JPS62284160A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS62284160A
JPS62284160A JP12862486A JP12862486A JPS62284160A JP S62284160 A JPS62284160 A JP S62284160A JP 12862486 A JP12862486 A JP 12862486A JP 12862486 A JP12862486 A JP 12862486A JP S62284160 A JPS62284160 A JP S62284160A
Authority
JP
Japan
Prior art keywords
heat exchanger
check valve
valve
liquid receiver
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12862486A
Other languages
Japanese (ja)
Other versions
JPH086975B2 (en
Inventor
達規 桜武
野口 正夫
竹司 渡辺
山口 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61128624A priority Critical patent/JPH086975B2/en
Publication of JPS62284160A publication Critical patent/JPS62284160A/en
Publication of JPH086975B2 publication Critical patent/JPH086975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分熱 本発明は冷房時は蒸気圧縮式、暖房時は無動力熱媒搬送
方式で運転する冷暖房装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application of Heat The present invention relates to an air-conditioning and heating apparatus that operates using a vapor compression method during cooling and a non-powered heat transfer method during heating.

従来の技術 従来のヒートポンプ式冷暖房装置は暖房運転時外気温度
が低下するにつれて冷媒の蒸発温度が低下し、その結果
凝縮器への冷媒循環瀘が減少し暖房能力が低下するとい
う欠点があった。この外気温度低下時の暖房能力を補う
ために暖房時大気熱からの冷媒の吸熱のかわりに燃焼熱
により冷媒を加熱し暖房能力低下を防止させる方式が知
られている。この方式を第2図に示す。1は圧縮機、2
は四方弁、aは室外熱交換器、4は逆圧弁、5は減圧装
置、6は室内熱交換器であり、室外熱交換器3と並列に
冷媒加熱器7を設けたサイクル構成となっており、冷房
時は実腺矢印、暖房時は破線矢印の方向へ冷媒は流ねる
。なお8.9は電磁弁である。上記構成によると従来の
室外熱交換器に加えてさらに冷媒加熱器が必要となりさ
らに圧縮機で冷媒を搬送させるため、イニシャルコスト
及びランニングコストの面で問題があった。さら(こ低
外気温時の暖房能力の低下を蒲うため第3図に示すよう
な暖房装置が提案されている。(例えば特開昭80−8
9627号公報)これは圧縮機10、凝縮器11、減圧
装置12、蒸発器13からなる暖房主循環回路の液化冷
媒を第1逆止弁15を介し受液器14へ送り、制御開閉
弁16の開閉により、すなわち制御用開閉弁16が開の
時は前記受液器14へ溜っている液冷媒を第2逆比弁1
7を通って加熱器18へ重力により供給し、この時は前
記受液器14と加熱器1日とは均圧されているため第1
逆止弁15により受液器14へは暖房主循環回路から液
冷媒は流入せず、受液器14の液冷媒がなくなると前記
制御弁16を閉じ、受液器14へ暖房主循環回路から液
冷媒を第1逆止弁15を通って流入させ(このとき加熱
器18の圧力は受液器14の圧力より高いので受液器1
4−\の流入液冷媒は第2逆止弁17により加熱器18
へは流れ込まない。)受液器14へ液冷媒が溜ると再び
制御用開閉弁16を開にし加熱器18へ液冷媒を供給す
る。すなわち加熱器18へは受液器14から間欠的に液
冷媒が供給され、加熱器18で吸熱蒸発した冷媒ガスは
圧縮機10の吐出ガスと共に凝縮器11へ送られ低外気
温時における凝縮能力低下防止を図っている。
BACKGROUND OF THE INVENTION Conventional heat pump air conditioning systems have the disadvantage that during heating operation, the evaporation temperature of the refrigerant decreases as the outside air temperature decreases, and as a result, the refrigerant circulation to the condenser decreases, resulting in a decrease in heating capacity. In order to supplement the heating capacity when the outside air temperature decreases, a method is known in which the refrigerant is heated by combustion heat instead of the refrigerant absorbing heat from atmospheric heat during heating to prevent the heating capacity from decreasing. This method is shown in FIG. 1 is a compressor, 2
is a four-way valve, a is an outdoor heat exchanger, 4 is a back pressure valve, 5 is a pressure reducing device, 6 is an indoor heat exchanger, and has a cycle configuration in which a refrigerant heater 7 is provided in parallel with the outdoor heat exchanger 3. During cooling, the refrigerant flows in the direction of the solid arrow, and during heating, the refrigerant flows in the direction of the dashed arrow. Note that 8.9 is a solenoid valve. According to the above configuration, a refrigerant heater is required in addition to the conventional outdoor heat exchanger, and the refrigerant is further transported by a compressor, which poses a problem in terms of initial cost and running cost. Furthermore, in order to compensate for the decrease in heating capacity at low outside temperatures, a heating device as shown in Fig. 3 has been proposed.
(No. 9627) This system sends the liquefied refrigerant in the heating main circulation circuit, which consists of a compressor 10, a condenser 11, a pressure reducer 12, and an evaporator 13, to a liquid receiver 14 via a first check valve 15, and then a control opening/closing valve 16. , that is, when the control on-off valve 16 is open, the liquid refrigerant accumulated in the liquid receiver 14 is transferred to the second inverse ratio valve 1.
7 to the heater 18, and at this time, since the pressure of the receiver 14 and the heater 1 are equalized, the first
The check valve 15 prevents liquid refrigerant from flowing into the liquid receiver 14 from the heating main circulation circuit, and when the liquid refrigerant in the liquid receiver 14 runs out, the control valve 16 is closed and the liquid refrigerant flows into the liquid receiver 14 from the heating main circulation circuit. The liquid refrigerant is caused to flow through the first check valve 15 (at this time, the pressure of the heater 18 is higher than the pressure of the liquid receiver 14, so the liquid refrigerant
The inflow liquid refrigerant of 4-\ is supplied to the heater 18 by the second check valve 17.
It does not flow into. ) When the liquid refrigerant accumulates in the liquid receiver 14, the control valve 16 is opened again to supply the liquid refrigerant to the heater 18. That is, liquid refrigerant is intermittently supplied to the heater 18 from the liquid receiver 14, and the refrigerant gas that has absorbed heat and evaporated in the heater 18 is sent to the condenser 11 together with the discharge gas of the compressor 10 to improve the condensation capacity at low outside temperatures. Efforts are being made to prevent the decline.

発明が解決しようとする問題点 しかしながら第3図のような構成では第2図の構成と同
様に暖房運転時圧縮機の運転が必要であF)ランニング
コストに問題があり、圧縮機10を停止させた状態で加
熱器18で発生したガスを凝縮機11、受液器14へ圧
送する回路で運転すると圧縮機10あるいは蒸発器4へ
冷媒が%B ’)込むという問題8有していた。
Problems to be Solved by the Invention However, in the configuration shown in FIG. 3, it is necessary to operate the compressor during heating operation as in the configuration shown in FIG. If the circuit is operated in such a state that the gas generated in the heater 18 is sent under pressure to the condenser 11 and receiver 14, refrigerant flows into the compressor 10 or the evaporator 4 (%B'), which is a problem.

本発明はかかる従来の問題点を解決するもので暖房時は
無動力熱媒搬送方式で運転し暖房運転のランニングコス
トの低減を図ると共に暖房中休正圧縮機および休止熱交
換器への冷媒溜り込を防止しさらに冷媒加熱器を冷房運
転時凝縮器として使用することにより従来の室外熱交換
器の小型化を図り室外ユニットの小型コンパクト化、イ
ニシャルコストの低減化を図ることを目的とするもので
ある。
The present invention solves the problems of the conventional technology by operating a non-powered heat medium transfer system during heating, thereby reducing the running cost of heating operation, and reducing refrigerant accumulation in the idle compressor and idle heat exchanger during heating. The purpose of this system is to reduce the size of the conventional outdoor heat exchanger by preventing condensation and by using the refrigerant heater as a condenser during cooling operation, making the outdoor unit smaller and more compact, and reducing initial costs. It is.

問題点を解決するための手段 上記問題点を解決するために本発明の冷暖房装置は、圧
縮機、冷房時凝縮器となる第1熱交換器、第1逆止弁、
冷房時凝縮器、暖房時加熱器となる第2熱交換器、第1
電磁弁、減圧装置、室内熱交換器、第2電磁弁、アキュ
ムレータとからなる冷凍サイクルを有し、前記第1電磁
弁および減圧装置と並列に前記減圧装置と前記室内熱交
換器の間から第2逆止弁、受液器、第3逆止弁を連結す
ると共に前記第2電磁弁と前記室内熱交換器の間と前記
第1逆止弁と前記第2熱交換器の間とを第3電磁弁を百
する暖房管路を配設し、かつ前記第3電磁弁と前記第2
熱交換器を連結する@記暖房管路と前記受液器の間に開
閉弁を・汀する均圧庁8配設した回路構成を有するもの
である。
Means for Solving the Problems In order to solve the above problems, the air conditioning system of the present invention includes a compressor, a first heat exchanger serving as a condenser during cooling, a first check valve,
A second heat exchanger that serves as a condenser during cooling and a heater during heating;
The refrigeration cycle includes a solenoid valve, a pressure reducing device, an indoor heat exchanger, a second solenoid valve, and an accumulator. A second check valve, a liquid receiver, and a third check valve are connected, and a second check valve is connected between the second solenoid valve and the indoor heat exchanger, and between the first check valve and the second heat exchanger. A heating pipe line including three solenoid valves is provided, and the third solenoid valve and the second solenoid valve are connected to each other.
The circuit has a circuit configuration in which a pressure equalizing valve 8 for closing an on-off valve is disposed between the heating pipe connecting the heat exchanger and the liquid receiver.

作  用 本発明は上記した構成によって第2熱交換器は冷房時凝
縮器、暖房時加熱器となるよう構成しであるため従来の
冷房時凝縮器となる室外熱交換器(本発明では第1熱交
換器)が小型コンパクトになりイニシャルコストの低減
化が図nると共(こ暖房運転時圧縮機および第1熱交換
器への冷媒の溜り込み問題も解消される。さらに前記第
1逆止弁と前記第2電磁弁とで暖房サイクルは圧縮機お
よび第1熱交換器と完全に分離され冷媒加熱器として作
用する第2熱交換器でガス化した冷媒は室内熱交換器へ
圧送され受液器へ戻り再び第2熱交戻器へ供給される無
動力熱搬送運転が可能となり暖房運転時低ランニングコ
スト化が得られる。
Effect The present invention is configured such that the second heat exchanger functions as a condenser during cooling and a heater during heating due to the above-described configuration. The heat exchanger) is made smaller and more compact, which reduces the initial cost (this also solves the problem of refrigerant accumulating in the compressor and the first heat exchanger during heating operation. The heating cycle is completely separated from the compressor and the first heat exchanger by the stop valve and the second electromagnetic valve, and the refrigerant gasified in the second heat exchanger that acts as a refrigerant heater is sent under pressure to the indoor heat exchanger. A non-powered heat transfer operation is possible in which the heat is returned to the liquid receiver and is again supplied to the second heat exchanger, resulting in lower running costs during heating operation.

実施例 以下、本発明の実施例を蚕付図簡にもとづいて説明する
EXAMPLES Hereinafter, examples of the present invention will be explained based on illustrated diagrams with silkworms.

第1図において、19は圧縮機、20は冷房運転時凝縮
器となる第1熱交換器、21は第1逆止弁、22は冷房
運転時凝縮器、暖房運転時冷媒加熱器となる第2熱交換
器、23は第1電磁弁、24は減圧装置、25は室内熱
交換器、26は第2電磁弁、27はアキュムレータであ
り冷凍サイクルを構成している。28は前記冷凍サイク
ルから前記第2熱交換器22より高い位置に配設しであ
る受液器29へ順方向に接、涜されている第2逆止弁、
30は受液器29から前記冷凍サイクルへ順方向へ接続
されている第3逆止弁であり前記第1電磁弁23と前記
減圧装置24に並列に配設しである。31は前記第1逆
止弁21と前記第2熱交換器の間と、前記室内熱交換器
25と前記第2電磁弁26の間とを接読する暖房管路3
2に配設しである第3電磁弁、33は前記第3電磁弁3
2と前記第2熱交換器22との接読管と前記受液器29
とを結ぶ均圧管34に配設しである開閉弁である。
In FIG. 1, 19 is a compressor, 20 is a first heat exchanger which becomes a condenser during cooling operation, 21 is a first check valve, 22 is a condenser during cooling operation, and a first heat exchanger which becomes a refrigerant heater during heating operation. 2 heat exchangers, 23 a first solenoid valve, 24 a pressure reducing device, 25 an indoor heat exchanger, 26 a second solenoid valve, and 27 an accumulator, forming a refrigeration cycle. 28 is a second check valve which is in contact with the liquid receiver 29 located at a higher position than the second heat exchanger 22 in the forward direction from the refrigeration cycle, and which is omitted;
A third check valve 30 is connected in the forward direction from the liquid receiver 29 to the refrigeration cycle, and is arranged in parallel with the first electromagnetic valve 23 and the pressure reducing device 24. Reference numeral 31 denotes a heating pipe line 3 that connects between the first check valve 21 and the second heat exchanger and between the indoor heat exchanger 25 and the second electromagnetic valve 26.
2 is a third solenoid valve, and 33 is the third solenoid valve 3.
2 and the second heat exchanger 22 and the liquid receiver 29
This is an on-off valve disposed in the pressure equalizing pipe 34 connecting the two.

上記構成において冷房運転時は第1電磁弁23と第2電
磁弁26は開、開閉弁3aと第3’4E磁弁31は閉状
態であり、圧縮機19で高温高圧になった冷媒は第1熱
交換器20および第2熱交換器22で凝縮液化し減圧装
置24で減圧膨張し室内熱交換器25でガス化しアキュ
ムレータ27をへて圧縮機19へ房る。この時受液器2
9へは第2逆止弁30により液冷媒は流入しない。一方
、暖房運転時は第1電磁弁23、第2電磁弁26は閉、
第3電撒弁a1は開状態となり、開閉弁33は開閉の動
作を繰返す。暖房運転時冷媒加熱器となる第2熱交換器
22で蒸発ガス化した冷媒は暖房管路32を通り室内熱
交換器25へ圧送され凝縮液化する。この時開閉弁33
は閉状態となっており前記凝縮液化冷媒は第2逆止弁2
日を通り受液器29へ溜る。この時受液器29へ流入す
る液冷媒は冷媒加熱器となる第2熱交換器22の圧力が
高いため第1逆止弁21により第2熱又換器22へは流
入しない。次に受液器29へ液冷媒が溜り終わると開閉
弁33は開状態となり第2熱交換詣22ヒ受液諧29と
は均1王:R:34で王カバランスし、第2熱交換器2
2より高い位置に設置しである受液器29の液冷媒は自
重で第2熱交換器22へ供給される。この時は第2逆止
弁28により室内熱交換器25からの凝縮液冷媒は受液
器29へは流入しない。受液器29の液冷媒の第2熱交
換器22への供給が終わると開閉弁は再び閉じ第2熱交
換器で蒸発ガス化した冷媒は室内熱交換器25へ圧送さ
れ同様のサイクルを繰り返す。以上のように本実施例の
システムは冷房時は蒸気圧縮式で運転を行ない、暖房時
は無動力熱媒搬送方式で運転を行なうと共に暖房時冷媒
加熱器となる第2熱交換器22に冷房運転時凝縮器とし
て作用させる構成としているため本来の冷房運転時の凝
縮器である第1熱交換器を小型コンパクト化できるため
暖房運転時のランニングコスト及びシステムのイニシャ
ルコストの低減が図れる効果がある。
In the above configuration, during cooling operation, the first solenoid valve 23 and the second solenoid valve 26 are open, the on-off valve 3a and the 3'4E solenoid valve 31 are closed, and the refrigerant that has become high temperature and high pressure in the compressor 19 is It is condensed and liquefied in the first heat exchanger 20 and the second heat exchanger 22, expanded under reduced pressure in the depressurizer 24, gasified in the indoor heat exchanger 25, and passed through the accumulator 27 to the compressor 19. At this time, receiver 2
The liquid refrigerant does not flow into the refrigerant 9 due to the second check valve 30. On the other hand, during heating operation, the first solenoid valve 23 and the second solenoid valve 26 are closed.
The third electric dispensing valve a1 is in an open state, and the on-off valve 33 repeats the opening and closing operation. During heating operation, the refrigerant evaporated and gasified in the second heat exchanger 22, which serves as a refrigerant heater, passes through the heating pipe line 32, is sent under pressure to the indoor heat exchanger 25, and is condensed and liquefied. At this time, the on-off valve 33
is in a closed state, and the condensed liquefied refrigerant flows through the second check valve 2.
The liquid passes through the day and accumulates in the liquid receiver 29. At this time, the liquid refrigerant flowing into the liquid receiver 29 is prevented from flowing into the second heat exchanger 22 by the first check valve 21 because the pressure of the second heat exchanger 22 serving as a refrigerant heater is high. Next, when the liquid refrigerant finishes collecting in the liquid receiver 29, the on-off valve 33 is opened, and the second heat exchanger 22 and the liquid receiver 29 are balanced at R:34, and the second heat exchanger is started. Vessel 2
The liquid refrigerant in the liquid receiver 29 installed at a higher position than the second heat exchanger 22 is supplied by its own weight to the second heat exchanger 22. At this time, the second check valve 28 prevents the condensed refrigerant from the indoor heat exchanger 25 from flowing into the receiver 29 . When the supply of the liquid refrigerant from the liquid receiver 29 to the second heat exchanger 22 is finished, the on-off valve is closed again, and the refrigerant evaporated and gasified in the second heat exchanger is sent under pressure to the indoor heat exchanger 25 and the same cycle is repeated. . As described above, the system of this embodiment operates using the vapor compression method during cooling, and operates using the non-powered heat transfer method during heating. Since it is configured to act as a condenser during operation, the first heat exchanger, which is the condenser during cooling operation, can be made smaller and more compact, which has the effect of reducing running costs during heating operation and the initial cost of the system. .

又、暖房運転時は第2電磁弁26は閉状態であり第1逆
止弁21とあわせて圧縮機19および第1熱交換器20
への冷媒の溜り込みも防止できシステムの信頼性も向上
できる効果がある。
Also, during heating operation, the second solenoid valve 26 is closed, and together with the first check valve 21, the compressor 19 and the first heat exchanger 20 are closed.
This has the effect of preventing refrigerant from accumulating in the system and improving system reliability.

発明の効果 以上のように本発明の冷暖房装置によれば、冷房運転時
は蒸気圧縮式、暖房運転時は無動力熱媒搬送方式で運転
が可能となり、暖房運転時冷媒加熱器となる第2熱交換
器は冷房運転時凝縮器として作用する構成を有している
ため冷房運転時の凝縮器である第1熱交換器を小型コン
パクト化でき暖房運転時のランニングコストおよびシス
テムのイニシャルコストの低減が図れる効果がある。さ
らに暖房運転時圧縮機および第1熱交換器への冷媒の溜
り込みも第1逆止弁、第2電磁弁により防止できシステ
ムの信頼性も向上する効果がある。
Effects of the Invention As described above, according to the air conditioning system of the present invention, it is possible to operate using the vapor compression method during cooling operation and the non-powered heat medium transfer method during heating operation. Since the heat exchanger is configured to act as a condenser during cooling operation, the first heat exchanger, which is the condenser during cooling operation, can be made smaller and more compact, reducing running costs during heating operation and the initial cost of the system. There is an effect that can be achieved. Furthermore, the first check valve and the second solenoid valve prevent refrigerant from accumulating in the compressor and first heat exchanger during heating operation, thereby improving the reliability of the system.

又、本システムは暖房時外気温度に左右されず安定な暖
房能力が得られるため、冷房負荷の小さい寒冷地向冷暖
房装置として圧、JJの小型化が可能となりシステムの
低コスト化が可能となる効果もある。
In addition, since this system provides stable heating capacity without being affected by outside air temperature during heating, it can be used as an air conditioning system for cold regions with a small cooling load, making it possible to downsize the pressure and JJ and reduce the cost of the system. It's also effective.

【図面の簡単な説明】[Brief explanation of drawings]

g1図は本発明の一実施例による冷暖房装置の回路構成
図、第2図は従来の冷暖房装置の回路構成因、第3図は
従来の暖房装置の回路構成図である。 19・・・・・・圧縮機、20・・・・・・第1熱交漠
器、21・・・・・・第1逆止弁、22・・・・・・第
2熱交換器、23・・・・・・第1電磁弁、24・・・
・・・減圧装置、25・・・・・・室内熱交換器、26
・・・・・・第2電磁弁、28・・・・・・第2逆止弁
、29・・・・・・受液器、30・・・・・・第3逆止
弁、31・・・・・・第3電磁弁、32・・・・・・暖
房管路、33・・・・・・開閉弁、34・・・・・・均
圧管。
Figure g1 is a circuit configuration diagram of an air conditioning system according to an embodiment of the present invention, FIG. 2 is a circuit configuration diagram of a conventional air conditioning system, and FIG. 3 is a circuit configuration diagram of a conventional heating system. 19... Compressor, 20... First heat exchanger, 21... First check valve, 22... Second heat exchanger, 23...First solenoid valve, 24...
... Pressure reduction device, 25 ... Indoor heat exchanger, 26
...Second solenoid valve, 28...Second check valve, 29...Liquid receiver, 30...Third check valve, 31. ...Third solenoid valve, 32...Heating pipe line, 33...Opening/closing valve, 34...Pressure equalization pipe.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、冷房時凝縮器となる第1熱交換器、第1
逆止弁、冷房時凝縮器、暖房時冷媒加熱器となる第2熱
交換器、第1電磁弁、減圧装置、室内熱交換器、第2電
磁弁、アキュムレータとからなる冷凍サイクルを有し、
前記第1電磁弁および減圧装置と並列に前記減圧装置と
前記室内熱交換器の間から第2逆止弁、受液器、第3逆
止弁を連結すると共に前記第2電磁弁と前記室内熱交換
器の間と前記第1逆止弁と前記第2熱交換器の間とを第
3電磁弁を有する暖房管路を配設し、かつ前記第3電磁
弁と前記第2熱交換器を連結する前記暖房管路と前記受
液器の間に開閉弁を有する均圧管を配設した冷暖房装置
(1) Compressor, first heat exchanger that serves as a condenser during cooling, first
It has a refrigeration cycle consisting of a check valve, a condenser during cooling, a second heat exchanger serving as a refrigerant heater during heating, a first solenoid valve, a pressure reducing device, an indoor heat exchanger, a second solenoid valve, and an accumulator,
A second check valve, a liquid receiver, and a third check valve are connected in parallel with the first solenoid valve and the pressure reducing device from between the pressure reducing device and the indoor heat exchanger, and a second check valve, a liquid receiver, and a third check valve are connected between the second solenoid valve and the indoor heat exchanger. A heating pipeline having a third solenoid valve is disposed between the heat exchanger and between the first check valve and the second heat exchanger, and the third solenoid valve and the second heat exchanger An air-conditioning and heating system comprising a pressure equalizing pipe having an on-off valve arranged between the heating pipe line connecting the liquid receiver and the liquid receiver.
(2)第1逆止弁は前記圧縮機の吐出方向を、第2逆止
弁は前記冷凍サイクルから前記受液器の方向を、第3逆
止弁は前記受液器から前記冷凍サイクルの方向をそれぞ
れ順方向となるよう配設した特許請求の範囲第1項記載
の冷暖房装置。
(2) The first check valve controls the discharge direction of the compressor, the second check valve controls the direction from the refrigeration cycle to the liquid receiver, and the third check valve controls the direction from the liquid receiver to the refrigeration cycle. The heating and cooling device according to claim 1, wherein the heating and cooling device is arranged so that the directions thereof are in the forward direction.
(3)受液器は前記第2熱交換器よりも高い位置に配設
した構成を有する特許請求の範囲第1項記載の冷暖房装
置。
(3) The air-conditioning device according to claim 1, wherein the liquid receiver is arranged at a higher position than the second heat exchanger.
JP61128624A 1986-06-03 1986-06-03 Air conditioner Expired - Lifetime JPH086975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128624A JPH086975B2 (en) 1986-06-03 1986-06-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128624A JPH086975B2 (en) 1986-06-03 1986-06-03 Air conditioner

Publications (2)

Publication Number Publication Date
JPS62284160A true JPS62284160A (en) 1987-12-10
JPH086975B2 JPH086975B2 (en) 1996-01-29

Family

ID=14989398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128624A Expired - Lifetime JPH086975B2 (en) 1986-06-03 1986-06-03 Air conditioner

Country Status (1)

Country Link
JP (1) JPH086975B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162563A (en) * 1979-06-04 1980-12-17 Mitsubishi Electric Corp Air conditioner
JPS58116969U (en) * 1982-02-01 1983-08-10 三洋電機株式会社 air conditioner
JPS6030991A (en) * 1983-07-29 1985-02-16 Mitsubishi Electric Corp Heat transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162563A (en) * 1979-06-04 1980-12-17 Mitsubishi Electric Corp Air conditioner
JPS58116969U (en) * 1982-02-01 1983-08-10 三洋電機株式会社 air conditioner
JPS6030991A (en) * 1983-07-29 1985-02-16 Mitsubishi Electric Corp Heat transfer device

Also Published As

Publication number Publication date
JPH086975B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US6883342B2 (en) Multiform gas heat pump type air conditioning system
US4569207A (en) Heat pump heating and cooling system
US4384608A (en) Reverse cycle air conditioner system
JPS63210577A (en) Integrated heat pump and hot-water supply device
WO1997044625A1 (en) Heat pump systems and methods incorporating subcoolers for conditioning air
JPH0235216B2 (en)
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JPS62284160A (en) Air conditioner
JPH078999Y2 (en) Air source heat pump
JP2889762B2 (en) Air conditioner
JPS62238956A (en) Air conditioner
US3109298A (en) Refrigerating systems
JPS5852460Y2 (en) Refrigeration equipment
JPH0794927B2 (en) Air conditioner
JPS63233251A (en) Chilling unit
JPS6328385Y2 (en)
JPH0221731Y2 (en)
JPS5847963A (en) Refrigerating cycle of air conditioner
JPS5878055A (en) Heater for air-conditioning
CN118208788A (en) Heat pump water system, control method, control device and computer readable storage medium
JPS6284260A (en) Heating apparatus
JP2831857B2 (en) Air conditioning
JPH0113972Y2 (en)
JPS63180045A (en) Air conditioner
JPS62284159A (en) Air conditioner