も近接した比重を有する重液(Y重
液)を選定する (d) 前記X重液およびY重液を再度調合し、これ
に被測定粒子を含むコロイド液を滴下撹拌する (e) 前記工程(d)によつて得られた被測定粒子含有
のX重液およびY重液を遠心沈降用セルに入
れ、所定時間回転デイスクを回転せしめ、X重
液における被測定粒子の沈下比率(x%)およ
びY重液における被測定粒子の浮上比率(y
%)を測定する (f) X重液の比重とY重液の比重との中間部に、
前記工程(e)によつて得られた数値xおよびyの
加重平均によつて得られた点を求めてこれを被
測定粒子の真比重とする
[Claims] 1. A rotating disk rotated by a drive device such as a motor, and a pair of transparent windows arranged symmetrically with respect to the cylinder axis near the center of the cylindrical container. a centrifugal sedimentation cell attached to the disk; a lamp provided close to the window of the centrifugal sedimentation cell; and a lamp that directs the light emitted from the lamp to one of the centrifugal sedimentation cells. A light-receiving element that receives light via a pair of windows and a light-receiving element that directly receives light emitted from the lamp, and data sent from the two light-receiving elements are stored in the centrifugal sedimentation cell. The following (a)
A method for measuring the specific gravity of colloidal particles according to the process steps of ~(f). (a) Preparing a heavy liquid having several types of specific gravities close to the estimated true specific gravity of the colloidal particles to be measured, and adding the colloidal liquid containing the particles to be measured dropwise to this and stirring (b) By the above step (a) Each of the obtained heavy liquids containing the particles to be measured is placed in the centrifugal sedimentation cell of the particle size distribution measuring device, and after rotating the rotating disk for a predetermined period of time, the state of sedimentation or flotation of the particles to be measured in each heavy liquid is observed. (c) From the observation in step (b) above, it was found that among the heavy liquids, a heavy liquid (X heavy liquid) having a specific gravity smaller than the true specific gravity of the particles to be measured and closest to the true specific gravity, and a heavy liquid to be measured Select a heavy liquid (Y heavy liquid) that is larger than the true specific gravity of the particles and has a specific gravity closest to the true specific gravity (d) Mix the X heavy liquid and Y heavy liquid again, and add the particles to be measured to this. (e) Place the X heavy liquid and Y heavy liquid containing the particles to be measured obtained in step (d) above into a centrifugal sedimentation cell, rotate the rotating disk for a predetermined time, and Subsidence ratio of measured particles in heavy liquid (x%) and floating ratio of measured particles in Y heavy liquid (y
(%) (f) At the midpoint between the specific gravity of the X heavy liquid and the specific gravity of the Y heavy liquid,
Find the point obtained by weighted average of the values x and y obtained in step (e) and use this as the true specific gravity of the particle to be measured.
JP3315083A 1983-03-01 1983-03-01 Method for measuring specific gravity of colloidal particles Granted JPS59159049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3315083A JPS59159049A (en) 1983-03-01 1983-03-01 Method for measuring specific gravity of colloidal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3315083A JPS59159049A (en) 1983-03-01 1983-03-01 Method for measuring specific gravity of colloidal particles

Publications (2)

Publication Number Publication Date
JPS59159049A JPS59159049A (en) 1984-09-08
JPS6228417B2 true JPS6228417B2 (en) 1987-06-19

Family

ID=12378545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3315083A Granted JPS59159049A (en) 1983-03-01 1983-03-01 Method for measuring specific gravity of colloidal particles

Country Status (1)

Country Link
JP (1) JPS59159049A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632611Y2 (en) * 1985-12-03 1994-08-24 株式会社島津製作所 Centrifugal sedimentation type particle size distribution measuring device
JPH034252U (en) * 1989-05-31 1991-01-17
US10126220B2 (en) 2013-07-22 2018-11-13 National Oilwell Varco, L.P. Systems and methods for determining specific gravity and minerological properties of a particle

Also Published As

Publication number Publication date
JPS59159049A (en) 1984-09-08

Similar Documents

Publication Publication Date Title
Guy Laboratory theory and methods for sediment analysis
Gee et al. 2.4 Particle‐size analysis
Serra et al. Aggregation and breakup of particles in a shear flow
US2817970A (en) Apparatus for determining the particle size distribution of finely divided materials
JPS6228417B2 (en)
Williams Flow of concentrated suspensions
WO2024051711A1 (en) Tailings settlement test device and method
Blume et al. Application of differential light scattering to the latex agglutination assay for rheumatoid factor
CN110849780B (en) Device for automatically testing rock-soil particle distribution curve
Nicoli et al. Fluorescence immunoassay based on long time correlations of number fluctuations.
Pansu et al. Particle size analysis
Schweyer Particle Size Studies. Methods
Ives et al. Orthokinetic flocculation of latex microspheres
CN2347159Y (en) Hondrometer for measuring granular and liquid drop size
Xu Transport properties of fine-grained sediments
Groves Particle size characterization in dispersions
SU et al. i Wet sieve
Wechsler et al. A laboratory study of the turbidity generation potential of sediments to be dredged
Martin Particle-size distribution of pigment suspensions--Determination with a beaker-type centrifuge
CN2160105Y (en) Precipitation analysis balance
Ozturgut et al. Settling analysis of fine sediment in salt water at concentrations low enough to preclude flocculation
Hinkley Determination of Particle Size Distribution for Particle Sizes between 40 and 1 or 2 Microns
Le Moigne A STUDY OF THE FACTORS WHICH AFFECT THE APPLICATION OF STOKES'LAW TO PARTICLE-SIZE DETERMINATION BY SEDIMENTATION
Cartwright et al. A Liquid Sedimentation Method for Particle Size Distributions
SU1092385A1 (en) Emulsion dispersion composition determination method