JPS6221335B2 - - Google Patents

Info

Publication number
JPS6221335B2
JPS6221335B2 JP56195828A JP19582881A JPS6221335B2 JP S6221335 B2 JPS6221335 B2 JP S6221335B2 JP 56195828 A JP56195828 A JP 56195828A JP 19582881 A JP19582881 A JP 19582881A JP S6221335 B2 JPS6221335 B2 JP S6221335B2
Authority
JP
Japan
Prior art keywords
oil
emulsion
added
fat emulsion
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56195828A
Other languages
Japanese (ja)
Other versions
JPS5899424A (en
Inventor
Yutaka Mizushima
Kazumasa Yokoyama
Tadakazu Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN CROSS CORP
Original Assignee
GREEN CROSS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN CROSS CORP filed Critical GREEN CROSS CORP
Priority to JP19582881A priority Critical patent/JPS5899424A/en
Publication of JPS5899424A publication Critical patent/JPS5899424A/en
Publication of JPS6221335B2 publication Critical patent/JPS6221335B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、選択的指向性を有する医薬物質含有
脂肪乳剤に関する。医薬物質を含有させるために
使用される脂肪乳剤は、一般にO/W型の乳剤
で、大豆油等の植物油を非イオン性界面活性剤や
卵黄リン脂質、レシチン、大豆リン脂質等の乳化
剤を使用して乳化することによつて調製される。
このものは、栄養輸液であり、生体投与後は熱源
として利用される。 一方、この脂肪乳剤は最近、油粒子自体がリン
パ管に親和性が高く、特異的にリンパ節に移行す
ることから脂肪乳剤粒子内に制癌剤を包埋させ、
脂肪乳剤を制癌剤の運搬体として利用するこころ
みがある〔GANN64、345−350(1973)〕。 また、本発明者らも脂肪乳剤中に抗炎症剤を包
埋させ、油粒子と炎症局部との親和性の高いこと
を利用して、抗炎症剤の運搬体として利用した発
明を完成している(特願昭55−64875)。この脂肪
乳剤を医薬物質の運搬体として利用する技術は、
油粒子自体のリンパ管親和性に由来するもので、
かなりの効果が期待される。しかし、このものの
欠点は、生体内での輸送がある程度非特異的であ
ることであり、治療対象とする疾患器官への医薬
物質運送は不完全であつた。通常、その到達度は
せいぜい1〜5%程度である。 そこで本発明者らは、この脂肪乳剤の医薬物質
運搬体としての有効性を最大限活用するための方
法を種々検討した。その結果、おもいがけないこ
とに、γ−グロブリンが脂肪乳剤の油粒子の膜表
面に結合することを見いだすと共にその結合した
γ−グロブリンとこれに相応する抗原を含有する
細胞との親和性即ち、抗原−抗体反応を利用する
ことで脂肪乳剤の医薬物質運搬体としての選択指
向機能が倍加されることを見い出し、本発明を完
成した。 本発明の目的は、疾患部位ないし病原体(ウイ
ルス、細菌など)に選択的指向性を有する医薬物
質含有脂肪乳剤を提供することにある。 ここに選択的指向性とは、結合させた免疫グロ
ブリンに相応する抗原を含有する細胞(ウイル
ス、細菌などの病原細胞、人体の疾患部位)への
指向性をいう。 本発明は、医薬物質含有脂肪乳剤の油粒子表面
に特異免疫グロブリンを結合させてなることを特
徴とする選択的指向性を有する医薬物質含有脂肪
乳剤からなる。 本発明における医薬物質含有脂肪乳剤は、O/
W型、W/O/W型など水中に油粒子が分散され
たものである。 本発明の脂肪乳剤における油成分としては、た
とえば大豆油、綿実油、ごま油、サフラワー油、
コーン油のような植物油が用いられ、好適には、
大豆油が用いられる。植物油は高度精製植物油で
あることが好ましく、具体的には、精製大豆油を
例えば水蒸気蒸留法〔H.J.Lipe、J.Am.Oil
Chemist.Soc.、27、422〜423(1950)〕により、
さらに精製して得た高純度の精製大豆油(純度:
トリグリセリド、ジグリセリドおよびモノグリセ
リドとして99.9%以上含有)である。 油成分は、乳化剤を使用して乳化される。乳化
剤としては非イオン性界面活性剤、リン脂質、レ
シチン、水素添加レシチン等がもちいられる。リ
ン脂質、レジチン、水素添加レシチン等はその由
来を特に限定されず、たとえば大豆油等の植物
油、卵黄等の動物油由来のものなどが用いられ
る。非イオン性界面活性剤としては、分子量2000
〜20000の高分子系のものが好適であり、例え
ば、ポオキシエチレン−ポリオキシプロピレンコ
ポリマー、ポリオキシエチレンアルキルエーテ
ル、ポリオキシエチレンアルキルアリルエーテル
などである。乳化剤は、単独で使用してもよく、
また、適宜混合使用してもよい。また、これらに
既知の脂肪酸(たとえば炭素数6〜22の脂肪
酸)、かかる脂肪酸の塩(たとえばナトリウム塩
などのアルカリ金属塩)、多価アルコール等の乳
化補助剤を所望により少量添加してもよい。 脂肪乳剤中に含有される医薬物質には特に制限
はなく、油溶性および水溶性のいずれもが使用可
能であり、一般に油溶性のものはO/W型脂肪乳
剤として、また水溶性のものはW/O/W型脂肪
乳剤として製剤化される。本発明で使用される医
薬物質の具体例としては、抗炎症剤、制癌剤、抗
ウイルス剤、抗生物質等が好適なものとしてあげ
られる。抗炎症剤としては、ステロイド系および
非ステロイド系のいずれでもよく、好適にはデキ
サメサゾンパルミテート、デキサメサゾンステア
レート、デキサメサゾンミリステート、ハイドロ
コーチゾンパルミテート、ハイドロコーチゾンス
テアレート、ハイドロコーチゾンミリステート、
プレドニゾロンパルミテート、プレドニゾロンス
テアレート、プレドニゾロンミリステート、イブ
プロフエン、フルフエナム酸、ケトプロフエン等
があげられる。 制癌剤としては、5−FU、アントラマイシ
ン、ダウノマイシン、プレオマイシン、ナイトロ
ジエンマスタード、6−メルカプトプリン及びこ
れらの油溶性の誘導体〔油溶性の誘導体は、通常
の技術に準じ、例えば各化合物を長鎖(5〜15)
脂肪酸の誘導体となすことによりえることができ
る〕が好適にもちいうるが、特にこれらに限られ
るものではない。 抗生物質は、グラム陽性菌、グラム陰性菌に作
用する物質のうち、水溶性または油溶性のもの
(たとえばセフアロスポリン類、ペニシリン類な
ど)が広くもちいられる。抗ウイルス剤は、イン
ターフエロン及びその油溶性誘導体を利用でき
る。 選択的指向性を脂肪乳剤に付与するためには、
油粒子の表面に特異免疫グロブリンを結合させ
る。特異免疫グロブリンは、指向する疾患部位、
病原体に存する免疫学的な抗原に相応する抗体が
もちいられ、脂肪乳剤中に含有する医薬物質に応
じて適宜選択されて利用される。特異免疫グロブ
リンは、現在モノクロナール抗体として広く公知
であり、例えば、Hybritech社は抗HBs抗体、抗
CEA抗体、抗IgE抗体、抗Tリンパ球抗体を販売
しており、その他に抗悪性黒色腫細胞抗体
〔Proc.Natl.Acad.Sci.、75(7)3405(1978)〕抗悪性
腫瘍抗体(特開昭54−143513)、抗ウイルス抗体
(特開昭54−17185)等の既知技術がある。また、
抗体は決して細胞培養法で生産されるモノクロナ
ール抗体に限られるわけではなく、その他にも抗
ヒトリンパ球抗体(特開昭53−139720)、抗AFP
抗体(特開昭55−4306)、抗HBs抗体(特開昭53
−44620)、抗縁膿菌抗体等を動物への免疫後血漿
分画技術によつて回収したものでもよい。 抗体と医薬物質との組合せは、たとえば抗炎症
剤には抗Tリンパ球抗体が、制癌剤には、抗
CEA抗体、抗悪性腫瘍抗体、抗ウイルス抗体、
抗AFP抗体が、抗ウイルス剤には抗HBs抗体な
どの抗ウイルス抗体が組み合わされる。 本発明の選択指向性の医薬物質含有脂肪乳剤
は、一般にまず医薬物質含有脂肪乳剤を得てお
き、これに免疫グロブリンを結合させることによ
つて得られる。 脂肪乳剤は、既知の方法に準じて、O/W型ま
たはW/O/W型等にすることによつて調製され
る。油成分/水の重量比は、0.05〜0.5、より好
適には0.05〜0.2である。脂肪乳剤の調製は、有
効量の選択された医薬物質、油成分5〜50%
(W/V)、好ましくは8〜30%(W/V)、油成
分100に対する重量比が1〜50、好ましくは5〜
30の乳化剤及び適量の水を混和しておこなう。医
薬物質は、用途、症状、体重などにより異なる
が、通常乳剤中0.01〜10%(W/V)、好ましく
は0.1〜5%(W/V)含有する。 脂肪乳剤は一般に静脈投与されるので、その粒
径は1μ以下であることが好ましい。 O/W型脂肪乳剤の調整は、まず各々所要量の
油成分、乳化剤、油溶性医薬物質及び要すれば乳
化補助剤などを混合し、これを30〜80℃に加温
し、ホモミキサー、超音波ホモジナイザーなどで
均質化処理して溶解し、次いでこれに所要量の水
を加え加圧噴射型ホモジナイザーで均質化するこ
とによつておこなわれる。かくして平均粒子径
1.0μ以下のきわめて微細で安定なO/W型乳剤
が製造される〔J.Am.Oil.Chem.Soc.、32、365〜
370(1950)〕。 W/O/W型脂肪乳剤の調製は、まず、各々所
要量の油成分、選択された水溶性の医薬物質、水
を混合し、これに乳化剤を添加して、ホモジナイ
ザーにより乳化しW/O型の乳剤を得、次に水と
適当な乳化剤を加え、加圧噴射ホモジナイザーで
均質化をおこない、W/O/W型乳剤にすること
によつて行われる。かくして平均粒子径1.0μ以
下の微細で安定な乳剤が製造される。 以上のようにして調製された脂肪乳剤の油粒子
表面に特異免疫グロブリンを結合させることによ
つて本発明の選択的指向性を有する医薬物質含有
脂肪乳剤が得られる。 而して、油粒子と特異免疫グロブリンとを結合
させる方法の1例を示せば次の通りである。 前述の如くして調製した脂肪乳剤を、たとえば
遠心分離(5000〜20000r.p.m.)して油粒子を分
取し、これと特異免疫グロブリンとを接触させ
る。当該接触は、たとえば油粒子10重量部に、通
常0.05〜5重量部の特異免疫グロブリンを0.5〜
5%の水溶液として混合することによつて行われ
る。接触温度は通常4〜37℃であり、接触時間は
通常30分〜2時間であり、撹拌することが好まし
い。また、架橋剤を用いて結合させることも可能
である。 結合処理終了後、たとえば遠心分離などにて油
相と水相とを分離して特異的免疫グロブリンの結
合した油粒子を回収する。当該油粒子に、好まし
くは等張化剤(たとえばグリセリン等)、安定化
剤などを加えた水に混合均質化すると乳剤が得ら
れる。 かくして得られた乳剤は、粒子径1μ以下平均
粒子径0.1〜0.3μの均一な微粒子乳剤であつた。
粒子径の測定は、横山らによる遠心沈降法に準じ
た方法〔Chem.Pharm.Bull.22(12)2966−2971
(1974)〕によつた。免疫グロブリンは、油成分重
量に対して最大約10〜20%重量部で結合した。結
合量は、洗浄画分中の遊離抗体をマンシーニ法に
よつて測定し定量した。 かくして提供された本発明製剤は、生体内に投
与されたとき油粒子の表面に結合させた特異免疫
グロブリンの種類に従い、選択的に医薬を運搬
し、局部において油粒子が破壊され、油粒子中に
含有されている医薬物質が局部と接触して薬効を
発揮する。 以下において、実施例および実験例により更に
詳細に説明する。 実施例 1 デキサメサゾンパルミテート2.0gに精製大豆
油100g、精製卵黄リン脂質24g、オレイン酸ナ
トリウム0.07gを加え、65〜75℃に加温し、ホモ
ミキサーにより溶解均質化する。次いで、これに
注射用蒸留水1000mlを加え、マントン−ガウリン
型ホモジナイザを用い1段目120Kg/cm2で1回通
過、500Kg/cm2の加圧下で10回通過させ乳化す
る。この乳剤を遠心分離(15000r.p.m.)し、油
成分相を分取した。分取した油成分100gに対し
て抗Tリンパ球特異抗体27mgを加え、36℃、1時
間撹拌しながら反応させた。反応終了後、遠心分
離によつて油成分を洗浄し、この油成分にグリセ
リン7.0gを添加した注射用蒸留水200mlを加え、
ホモミキサーで混合・均質化し、平均粒子径0.1
〜0.3μの粒子からなり、粒子径1μをこえる粒
子がない乳剤を得た。マンシーニ法で抗体の結合
量を測定した結果、油成分10重量部に対し、抗体
は1重量部結合していることが判明した。 実施例 2 ヒドロコルチゾン・パルミテート0.65gに精製
大豆油25.0g、精製大豆リン脂質6.0g及び注射
用蒸留水200mlを加えたものを実施例1と同様に
処理し、得られた油成分23.5gに抗Tリンパ球特
異抗体5.0mgを混合し、35℃、2時間反応させ以
下実施例1と同様に処理した後グリセリン1.3
g、注射用蒸留水50c.c.を加えO/W型脂肪乳剤を
得た。 実施例 3 パルミチン酸クロラムフエニコール2.0gに精
製サフラワー油100g、水素添加レシチン24g及
び注射用蒸留水1000mlを加える以外実施例1と同
様に処理し、得られた油成分10.0gに抗HBs特異
抗体20mgを混合し、37℃、1時間反応させ以下実
施例1と同様に処理してO/W型脂肪乳剤を得
た。 実施例 4 ドロモスタノロンプロピオネート0.5gに精製
ごま油24.5g、精製卵黄レシチン3.6g、オレイ
ン酸ナトリウム0.07g及び注射用蒸留水100mlを
加えたものを実施例1と同様に処理し、得られた
油成分21.0gに抗胎児性癌抗原特異抗体5.5mgを
混合し、37℃、2時間反応させ以下実施例1と同
様に処理した後グリセリン1.3g注射用蒸留水50
c.c.を加えO/W型脂肪乳剤を得た。 実施例 5 5−FU2.0gに大豆油200g、Tween80(10
g)及び注射用蒸留水1000mlを加える以外、実施
例1と同様の処理をし、得られた油成分200gに
抗アルフアエトプロテイン抗体300mgを混合し、
37℃、2時間反応させ以下実施例1と同様に処理
してO/W型脂肪乳剤を得た。 実施例 6 プレオマイシン2.0gを注射用蒸留水30mlに溶
かし、これに精製ごま油100g、SPAN80(10
g)を加え、超音波処理によつて乳化する。次
に、注射用蒸留水1000mlとPLURONICF68
(10g)を加え、実施例1と同様にマントリーガ
ウリン型ホモジナイザーで処理して乳化をおこな
い、この乳剤を遠心分離して油成分を分取した。
この油成分100gに対して抗アルフアフエトプロ
テイン特異抗体250mgを加え、以下実施例1と同
様に処理してW/O/W型脂肪乳剤を得た。 実施例 7 精製インターフエロン1000万IUを注射用蒸留
水30mlに溶かし、これに精製ごま油100g、
SPAN80(10g)を加え、ホモミキサーにより
却質化する。次に、注射用蒸留水1000ml、
PLURONICF68(15g)を加え、実施例1と
同様にマントン−ガウリン型ホモジナイザーで処
理し、乳化をおこない、この乳剤を遠心分離して
油成分を分取した。油成分100gに抗HBs特異抗
体27mgを加え、以下実施例1と同様に処理して
W/O/W型脂肪乳剤を得た。 実施例 8 スパデイコマイシン(特開昭56−15289号明細
書に記載の方法で得た)2.0gを注射用蒸留水30
mlに溶解させ、これに精製サフラワー油100g、
SPAN80(10g)を加え、ホモミキサーにより
乳化する。次に注射用蒸留水1000ml、
PLURONICF62(30g)を加え、実施例1と
同様にマントン−ガウリン型ホモジナイザーで処
理し、乳化をおこない、この乳剤を遠心分離して
油成分を分取し、油成分100gに対して抗悪性黒
色腫細胞特異抗体25mgを加え、以下実施例1と同
様に処理してW/O/W型脂肪乳剤を得た。 実施例 9 3′・4′−DideoxykanamycinB(2.0g)を注射
用蒸留水30mlに溶解し、これに精製大豆油100
g、SPAN80(10g)を加え、ホモミキサーに
より乳化する。次に注射用蒸留水1000ml、
PLURONICF68(20g)を加え、実施例1と
同様にマントン−ガウリン型ホモジナイザーで処
理し、乳化をおこない、遠心分離して油成分を分
取した。分取した油成分100gに対して抗緑膿菌
特異抗体250mgを加え、以下実施例1と同様に処
理してW/O/W型脂肪乳剤を得た。 実施例 10 (1) 医薬物質含有脂肪乳剤の調製 デキサメサゾンパルミテール2.0gに精製大
豆油100g、精製卵黄リン脂質24gを加え、65
〜75℃に加温し、ホモミキサーにより溶解均質
化した。次いで、これに注射用蒸溜水1000mlお
よびグリセリン(第9改正日本薬局方)25gを
加え、マントン−ガウリン型ホモジナイザを用
い1段目120Kg/cm2で1回通過、500Kg/cm2の加
圧下で10回通過させ乳化した。 (2) N−3−(ピリジル−2−ジチオ)プロピオ
ニル イムノグロブリン(免疫グロブリン−
PDP)の調製 抗Tリンパ球特異抗体をN−サクシニミジル
−3−(2−ピリジルチオ)プロピオネート
(SPDP)と反応させ、N−3−(ピリジル−2
−ジチオ)プロピオニル−抗Tリンパ球特異抗
体(抗Tリンパ球特異抗体−PDP)を調製する
方法はMartinらの方法(J.Biol.Chem.、257
286、1982)によつた。そしてその反応後セフ
アデツクスG−25で精製し、(2)の目的物を得
た。 (3) N−3−(ピリジル−2−ジチオ)プロピオ
ニル ホスフアチジルエタノールアミン(PE
−PDP)の調製 卵黄由来ホスフアチジルエタノールアミン
(ミドリ十字)1.5gを0.28mlのトリエチルアミ
ンを含む100mlの脱水メタノールに溶解し、1
gのSPDPを加え窒素ガス下、室温で2時間反
応させた。反応終了後シリカゲルカラム(クロ
ロホルム・メタノール)で精製し、(3)の目的物
を得た。 (4) PE−PDPと免疫グロブリン−PDPの結合 PE−PDP0.12mgに0.27w/v%の抗Tリンパ
球特異抗体−PDP水溶液(20mMクエン酸、35
mMリン酸2ナトリウム、108mMNaCl、1m
MEDTAを含む、PH6.0)1mlを加え、撹拌し
ながら窒素ガス下室温で10時間反応させた。得
られた複合体はセフアデツクスG−25により精
製し、PE−PDP−抗Tリンパ球特異抗体複合
体とした。 (5) 抗体と脂肪乳剤の結合 (4)で得られたPE−PDP−抗Tリンパ球特異
抗体複合体(1.38mg/ml)0.2mlを(1)で得られ
た脂肪乳剤1mlに加え、振とうしながら窒素ガ
ス下室温で16時間反応させ、抗Tリンパ球特異
抗体結合デキサメサゾンパルミテート含有脂肪
乳剤を調製した。 実施例 11 デキサメサゾンパルミテートの代りにビンブラ
スチンを、そして抗Tリンパ球特異抗体の代りに
抗悪性黒色腫細胞特異抗体を用いて、実施例10に
準じて抗悪性黒色腫細胞特異抗体結合ビンブラス
チン含有脂肪乳剤を調製した。 試験例 1 AH66細胞(rat ascites hepatoma)
(Odashima、1964)を雄ラツト(体重150g±
10;1群4匹)の腹腔内に接種しておき実施例6
で得た本発明製剤投与によるラツトの生存日数の
延長を確認した。接種細胞は、5×105の細胞数
でおこない、プレオマイシン1mgを含む本発明製
剤を6時間毎に3回静注投与した。 投与時期は、接種と同時に開始し、接種後1週
隔で生存の場合10週目まで投与した。観察は、11
週目までおこなつた。結果は、本発明製剤投与群
のラツトは死亡しなかつたのに対し、無投与群は
約20日で全例死亡した。 試験例 2 試験動物として雄ラツト(体重150g±10)を
供用し、マウスの肝臓にAH66細胞1×104を移植
し、移植直後より、10週まで2週間間隔でプレオ
マイシン1mg含有の実施例6で得た製剤を静注
し、11週目における肝癌細胞塊の大きさを調べ
た。各群5匹の平均は、試験群では癌縮少がおこ
り、無投与対照群では1129mmに増大し、プレオ
マイシン1mg水溶液投与群では著明な変化はなか
つた。 試験例 3 本発明製剤の生体内活性に関する比較実験をお
こなつた。 投与製剤は、実施例2に準じて消炎性活性を有
するステロイドとして〔1・2・6・7−3H〕−
ヒドロコルチゾンパルミテート(10mg:2μ
Ci/mg)を混入させ抗Tリンパ球抗体を結合さ
せた脂肪乳剤を得、これを使用した。投与の方法
は、本発明製剤を静注及び対照としてヒドロコル
チゾン錠を経口投与した。実験は、アジユバント
関節炎をラツトに発症せしめ供試品を炎症発症
後、ステロイド量として20mg投与後10時間、50時
間、100時間目における炎症部での放射性活性を
測定、その投与量に対する残存活性の比率を計算
した。 アジユバントとして流動パラフインにヒト型結
核死菌H37Rvを10mg/mlの濃度に懸濁したものを
使用する。 関節炎は、9週令の雄性CD系ラツトの右後肢
足蹠皮内に上記アジユバントを0.06ml1匹宛1回
注射することにより発症せしめる。 アジユバント投与後3日毎に後肢の腫脹を
Volume differential meterを用いて測定し、15
日目に関節炎を発症した動物を選ぶ。 結果は、表1に示される。この結果から、本発
明製剤の静脈投与により生体内活性の炎症部への
局所集中性が示された。
The present invention relates to pharmaceutical substance-containing fat emulsions with selective tropism. Fat emulsions used to contain pharmaceutical substances are generally O/W type emulsions, in which vegetable oils such as soybean oil are mixed with nonionic surfactants and emulsifiers such as egg yolk phospholipids, lecithin, and soybean phospholipids. It is prepared by emulsifying.
This is a nutritional infusion and is used as a heat source after administration to a living body. On the other hand, this fat emulsion has recently been developed by embedding anticancer drugs within the fat emulsion particles because the oil particles themselves have a high affinity for lymph vessels and specifically migrate to lymph nodes.
There are attempts to use fat emulsions as carriers for anticancer drugs [GANN 64 , 345-350 (1973)]. The present inventors also completed an invention in which an anti-inflammatory agent was embedded in a fat emulsion and utilized as a carrier for the anti-inflammatory agent by taking advantage of the high affinity between oil particles and inflamed local areas. (Patent application 1986-64875). The technology for using this fat emulsion as a carrier for pharmaceutical substances is
This originates from the lymphatic affinity of the oil particles themselves.
Considerable effects are expected. However, the drawback of this is that the in-vivo transport is somewhat non-specific, and the delivery of the drug substance to the diseased organ to be treated is incomplete. Usually, the degree of attainment is about 1 to 5% at most. Therefore, the present inventors investigated various methods for maximizing the effectiveness of this fat emulsion as a drug substance carrier. As a result, it was unexpectedly found that γ-globulin binds to the membrane surface of the oil particles of the fat emulsion, and the affinity between the bound γ-globulin and cells containing the corresponding antigen increases. -We have discovered that the selection-directing function of fat emulsions as pharmaceutical substance carriers can be doubled by utilizing antibody reactions, and have completed the present invention. An object of the present invention is to provide a fat emulsion containing a medicinal substance that has selective tropism to disease sites or pathogens (viruses, bacteria, etc.). Here, selective tropism refers to tropism toward cells (pathogen cells such as viruses and bacteria, diseased sites in the human body) that contain the antigen corresponding to the bound immunoglobulin. The present invention comprises a pharmaceutical substance-containing fat emulsion having selective tropism, which is characterized in that a specific immunoglobulin is bound to the surface of oil particles of the pharmaceutical substance-containing fat emulsion. The pharmaceutical substance-containing fat emulsion in the present invention is O/
Oil particles are dispersed in water, such as W type and W/O/W type. Examples of oil components in the fat emulsion of the present invention include soybean oil, cottonseed oil, sesame oil, safflower oil,
A vegetable oil such as corn oil is used, preferably
Soybean oil is used. Preferably, the vegetable oil is a highly refined vegetable oil, and specifically, refined soybean oil is processed by steam distillation [HJLipe, J.Am.Oil
Chemist.Soc., 27 , 422-423 (1950)]
Highly purified refined soybean oil (purity:
(contains 99.9% or more as triglycerides, diglycerides, and monoglycerides). The oil component is emulsified using an emulsifier. As the emulsifier, nonionic surfactants, phospholipids, lecithin, hydrogenated lecithin, etc. can be used. The origin of phospholipids, resitin, hydrogenated lecithin, etc. is not particularly limited, and for example, those derived from vegetable oils such as soybean oil, animal oils such as egg yolk, etc. are used. As a nonionic surfactant, the molecular weight is 2000.
-20,000 polymers are preferred, such as polyoxyethylene-polyoxypropylene copolymers, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, and the like. Emulsifiers may be used alone,
In addition, they may be mixed and used as appropriate. In addition, a small amount of emulsification aid such as a known fatty acid (for example, a fatty acid having 6 to 22 carbon atoms), a salt of such a fatty acid (for example, an alkali metal salt such as a sodium salt), or a polyhydric alcohol may be added to these as desired. . There is no particular restriction on the medicinal substance contained in the fat emulsion, and both oil-soluble and water-soluble substances can be used. In general, oil-soluble substances are used as O/W type fat emulsions, and water-soluble substances are used as O/W type fat emulsions. It is formulated as a W/O/W fat emulsion. Preferred examples of medicinal substances used in the present invention include anti-inflammatory agents, anticancer agents, antiviral agents, antibiotics, and the like. The anti-inflammatory agent may be either steroidal or nonsteroidal, and preferably dexamethasone palmitate, dexamethasone stearate, dexamethasone myristate, hydrocortisone palmitate, hydrocortisone stearate, hydrocortisone myristate,
Examples include prednisolone palmitate, prednisolone stearate, prednisolone myristate, ibuprofen, flufenamic acid, and ketoprofen. Anticancer drugs include 5-FU, anthramycin, daunomycin, pleomycin, nitrogen mustard, 6-mercaptopurine, and oil-soluble derivatives thereof [oil-soluble derivatives can be prepared by adding long-chain (5-15)
[obtained by making a fatty acid derivative] can be suitably used, but the present invention is not particularly limited to these. Among the antibiotics that act on Gram-positive and Gram-negative bacteria, water-soluble or oil-soluble ones (eg, cephalosporins, penicillins, etc.) are widely used. Interferon and its oil-soluble derivatives can be used as antiviral agents. In order to impart selective directivity to fat emulsions,
A specific immunoglobulin is attached to the surface of the oil particles. Specific immunoglobulins target disease sites,
Antibodies corresponding to immunological antigens present in pathogens are used, and are appropriately selected and used depending on the medicinal substance contained in the fat emulsion. Specific immunoglobulins are currently widely known as monoclonal antibodies. For example, Hybritech has developed anti-HBs antibodies and anti-HBs antibodies.
We sell CEA antibodies, anti-IgE antibodies, and anti-T lymphocyte antibodies, as well as anti-melanoma cell antibodies [Proc. Natl. Acad. Sci., 75 (7) 3405 (1978)] and anti-malignant tumor antibodies ( There are known techniques such as JP-A-54-143513) and anti-virus antibody (JP-A-54-17185). Also,
Antibodies are by no means limited to monoclonal antibodies produced by cell culture methods; there are also anti-human lymphocyte antibodies (Japanese Patent Application Laid-Open No. 139720, 1982), anti-AFP, etc.
Antibody (Japanese Patent Publication No. 55-4306), anti-HBs antibody (Japanese Patent Application Publication No. 1989-4306)
-44620), anti-Pseudomonas antibodies, etc. may be collected by plasma fractionation technique after immunization of animals. Combinations of antibodies and pharmaceutical substances include, for example, anti-T lymphocyte antibodies for anti-inflammatory drugs, and anti-T lymphocyte antibodies for anti-cancer drugs.
CEA antibody, anti-malignant tumor antibody, anti-viral antibody,
Anti-AFP antibodies are combined with anti-viral antibodies such as anti-HBs antibodies. The selection-oriented medicinal substance-containing fat emulsion of the present invention is generally obtained by first obtaining a medicinal substance-containing fat emulsion and binding immunoglobulin thereto. The fat emulsion is prepared by forming it into an O/W type or a W/O/W type according to a known method. The oil component/water weight ratio is between 0.05 and 0.5, more preferably between 0.05 and 0.2. Preparation of fat emulsions consists of an effective amount of the selected medicinal substance, an oil component of 5-50%
(W/V), preferably 8 to 30% (W/V), weight ratio to 100 oil components is 1 to 50, preferably 5 to
Mix 30 emulsifiers and an appropriate amount of water. The medicinal substance is usually contained in the emulsion in an amount of 0.01 to 10% (W/V), preferably 0.1 to 5% (W/V), although it varies depending on the use, symptoms, body weight, etc. Since fat emulsions are generally administered intravenously, their particle size is preferably 1 μm or less. To prepare an O/W type fat emulsion, first mix the required amounts of oil components, emulsifiers, oil-soluble pharmaceutical substances, and emulsification aids if necessary, heat this to 30 to 80°C, and mix it with a homomixer. This is carried out by homogenizing and dissolving using an ultrasonic homogenizer or the like, then adding the required amount of water thereto and homogenizing using a pressure injection type homogenizer. Thus the average particle size
An extremely fine and stable O/W emulsion of 1.0μ or less is produced [J.Am.Oil.Chem.Soc., 32 , 365~
370 (1950)]. To prepare a W/O/W type fat emulsion, first, the required amounts of each oil component, a selected water-soluble pharmaceutical substance, and water are mixed, an emulsifier is added thereto, and the mixture is emulsified using a homogenizer. This is done by obtaining a type emulsion, then adding water and a suitable emulsifier, and homogenizing it with a pressure jet homogenizer to form a W/O/W type emulsion. In this way, a fine and stable emulsion with an average grain size of 1.0 μm or less is produced. By binding a specific immunoglobulin to the surface of the oil particles of the fat emulsion prepared as described above, the fat emulsion containing a medicinal substance having selective tropism of the present invention can be obtained. An example of a method for binding oil particles and specific immunoglobulin is as follows. The fat emulsion prepared as described above is centrifuged (5,000 to 20,000 rpm), for example, to separate oil particles, which are brought into contact with specific immunoglobulin. The contact may include, for example, adding 0.5 to 5 parts by weight of specific immunoglobulin to 10 parts by weight of oil particles.
This is done by mixing as a 5% aqueous solution. The contact temperature is usually 4 to 37°C, the contact time is usually 30 minutes to 2 hours, and stirring is preferred. It is also possible to bond using a crosslinking agent. After the binding process is completed, the oil phase and the aqueous phase are separated by, for example, centrifugation, and the oil particles to which the specific immunoglobulin is bound are recovered. An emulsion is obtained by mixing and homogenizing the oil particles in water, preferably containing an isotonizing agent (eg, glycerin, etc.), a stabilizer, and the like. The emulsion thus obtained was a uniform fine grain emulsion with a grain size of 1 μm or less and an average grain size of 0.1 to 0.3 μm.
The particle size was measured using a method similar to the centrifugal sedimentation method by Yokoyama et al. [Chem.Pharm.Bull. 22 (12) 2966-2971
(1974)]. The immunoglobulin was bound at a maximum of about 10-20% parts by weight based on the weight of the oil component. The amount of binding was determined by measuring free antibody in the washed fraction by the Mancini method. When the thus provided preparation of the present invention is administered into a living body, the drug is selectively delivered according to the type of specific immunoglobulin bound to the surface of the oil particles, and the oil particles are locally destroyed and the drug is absorbed into the oil particles. The medicinal substances contained in the medicine exert their medicinal effects when they come into contact with the local area. In the following, it will be explained in more detail using Examples and Experimental Examples. Example 1 100 g of purified soybean oil, 24 g of purified egg yolk phospholipid, and 0.07 g of sodium oleate are added to 2.0 g of dexamethasone palmitate, heated to 65 to 75°C, and dissolved and homogenized using a homomixer. Next, 1000 ml of distilled water for injection is added to this, and the mixture is emulsified by passing it through a Manton-Gaulin type homogenizer once at a pressure of 120 kg/cm 2 in the first stage and 10 times under a pressure of 500 kg/cm 2 . This emulsion was centrifuged (15,000 rpm) to separate the oil component phase. 27 mg of anti-T lymphocyte specific antibody was added to 100 g of the separated oil component, and the mixture was reacted at 36° C. for 1 hour with stirring. After the reaction, the oil component was washed by centrifugation, and 200 ml of distilled water for injection to which 7.0 g of glycerin had been added was added to the oil component.
Mix and homogenize with a homomixer to obtain an average particle size of 0.1.
An emulsion was obtained which consisted of grains of ~0.3μ and no grains larger than 1μ. As a result of measuring the amount of antibody bound by the Mancini method, it was found that 1 part by weight of antibody was bound to 10 parts by weight of the oil component. Example 2 A mixture of 0.65 g of hydrocortisone palmitate, 25.0 g of purified soybean oil, 6.0 g of purified soybean phospholipid, and 200 ml of distilled water for injection was treated in the same manner as in Example 1, and 23.5 g of the resulting oil component was 5.0 mg of T lymphocyte-specific antibody was mixed, reacted at 35°C for 2 hours, and treated in the same manner as in Example 1, followed by 1.3 g of glycerin.
g, and 50 c.c. of distilled water for injection were added to obtain an O/W type fat emulsion. Example 3 The same procedure as in Example 1 was carried out except that 100 g of purified safflower oil, 24 g of hydrogenated lecithin and 1000 ml of distilled water for injection were added to 2.0 g of chloramphenicol palmitate, and 10.0 g of the obtained oil component was treated with anti-HBs. 20 mg of the specific antibody was mixed, reacted at 37°C for 1 hour, and treated in the same manner as in Example 1 to obtain an O/W type fat emulsion. Example 4 A mixture of 0.5 g of dromostanolone propionate, 24.5 g of purified sesame oil, 3.6 g of purified egg yolk lecithin, 0.07 g of sodium oleate, and 100 ml of distilled water for injection was treated in the same manner as in Example 1 to obtain a product. 5.5 mg of anti-embryonic cancer antigen-specific antibody was mixed with 21.0 g of the oil component, reacted at 37°C for 2 hours, and treated in the same manner as in Example 1, followed by 1.3 g of glycerin and 50 g of distilled water for injection.
cc was added to obtain an O/W type fat emulsion. Example 5 5-FU2.0g, soybean oil 200g, Tween80 (10
g) and 1000 ml of distilled water for injection were added, and 300 mg of anti-alphaetoprotein antibody was mixed with 200 g of the obtained oil component.
The mixture was reacted at 37°C for 2 hours, and then treated in the same manner as in Example 1 to obtain an O/W fat emulsion. Example 6 2.0 g of pleomycin was dissolved in 30 ml of distilled water for injection, and 100 g of purified sesame oil and SPAN80 (10
g) is added and emulsified by ultrasonication. Next, 1000ml of distilled water for injection and PLURONICF68
(10 g) was added thereto, and emulsified by treatment using a Mantry-Gaulin type homogenizer in the same manner as in Example 1. This emulsion was centrifuged to separate the oil component.
250 mg of anti-alphafetoprotein specific antibody was added to 100 g of this oil component, and the mixture was treated in the same manner as in Example 1 to obtain a W/O/W type fat emulsion. Example 7 10 million IU of purified interferon was dissolved in 30 ml of distilled water for injection, and 100 g of purified sesame oil was added to this.
Add SPAN80 (10g) and clarify using a homomixer. Next, 1000ml of distilled water for injection,
PLURONICF68 (15 g) was added and treated in the same manner as in Example 1 using a Manton-Gaulin type homogenizer to effect emulsification, and the emulsion was centrifuged to separate the oil component. 27 mg of an anti-HBs specific antibody was added to 100 g of the oil component and treated in the same manner as in Example 1 to obtain a W/O/W type fat emulsion. Example 8 2.0 g of spadeicomycin (obtained by the method described in JP-A-56-15289) was added to 30 g of distilled water for injection.
ml, add 100g of refined safflower oil to this,
Add SPAN80 (10g) and emulsify with a homomixer. Next, 1000ml of distilled water for injection,
PLURONICF62 (30g) was added, treated with a Manton-Gaulin homogenizer in the same manner as in Example 1, emulsified, centrifuged this emulsion to separate the oil component, and 100g of the oil component was 25 mg of cell-specific antibody was added and treated in the same manner as in Example 1 to obtain a W/O/W type fat emulsion. Example 9 3′・4′-Dideoxykanamycin B (2.0 g) was dissolved in 30 ml of distilled water for injection, and 100 ml of purified soybean oil was added to this.
g, SPAN80 (10 g) and emulsify using a homomixer. Next, 1000ml of distilled water for injection,
PLURONICF68 (20 g) was added, treated with a Manton-Gaulin homogenizer in the same manner as in Example 1, emulsified, and centrifuged to separate the oil component. 250 mg of anti-Pseudomonas aeruginosa specific antibody was added to 100 g of the separated oil component, and the mixture was treated in the same manner as in Example 1 to obtain a W/O/W type fat emulsion. Example 10 (1) Preparation of pharmaceutical substance-containing fat emulsion 100 g of purified soybean oil and 24 g of purified egg yolk phospholipid were added to 2.0 g of dexamethasone palmiter.
The mixture was heated to ~75°C and dissolved and homogenized using a homomixer. Next, 1000 ml of distilled water for injection and 25 g of glycerin (9th edition Japanese Pharmacopoeia) were added to this, and the mixture was passed through the first stage once at 120 kg/cm 2 using a Manton-Gaulin type homogenizer under a pressure of 500 kg/cm 2. It was passed through 10 times and emulsified. (2) N-3-(pyridyl-2-dithio)propionyl immunoglobulin
Preparation of anti-T lymphocyte-specific antibody with N-succinimidyl-3-(2-pyridylthio)propionate (SPDP),
-dithio)propionyl-The method for preparing anti-T lymphocyte-specific antibodies (anti-T lymphocyte-specific antibodies - PDP) is the method of Martin et al. (J. Biol. Chem., 257 ,
286, 1982). After the reaction, the product was purified using Sephadex G-25 to obtain the desired product (2). (3) N-3-(pyridyl-2-dithio)propionyl phosphatidylethanolamine (PE
- PDP) Preparation Dissolve 1.5 g of egg yolk-derived phosphatidylethanolamine (Midori Juji) in 100 ml of dehydrated methanol containing 0.28 ml of triethylamine.
g of SPDP was added and reacted for 2 hours at room temperature under nitrogen gas. After the reaction was completed, the product was purified using a silica gel column (chloroform/methanol) to obtain the desired product (3). (4) Binding of PE-PDP and immunoglobulin-PDP 0.12mg PE-PDP and 0.27w/v% anti-T lymphocyte-specific antibody-PDP aqueous solution (20mM citric acid, 35%
mM disodium phosphate, 108mM NaCl, 1m
1 ml of MEDTA (pH 6.0) was added, and the mixture was reacted for 10 hours at room temperature under nitrogen gas with stirring. The obtained complex was purified by Sephadex G-25 to obtain a PE-PDP-anti-T lymphocyte specific antibody complex. (5) Binding of antibody and fat emulsion Add 0.2 ml of the PE-PDP-anti-T lymphocyte-specific antibody complex (1.38 mg/ml) obtained in (4) to 1 ml of the fat emulsion obtained in (1), The mixture was reacted for 16 hours at room temperature under nitrogen gas with shaking to prepare a fat emulsion containing dexamethasone palmitate bound to an anti-T lymphocyte-specific antibody. Example 11 Anti-melanoma cell-specific antibody-conjugated vinblastine-containing fat was prepared according to Example 10 using vinblastine instead of dexamethasone palmitate and an anti-melanoma cell-specific antibody instead of the anti-T lymphocyte-specific antibody. An emulsion was prepared. Test example 1 AH66 cells (rat ascites hepatoma)
(Odashima, 1964) in male rats (body weight 150 g±
Example 6
It was confirmed that the survival period of rats was prolonged by administering the preparation of the present invention obtained in . The inoculated cells were 5×10 5 cells, and the preparation of the present invention containing 1 mg of pleomycin was administered intravenously three times every 6 hours. Administration started at the same time as vaccination, and was administered every week after vaccination until the 10th week if the animal survived. Observation is 11
I did it until the end of the week. The results showed that none of the rats in the group administered with the formulation of the present invention died, whereas all of the rats in the non-administered group died in about 20 days. Test Example 2 A male rat (body weight 150g ± 10) was used as a test animal, 1 x 104 AH66 cells were transplanted into the liver of the mouse, and 1 mg of pleomycin was added at two-week intervals from immediately after the transplant until week 10. The preparation obtained in step 6 was injected intravenously, and the size of the hepatoma cell mass was examined at 11 weeks. The average of 5 animals in each group showed that the tumor size decreased in the test group, increased to 1129 mm3 in the non-administered control group, and there was no significant change in the group treated with 1 mg of pleomycin aqueous solution. Test Example 3 A comparative experiment regarding the in vivo activity of the formulation of the present invention was conducted. The administration preparation was [1, 2, 6, 7-3H ]- as a steroid having anti-inflammatory activity according to Example 2.
Hydrocortisone palmitate (10mg: 2μ
A fat emulsion mixed with Ci/mg) and bound to an anti-T lymphocyte antibody was obtained and used. As for the administration method, the preparation of the present invention was administered intravenously, and as a control, hydrocortisone tablets were orally administered. In the experiment, rats were made to develop adjuvant arthritis, and after the onset of inflammation, the radioactive activity in the inflamed area was measured at 10, 50, and 100 hours after administering 20 mg of steroid. The ratio was calculated. As an adjuvant, a suspension of killed human tuberculosis bacteria H 37 Rv in liquid paraffin at a concentration of 10 mg/ml is used. Arthritis is induced by injecting 0.06 ml of the above adjuvant into the right hind footpad of 9-week-old male CD rats once per animal. Swelling of the hind limbs every 3 days after administration of the adjuvant.
Measured using a volume differential meter, 15
Select animals that developed arthritis on day one. The results are shown in Table 1. These results showed that intravenous administration of the formulation of the present invention localized the in vivo activity to the inflamed area.

【表】 試験例 4 本発明製剤の生体内活性に関する比較実験を行
つた。 (1) デキサメサゾン溶液 デキサメサゾンホスフエートを生理食塩液
0.1mlに溶解した。 (2) デキサメサゾン含有乳剤 デキサメサゾンパルミテート2.0gに精製大
豆油100g、精製卵黄リン脂質24gを加え、65
〜75℃に加温し、ホモミキサーにより溶解均質
化する。次いで、グリセリン22gおよび注射用
蒸溜水適量を加え、全量を1000mlとし、マント
ン−ガウリン型ホモジナイザを用い1段目120
Kg/cm2で1回通過し、500Kg/cm2の加圧下で10
回通過させ乳化し、平均粒子径0.1〜0.3μの粒
子からなり、粒子径1μをこえる粒子がない乳
剤を得た。 (3) 免疫グロブリン結合デキサメサゾン含有乳剤
デキサメサゾンパルミテート2.0gに精製大豆
油100g、精製卵黄リン脂質24gを加え、65〜
75℃に加温し、ホモミキサーにより溶解均質化
する。次いで、これに注射用蒸溜水適量を加
え、全量を1000mlとし、マントン−ガウリン型
ホモジナイザを用い1段目120Kg/cm2で1回通
過し、500Kg/cm2の加圧下で10回通過させ乳化
する。この乳剤を遠心分離(15000r.p.m.)
し、油成分相を分取した。分取した油成分に対
して抗Tリンパ球特異抗体27mgを加え、36℃、
1時間撹拌しながら反応させた。反応終了後、
遠心分離によつて油成分を洗浄し、この油成分
にグリセリン22gおよび注射用蒸溜水適量を加
え全量1000mlとし、ホモミキサーで混合・均質
化し、平均粒子径0.1〜0.3μの粒子からなり、
粒子径1μをこえる粒子がない乳剤を得た。マ
ンシーニ法で抗体の結合量を測定した結果、油
成分10重量部に対し、抗体は1重量部結合して
いることが判明した。 試験方法 動物はSD系ラツト(雄、体重180±10g)を1
群5匹として使用した。実験はカラゲニン浮腫を
ラツトに発症せしめ供試薬剤の効果を比較した。
カラゲニン浮腫は生理食塩水に溶解した1%カラ
ゲニンの0.1mlを後肢足蹠下に投与することによ
つて発症させた。薬剤はカラゲニン投与1時間前
に尾静脈より0.1mg/Kg投与し、その5時間後に
後肢容積を測定して効果の判定を行つた。結果を
表2に示した。
[Table] Test Example 4 A comparative experiment regarding the in vivo activity of the formulation of the present invention was conducted. (1) Dexamethasone solution Add dexamethasone phosphate to physiological saline solution
Dissolved in 0.1ml. (2) Dexamethasone-containing emulsion Add 100 g of refined soybean oil and 24 g of purified egg yolk phospholipid to 2.0 g of dexamethasone palmitate, and add 65 g of dexamethasone palmitate.
Heat to ~75°C and dissolve and homogenize using a homomixer. Next, add 22 g of glycerin and an appropriate amount of distilled water for injection to bring the total volume to 1000 ml, and use a Manton-Gaulin homogenizer to make the first stage 120 ml.
Passed once at Kg/cm 2 and 10 times under pressure of 500Kg/cm 2
The emulsion was emulsified by passing through the emulsion several times to obtain an emulsion consisting of particles with an average particle size of 0.1 to 0.3 μm and no particles with a particle size exceeding 1 μm. (3) Immunoglobulin-bound dexamethasone-containing emulsion To 2.0 g of dexamethasone palmitate, add 100 g of purified soybean oil and 24 g of purified egg yolk phospholipid,
Heat to 75°C and dissolve and homogenize using a homomixer. Next, add an appropriate amount of distilled water for injection to make the total volume 1000 ml, and use a Manton-Gaulin homogenizer to pass through the first stage once at 120 kg/cm 2 and 10 times under a pressure of 500 kg/cm 2 to emulsify. do. Centrifuge this emulsion (15000r.pm)
Then, the oil component phase was separated. Add 27 mg of anti-T lymphocyte specific antibody to the fractionated oil component, and heat at 36°C.
The reaction was allowed to proceed for 1 hour with stirring. After the reaction is complete,
The oil component is washed by centrifugation, 22 g of glycerin and an appropriate amount of distilled water for injection are added to this oil component to make a total volume of 1000 ml, and the mixture is mixed and homogenized with a homomixer, consisting of particles with an average particle size of 0.1 to 0.3 μ.
An emulsion containing no grains with a grain size exceeding 1 μm was obtained. As a result of measuring the amount of antibody bound by the Mancini method, it was found that 1 part by weight of antibody was bound to 10 parts by weight of the oil component. Test method Animals were SD rats (male, weight 180 ± 10 g).
A group of 5 animals was used. In the experiment, carrageenan edema was induced in rats and the effects of the test drugs were compared.
Carrageenin edema was induced by administering 0.1 ml of 1% carrageenan dissolved in physiological saline under the footpad of the hind paw. The drug was administered at 0.1 mg/Kg via the tail vein one hour before carrageenin administration, and the hindlimb volume was measured 5 hours later to determine the effect. The results are shown in Table 2.

【表】 免疫グロブリン結合乳剤は、薬剤単独、単なる
乳剤、無処理群のいずれの場合よりも乳腫は小さ
く、抗炎症作用に優れていることが確認された。
即ち、患部指向性が著しく改善されていることが
確認された。
[Table] It was confirmed that the immunoglobulin-binding emulsion had smaller emulsions than the drug alone, the simple emulsion, or the untreated group, and had superior anti-inflammatory effects.
In other words, it was confirmed that the directivity to the affected area was significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 医薬物質含有脂肪乳剤の油粒子表面に免疫グ
ロブリンを結合させてなることを特徴とする選択
的指向性を有する医薬物質含有脂肪乳剤。
1. A pharmaceutical substance-containing fat emulsion having selective directivity, characterized in that immunoglobulin is bound to the surface of oil particles of the pharmaceutical substance-containing fat emulsion.
JP19582881A 1981-12-05 1981-12-05 Oil emulsion preparation containing medicinal substance Granted JPS5899424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19582881A JPS5899424A (en) 1981-12-05 1981-12-05 Oil emulsion preparation containing medicinal substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19582881A JPS5899424A (en) 1981-12-05 1981-12-05 Oil emulsion preparation containing medicinal substance

Publications (2)

Publication Number Publication Date
JPS5899424A JPS5899424A (en) 1983-06-13
JPS6221335B2 true JPS6221335B2 (en) 1987-05-12

Family

ID=16347678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19582881A Granted JPS5899424A (en) 1981-12-05 1981-12-05 Oil emulsion preparation containing medicinal substance

Country Status (1)

Country Link
JP (1) JPS5899424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039751A (en) * 1989-06-08 1991-01-17 Matsushita Electric Ind Co Ltd Air bubble water stream generating apparatus
JPH04136222U (en) * 1991-06-06 1992-12-18 株式会社イナツクス Bathroom with silencer
JPH063332U (en) * 1992-02-21 1994-01-18 栄次郎 三賀 Jet airflow inhaler for bathtub

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174938A (en) * 1985-01-31 1986-08-06 Meiji Milk Prod Co Ltd Preparation of w/o/w type compound emulsion
EP0819435A1 (en) * 1996-07-16 1998-01-21 K.U. Leuven Research & Development Passive immunisation of fish and shell fish and immunoglobulin emulsions used for it
AU2008241413A1 (en) * 2007-04-18 2008-10-30 The Regents Of The University Of California Protein-modified nano-droplets, compositions and methods of production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888220A (en) * 1972-03-04 1973-11-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888220A (en) * 1972-03-04 1973-11-19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039751A (en) * 1989-06-08 1991-01-17 Matsushita Electric Ind Co Ltd Air bubble water stream generating apparatus
JPH04136222U (en) * 1991-06-06 1992-12-18 株式会社イナツクス Bathroom with silencer
JPH063332U (en) * 1992-02-21 1994-01-18 栄次郎 三賀 Jet airflow inhaler for bathtub

Also Published As

Publication number Publication date
JPS5899424A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
JP3002702B2 (en) Vesicles with controlled release of active substance
CN101048138B (en) Use of liposomal glucocorticoids for treating inflammatory states
KR910004580B1 (en) Small particle aerosol liposome and liposome-drug combinations for medical use
US6187335B1 (en) Polymerizable fatty acids, phospholipids and polymerized liposomes therefrom
Yatvin et al. Clinical prospects for liposomes
Hashimoto et al. Antitumor effect of actinomycin D entrapped in liposomes bearing subunits of tumor-specific monoclonal immunoglobulin M antibody
JPH07500084A (en) Pharmaceutical carrier
KR900005044B1 (en) Process for preparing oily composition of antitumor substance
Widder et al. Experimental methods in cancer therapeutics
JPS60243022A (en) Improvement on interleukin therapy
Bakouche et al. Enhancement of immunogenicity of tumour virus antigen by liposomes: the effect of lipid composition.
WO1998037869A1 (en) Fat emulsion for oral administration
WO2005011633A1 (en) Remedy or diagnostic for inflammatory disease containing target-directing liposome
Shek et al. Immune response mediated by liposome-associated protein antigens. III. Immunogenicity of bovine serum albumin covalently coupled to vesicle surface.
WO1989002265A1 (en) Medicine-containing fat emulsion of the type prepared immediately before use and process for preparing medicine-containing fat emulsion
US4868158A (en) Method for the production of a macromolecular carrier loaded with a biologically active substance
JPS6221335B2 (en)
Sheikh et al. Generation of antigen specific CD8+ cytotoxic T cells following immunization with soluble protein formulated with novel glycoside adjuvants
JPH05504756A (en) Compositions with immunostimulatory properties and their applications in human and veterinary medicine
US5091417A (en) Preventive and therapeutic agent for hepatitis
JPS59122423A (en) Carcinostatic-containing fatty emulsion
Soesatyo et al. The in situ immune response of the rat after intraperitoneal depletion of macrophages by liposome-encapsulated dichloromethylene diphosphonate
Baechtel et al. Interaction of antigens with dimethyldioctadecylammonium bromide, a chemically defined biological response modifier
Park et al. Targeting and blocking B7 costimulatory molecules on antigen-presenting cells using CTLA4Ig-conjugated liposomes: in vitro characterization and in vivo factors affecting biodistribution
JPH0517344A (en) Lipid membranous structure for oral use