JPS62284000A - Physiologically active protein bonded lipid microsphere - Google Patents

Physiologically active protein bonded lipid microsphere

Info

Publication number
JPS62284000A
JPS62284000A JP61126697A JP12669786A JPS62284000A JP S62284000 A JPS62284000 A JP S62284000A JP 61126697 A JP61126697 A JP 61126697A JP 12669786 A JP12669786 A JP 12669786A JP S62284000 A JPS62284000 A JP S62284000A
Authority
JP
Japan
Prior art keywords
lms
physiologically active
drug
active protein
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126697A
Other languages
Japanese (ja)
Inventor
Yutaka Mizushima
裕 水島
Yoko Shoji
東海林 洋子
Michie Igarashi
理慧 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61126697A priority Critical patent/JPS62284000A/en
Publication of JPS62284000A publication Critical patent/JPS62284000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:The titled microsphere which is useful as a carcinostatic agent, contains a drug in the interior of the microsphere, bonded to physiologically active protein by covalent bond on the surface, suppresses deactivation of the drug in the blood, linked to a monoclonal antibody and increases remedying effect. CONSTITUTION:A reaction product of dipalmitolylphosphatidylehtanolamine and N-succinimidyl 3-(2-pyridylthio)propionate is blended with purified soybean oil, purified soybean lecithin, glycerin mitomycin C of a stearylated carcinostatic agent as a drug and emulsified by the conventional procedure to give lipid microsphere (LMS). Then, LMS is reacted with physiologically active protein such as monoclonal antibody to mammary cancer and linked by covalent bond to give the LMS useful as a carcinostatic agent having high remedying effect.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、生理活性蛋白をその表面に共有結合したりピ
ッドマイクロスフェア−(以下、LMSとする)に関す
る。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to pid microspheres (hereinafter referred to as LMS) having physiologically active proteins covalently bonded to their surfaces.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

最近、薬剤の生体内動態を研究する一分野として、生物
薬剤学が脚光を浴びてきておυ、薬剤を効率良く目的部
位に運ぶために、種々の工夫をこらしたドラッグ・デリ
バリ−・システム(医薬品送達システム) (DDS)
の開発に力が注がれてきている。DDSの中に、リボゾ
ームや高分子化合物をキャリアーとして用いる方法があ
るが、キャリアーとしてLMSを用いる方法がある。=
Sは、現在の薬剤キャリアーの中では、安全性、生物学
的崩壊性、応用範冊の広さ、ターゲツティング効果、工
業化など何れの面からみても、実用価値が高いものと評
価できる。
Recently, biopharmaceutical science has been in the spotlight as a field that studies the in vivo dynamics of drugs.Drug delivery systems (Drug delivery systems) have been developed to efficiently deliver drugs to the target site. drug delivery system) (DDS)
Efforts are being focused on the development of Among DDS, there is a method using ribosomes or polymer compounds as a carrier, and there is a method using LMS as a carrier. =
Among current drug carriers, S can be evaluated as having high practical value in terms of safety, biological degradability, wide range of applications, targeting effect, and industrialization.

しかし、LMSは、製剤上の特徴でもめ、るが、脂肪相
を界面活性剤が取り囲むという構造のために、水溶性の
薬物に応用しにくいという欠点がある。そのため、脂溶
性の低い薬物には、その薬物に脂溶性官能基を導入する
か、或いは工を構成する大豆油にエイコサペンタエン散
又はエイシンなどの薬物溶解性の高い物質を混入するこ
とが行われ、それによ、Q LMS内部に薬物を成る程
度封入させることができる。
However, although LMS has some formulation characteristics, it has the disadvantage that it is difficult to apply to water-soluble drugs because of its structure in which a surfactant surrounds a fatty phase. Therefore, for drugs with low fat solubility, either a fat-soluble functional group is introduced into the drug, or a substance with high drug solubility, such as eicosapentaene powder or eisin, is mixed into the soybean oil that makes up the drug. , thereby allowing the drug to be encapsulated to a certain extent inside the Q LMS.

このような方法によっても、抗体、インターフェロン、
インターロイキン、組織型プラスミノーゲン活性体、ク
ロキナーゼなどの生理活性を有する蛋白を、LMS内部
に封入させることは、不可能でめった。そして、インタ
ーロイキン又はウロキナーゼなどは、強い生理活性を有
するが、静脈注入の場合、血中半減期が短いため、失活
し易く、臨床的な効果を得るのに、適当なりDSが望ま
れている。
This method also allows antibodies, interferon,
It is rarely possible to encapsulate physiologically active proteins such as interleukin, tissue-type plasminogen activator, and crokinase inside LMS. Interleukins and urokinase have strong physiological activity, but when injected intravenously, their half-life in the blood is short, so they are easily deactivated, and appropriate DS is required to obtain clinical effects. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これら従来のLMSの欠点のない技術に
ついて検討した結果、本発明を見い出した。
The present inventors discovered the present invention as a result of studying techniques that do not have the drawbacks of these conventional LMSs.

即ち、本発明は生理活性蛋白をその表面に共有結合した
マイクロリビットスフエアーに関する。
That is, the present invention relates to microribit spheres having physiologically active proteins covalently bonded to their surfaces.

本発明に用いる生理活性蛋白は、生理活性を有する蛋白
であれば、どんなものでもよいが、例、t バクロキナ
ーゼ、スーパーオキシド・ディスムターゼ、抗体(癌モ
ノクローナル抗体などの特異性を有する抗体)、プロテ
ィンA1インターロイキンやMA1t’などの各種リン
ホカイン、インター7二ロン又はインターフェロン誘導
物質、Ia、リウトマイド因子、生理活性を有する酵素
、蛋白を置換基に有する薬物又はその他の蛋白製剤を含
む。
The physiologically active protein used in the present invention may be any physiologically active protein, but examples include t-baclokinase, superoxide dismutase, antibodies (antibodies with specificity such as cancer monoclonal antibodies), protein It includes various lymphokines such as A1 interleukin and MA1t', inter7 diron or interferon inducers, Ia, rheutomide factor, physiologically active enzymes, drugs having protein as a substituent, or other protein preparations.

又、本発明に用いられるLMSは、従来知られている任
意の方法により製造される。例えば、所定量の大豆油、
リン脂質、そして必要に応じて乳化補助剤、安定剤、界
面活性剤などの添加物を混合し、加熱して溶液とし、通
常のホモジナイザーにより均質化することにより製造さ
れる。
Further, the LMS used in the present invention is manufactured by any conventionally known method. For example, a certain amount of soybean oil,
It is produced by mixing phospholipids and, if necessary, additives such as emulsification aids, stabilizers, and surfactants, heating the mixture to form a solution, and homogenizing it using a conventional homogenizer.

生理活性蛋白とLMSとの結合は、共有結合による。The binding between the physiologically active protein and LMS is through a covalent bond.

LMSと生理活性蛋白とを共有結合させる方法としては
、種々のやり方が考えられる。例えば、ヘテロ三官能性
試薬を用いる方法があけられる。
Various methods can be considered for covalently bonding LMS and physiologically active proteins. For example, a method using a heterotrifunctional reagent is possible.

例えば、蛋白架橋剤5PDP [N−サクシミジルー3
−(2−ピリジルジチオ)プロピオネート〕を7ミノ基
を導入したイソプレノイド(C45或いはC95)と結
合させ、この結合物を含むLMSを生成し、必要な蛋白
をLMSにS−S結合を介して共有結合させる。
For example, the protein cross-linker 5PDP [N-succimidyl-3
-(2-pyridyldithio)propionate] is combined with an isoprenoid (C45 or C95) into which a 7-mino group has been introduced, an LMS containing this conjugate is produced, and the necessary protein is covalently transferred to the LMS via an S-S bond. combine.

又、架橋剤としては、m−マレイミドベンゾイル−N−
(ジパルミトイルホスファチジル)エタノールアミドも
用いられる。これは、例えばジパルミトイルホス7アテ
ジルエタノールアミンとm−マレイミドベンゾイル−N
−ヒドロキシサクシイミドエステルとの反応により得ら
れる。
In addition, as a crosslinking agent, m-maleimidobenzoyl-N-
(Dipalmitoylphosphatidyl)ethanolamide is also used. This includes, for example, dipalmitoylphos-7atezylethanolamine and m-maleimidobenzoyl-N
-obtained by reaction with hydroxysuccinimide ester.

又、本発明は薬物をその内部に含有ししかも生理活性蛋
白をその表面に共有結合したリピツドマイクロスフェア
ーに関する。
The present invention also relates to lipid microspheres containing a drug therein and having a physiologically active protein covalently bonded to the surface thereof.

このリピツドマイクロスフエアーでは、前述の如くその
表面に生理活性蛋白を共有結合しているが、その内部に
薬物を含有する。このLMSでは、薬物を含有している
ため、治療効果を増大てせることができる。
As described above, this lipid microsphere has a physiologically active protein covalently bonded to its surface, and contains a drug inside. Since this LMS contains a drug, the therapeutic effect can be increased.

LMSに含有される薬物には特に制限がなく、その中油
溶性のものが好ましい。これら薬剤の例は、抗炎症剤(
例えば、ステロイド系、非ステロイド系の何れでもよく
、例えばデキサメサゾンパルミテート、プレドニゾロン
ノミルミテート、インドメサシンエステル、イブフロフ
ェン、フルフェナム酸など)、抗癌剤(例えば5− F
U。
There are no particular restrictions on the drug contained in LMS, and oil-soluble drugs are preferred. Examples of these drugs include anti-inflammatory agents (
For example, they may be steroidal or nonsteroidal, such as dexamethasone palmitate, prednisolone nomilmitate, indomethacin ester, ibuflofen, flufenamic acid, etc., anticancer agents (such as 5-F
U.

ダウンマイシン、プレオマイシン、アントラマイシン、
マイトマイシン、6−メルカプトプリンなど)、抗生物
質(例えばエリスロマイシン、セファロスポリン類、k
ニジリン類なト)、抗ウィルス剤(例えばインターフェ
ロンなど)、プロスタグランディン類を含むがこれに限
定されるものではない。
downmycin, pleomycin, anthramycin,
mitomycin, 6-mercaptopurine, etc.), antibiotics (e.g. erythromycin, cephalosporins, k
These include, but are not limited to, antiviral agents (eg, interferon, etc.), and prostaglandins.

この薬物含有LMSの製造に当っては、前述のLMSの
製造時に、適当量の薬物を添加混合して得ることができ
る。
In producing this drug-containing LMS, it can be obtained by adding and mixing an appropriate amount of drug during the production of the LMS described above.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

実施例 1 (A)10μMジパルミトイルホスファチジルエタノー
ルアミン(DPPE )のクロロホルム・メタノール(
9対1)混合溶液に、12μMN−サクシンイミジル3
−(2−ピリジルジチオ)プロピオネート(SPDP)
及び20μMトリエタノールを加え、2時間室温で攪拌
、反応させて、5PDPとDPPgとの結合物(PDP
−PE )を得た。
Example 1 (A) 10 μM dipalmitoylphosphatidylethanolamine (DPPE) in chloroform-methanol (
9 to 1) mixed solution, 12 μM N-succinimidyl 3
-(2-pyridyldithio)propionate (SPDP)
and 20 μM triethanol, stirred and reacted at room temperature for 2 hours to form a conjugate of 5PDP and DPPg (PDP
-PE) was obtained.

(B)  (A)で得たFDP−PE 0.04%(w
、、’v) 、精製大豆油20 S (W/’V’)、
精製大豆レシテy 2.4 % (W/V)、精製グリ
セリン5%(W/V)を混合し、常法に従ってマントン
・ゴーリン乳化機によシ乳化し、PDP −PE含有L
MS (大豆油含有率20%)を得た。
(B) FDP-PE obtained in (A) 0.04% (w
,,'v), Refined soybean oil 20S (W/'V'),
2.4% (W/V) of purified soybean leishitin and 5% (W/V) of purified glycerin were mixed and emulsified using a Manton-Gorlin emulsifier according to a conventional method, and L containing PDP-PE was mixed.
MS (soybean oil content 20%) was obtained.

(C)  次に、インターフェロンを0.01M燐酸塩
緩衝液(pl(7,5)に対しis9/lnlになるよ
うに溶解し、0、36 mM 5PDPを反応させてF
DP−インターフェロンを得た。
(C) Next, interferon was dissolved in 0.01M phosphate buffer (pl(7,5) to give is9/lnl, and reacted with 0.36mM 5PDP to F
DP-interferon was obtained.

インターフェロン未結合5PDPを除去した後、さらに
50mMジチオスレイトールにより還元し、還元PDP
−インターフェロンを得た。過剰のジテオスレイトール
を除去した後、還元FDP−インターフェロン溶液に、
(B)で得たLMSを加え、室温で1晩、攪拌放置して
、インターフェロン結合LMSを得た。
After removing interferon-unbound 5PDP, it was further reduced with 50mM dithiothreitol to form reduced PDP.
- Obtained interferon. After removing excess diteothreitol, the reduced FDP-interferon solution was
The LMS obtained in (B) was added and left to stir at room temperature overnight to obtain interferon-conjugated LMS.

実施例 2 実施例1(B)において、DPPEの代υに、C4Sポ
リプレノイド(インプレノイドの一種)の末端OH基を
NH7基に置換したものを用いて、LMSを製造した。
Example 2 In Example 1 (B), LMS was produced using a C4S polyprenoid (a type of imprenoid) whose terminal OH group was replaced with an NH7 group instead of DPPE.

このLMSを用いて、実施例1(C)と同様にして、イ
ンターフェロンの代りに、ウロキナーゼを用いて、ウロ
キナーゼ結合LMSを得た。
Using this LMS, urokinase-binding LMS was obtained in the same manner as in Example 1 (C), using urokinase instead of interferon.

実施例 6 実施例1(B)において、DPPEの代りに、C95ン
ラネンール(インプレノイドの−a[)の末端OH基を
NH2基に置換したものを用い、LMSを製造した。
Example 6 In Example 1 (B), instead of DPPE, LMS was produced by using C95 nanenol (imprenoid -a[) in which the terminal OH group was replaced with an NH2 group).

このLMSを用いて、実施例1(C)と同様にして、イ
ンターフェロンの代りに1イ・ンターロイキン2を用い
て、インターロイキン2結合LMSを得た。
Using this LMS, interleukin 2-binding LMS was obtained in the same manner as in Example 1 (C), using 1-interleukin 2 instead of interferon.

実施例 4 ステアリルマイトマイシンCを20μg/at を添加
する以外は、実施例1(B)の方法を行った。
Example 4 The method of Example 1 (B) was carried out except that 20 μg/at of stearyl mitomycin C was added.

得られたLMSにMM46マウス乳癌に対するモノクロ
ーナル抗体を実施例1(C)の方法により共有結合させ
た。
A monoclonal antibody against MM46 mouse mammary cancer was covalently bonded to the obtained LMS by the method of Example 1(C).

得られたステアリルマイトマイシンC含有LM!3の生
体外におけるMM46細胞に対する抗腫瘍効果は次の通
りでらった。方法はMM46細胞を10%FC3含有ハ
ンクス液で1x j Q6 (@/mに浮遊させた。9
6大のマイクロウェルプレートに細胞浮遊液100μl
とLMS 10μ)を入れ、37℃、24時間、5%C
O2気流下にインキュベートした。
The obtained stearyl mitomycin C-containing LM! The antitumor effect of No. 3 on MM46 cells in vitro was as follows. The method was to suspend MM46 cells at 1x j Q6 (@/m) in Hank's solution containing 10% FC3.9
100μl of cell suspension in 6 large microwell plate
and LMS (10μ), and incubated at 37°C, 5%C for 24 hours.
Incubated under O2 flow.

次ニ、トリパンブルー染色で細胞の生存率を測定した。Next, cell viability was measured by trypan blue staining.

生存率はi tssであった。一方、ステアリルマイト
マイシンCをLMSに含有させたものは、395%、L
MSのみでは64.5%であった。
Survival rate was itss. On the other hand, LMS containing stearyl mitomycin C was 395% LMS.
For MS alone, it was 64.5%.

この実験において、抗体の使用量は、−生存率に影響を
及ぼさない量であった。
In this experiment, the amount of antibody used was - an amount that did not affect viability.

さらに、48時間インキュベーションを行っても、同様
な結果が得られた。
Furthermore, similar results were obtained even after incubation for 48 hours.

この結果から、モノクローナル抗体を結合した方が、生
存率が低く、抗腫瘍効果が増大していることが分る。
These results show that monoclonal antibody binding has a lower survival rate and an increased antitumor effect.

参考例 1 蛋白として、プロティンA、 IgG、ウロキナーゼを
用い、実施例1の方法に従って、これら蛋白を共有結合
により結合したLMSt−得た。この結合率は、プロテ
ィンA・・で60.0%、工gGで57、5%、ウロキ
ナーゼ40.0%であった。
Reference Example 1 Protein A, IgG, and urokinase were used as proteins, and according to the method of Example 1, LMSt-covalently bound these proteins was obtained. The binding rate was 60.0% for protein A, 57.5% for protein G, and 40.0% for urokinase.

一方、これら蛋白を吸着法(LMSとこれら蛋白とを単
に混合することにより両者を結合させる方法)によりL
MSに結合させた場合には、その結合率は、プロティン
Aで4.0%、塊Gで30,0係、ウロキナーゼで20
%であった。
On the other hand, these proteins were absorbed into LMS by an adsorption method (a method of binding LMS and these proteins by simply mixing them).
When bound to MS, the binding rate was 4.0% for protein A, 30.0% for block G, and 20% for urokinase.
%Met.

又、吸着法で得られた蛋白吸着LMSは、血清とともに
インキュベートすると、吸着しfc蛋白は剥m L、て
しまう。LMSは、静脈中に投与されるので、目的部位
に到達する間に、蛋白が保持されず、目的を達すること
ができない。これに対し、本発明で得られたLMSには
、このような欠点がない。
Furthermore, when the protein-adsorbed LMS obtained by the adsorption method is incubated with serum, it adsorbs and the fc protein is stripped off. Since LMS is administered intravenously, the protein is not retained during the delivery to the target site and the target cannot be achieved. In contrast, the LMS obtained according to the present invention does not have such drawbacks.

Claims (1)

【特許請求の範囲】 1)生理活性蛋白をその表面に共有結合したリピッドマ
イクロスフェアー。 2)薬物をその内部に含有ししかも生理活性蛋白をその
表面に共有結合したリピッドマイクロスフェアー。
[Claims] 1) Lipid microspheres having physiologically active proteins covalently bonded to their surfaces. 2) Lipid microspheres that contain a drug inside and have a physiologically active protein covalently bonded to their surface.
JP61126697A 1986-05-31 1986-05-31 Physiologically active protein bonded lipid microsphere Pending JPS62284000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126697A JPS62284000A (en) 1986-05-31 1986-05-31 Physiologically active protein bonded lipid microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126697A JPS62284000A (en) 1986-05-31 1986-05-31 Physiologically active protein bonded lipid microsphere

Publications (1)

Publication Number Publication Date
JPS62284000A true JPS62284000A (en) 1987-12-09

Family

ID=14941608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126697A Pending JPS62284000A (en) 1986-05-31 1986-05-31 Physiologically active protein bonded lipid microsphere

Country Status (1)

Country Link
JP (1) JPS62284000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137725A (en) * 1986-04-22 1992-08-11 L'oreal Dispersion of lipidic spherules
EP0706798A1 (en) 1994-07-22 1996-04-17 Sanwa Kagaku Kenkyusho Co., Ltd. Pharmaceutical composition containing biologically active peptide or protein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137725A (en) * 1986-04-22 1992-08-11 L'oreal Dispersion of lipidic spherules
EP0706798A1 (en) 1994-07-22 1996-04-17 Sanwa Kagaku Kenkyusho Co., Ltd. Pharmaceutical composition containing biologically active peptide or protein
US5733877A (en) * 1994-07-22 1998-03-31 Sanwa Kagaku Kenkyusho Co., Ltd. Pharmaceutical composition containing biologically active peptide or protein

Similar Documents

Publication Publication Date Title
US4863740A (en) Interleukin therapy
US6099864A (en) In situ activation of microcapsules
KR840002117B1 (en) Process for preparing magnetically-localizable,biodegrodable hipid miscospheres
KR100241300B1 (en) Multivescular liposomes with controlled release of encapsulated biologically active substances
US5258499A (en) Liposome targeting using receptor specific ligands
US5069936A (en) Manufacturing protein microspheres
Li et al. PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers
CA2395132A1 (en) Pharmaceutical formulations for the delivery of drugs having low aqueous solubility
US20030215492A1 (en) SN-38 lipid complexes and their methods of use
JPH07500084A (en) Pharmaceutical carrier
EP0495187A1 (en) Protein nanomatrixes and method of production
KR20030096356A (en) Nanoparticles made of protein with coupled apolipoprotein e for penetration of the blood-brain barrier and methods for the production thereof
JP2007513122A (en) Drug delivery vehicle and use thereof
JP7470418B2 (en) Multi-cell targeting liposomes
Severin New approaches to targeted drug delivery to tumour cells
EP1369110A1 (en) Production of nanoparticles from methyl vinyl ether copolymer and maleic anhydride for the administration of hydrophilic pharmaceuticals, more particularly of puric and pyrimidinic bases
JP2002544177A (en) Pharmaceutical vehicles for controlled administration of active agents produced from lipid matrix-drug conjugates
EP0366770A1 (en) Liposomes coupled to hormones.
JPS62284000A (en) Physiologically active protein bonded lipid microsphere
CN109276560A (en) A kind of pH response type micro-capsule and its preparation method and application containing lactoferrin
Lukáč et al. Preparation of metallochelating microbubbles and study on their site-specific interaction with rGFP-HisTag as a model protein
JPS6221335B2 (en)
JP2003513901A (en) Method for encapsulating protein or peptide in liposome, liposome prepared by this method and use thereof
EP0202017B1 (en) Artificial microcompartmentalised structures and process for the manufacture thereof
JPS63253021A (en) Production of lipid microsphere bound to physiologically active protein