JPS62283629A - Light source position controller - Google Patents

Light source position controller

Info

Publication number
JPS62283629A
JPS62283629A JP61127595A JP12759586A JPS62283629A JP S62283629 A JPS62283629 A JP S62283629A JP 61127595 A JP61127595 A JP 61127595A JP 12759586 A JP12759586 A JP 12759586A JP S62283629 A JPS62283629 A JP S62283629A
Authority
JP
Japan
Prior art keywords
light source
lamp
illuminance
symmetrical
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61127595A
Other languages
Japanese (ja)
Other versions
JPH0622193B2 (en
Inventor
Kazuhiro Takahashi
和弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61127595A priority Critical patent/JPH0622193B2/en
Publication of JPS62283629A publication Critical patent/JPS62283629A/en
Publication of JPH0622193B2 publication Critical patent/JPH0622193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To reduce an illuminance irregularity of a light source position controller by directly monitoring the intensity distribution of an optical integrator of a secondary light source to symmetrically form the intensity distribution of the secondary source. CONSTITUTION:The light of an optical integrator of a secondary light source is reflected by a half mirror 2, and condensed through a condenser lens 3 on the surface of a mask 4. Luminous fluxes 8a, 8b passed through the mirror 2 are condensed by the lens 3 to pass a pinhole plate 6 having pinholes at a point conjugate with the center of the mask 4 to be incident on a photodetector 7. When matched to a lamp position, lamp is so regulated at its position that the luminous fluxes 8a, 8b symmetrical with respect to an optical axis become the same intensity at the lamp position while monitoring the output of the detector 7. Quadrant photodetectors are used as the photodetector, and the intensities of the lights incident to the dividing surfaces A and C, B and D are qualified so that the intensity distribution of the secondary source becomes symmetrical. Thus, the lamp as a light source can be accurately and easily positioned at the position where the illuminance distribution on the irradiated surface is symmetrical and not irregular.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の属する技術分野] 本発明は、照明光学系の光源の位置を監視するための装
置に関し、例えば半導体露光装置の照明光学系における
照明用光源の位置を調整するために好適な光源位置制御
装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a device for monitoring the position of a light source in an illumination optical system, such as a device for monitoring the position of a light source in an illumination optical system of a semiconductor exposure apparatus. The present invention relates to a light source position control device suitable for adjusting the position of a light source.

[従来技術] 従来、半導体露光装置のランプの位置合せは、第6図に
示すように、ランプの陰極または陽極の像をピンホール
板13とアークモニタ板14を用いて目視しながら所定
の位置に合せる方法をとっていた。
[Prior Art] Conventionally, as shown in FIG. 6, the positioning of a lamp in a semiconductor exposure apparatus is carried out by visually observing the image of the cathode or anode of the lamp using a pinhole plate 13 and an arc monitor plate 14, and positioning the lamp at a predetermined position. I took a method to suit the situation.

すなわち、同図において、ランプ9からの光束の一部は
ハーフミラ−(またはコールドミラー)11を透過して
取り出され、ミラー12で反射された後、ピンホール板
13のピンホールを通過し、ランプ9が正規の位置にあ
ればアークモニター板14上に像を作る。アークモニタ
ー板14とピンホール板13は2次光源であるオプティ
カル・インテグレータlの強度分布が対称になるような
位置にランプ9が来た時にナークモニタ板の所定の位置
に結像するようにされている。2次光源の強度分布が非
対称だと像性能に悪影響をおよぼすことになる。そこで
、作業者は、ランプの陰極または陽極の像がこのアー位
置を調整していた。こうすることでハーフミラ−11で
反射されオプティカル・インテグレータlを経由し、ミ
ラー2で反射され、コンデンサレンズ3でマスク4面に
集光される光のマスク4面での照度むらを除去できる。
That is, in the figure, a part of the luminous flux from the lamp 9 is transmitted through a half mirror (or cold mirror) 11, is taken out, is reflected by a mirror 12, and then passes through a pinhole in a pinhole plate 13, and is emitted from the lamp. If 9 is in the correct position, an image is formed on the arc monitor plate 14. The arc monitor plate 14 and the pinhole plate 13 are arranged so that when the lamp 9 comes to a position where the intensity distribution of the optical integrator l, which is a secondary light source, is symmetrical, an image is formed at a predetermined position on the arc monitor plate. There is. If the intensity distribution of the secondary light source is asymmetrical, image performance will be adversely affected. Therefore, the operator used the image of the cathode or anode of the lamp to adjust this earth position. By doing so, it is possible to eliminate uneven illuminance on the mask 4 surface of light that is reflected by the half mirror 11, passes through the optical integrator 1, is reflected by the mirror 2, and is focused on the mask 4 surface by the condenser lens 3.

ところが、この方法では2次光源であるオプティカル・
インテグレータlの強度分布を直接モニターしていてな
いので、ランプ9がアークモニター板14上で正規の位
置にあったとしても2次光源の強度分布が対称とならな
い場合が起こり得るという欠点があった。これは楕円ミ
ラー10の焦点位置からオプティカル・インテグレータ
lの中心までの光軸と、ミラー12、ピンホール板13
およびアークモニター板14の軸とが例えば光学系の経
時変化、環境変化等によりずれている場合に起こり得る
However, this method uses an optical light source, which is a secondary light source.
Since the intensity distribution of the integrator l is not directly monitored, there is a drawback that the intensity distribution of the secondary light source may not be symmetrical even if the lamp 9 is in the correct position on the arc monitor plate 14. . This is the optical axis from the focal point of the elliptical mirror 10 to the center of the optical integrator l, the mirror 12, and the pinhole plate 13.
This can also occur if the axis of the arc monitor plate 14 is deviated from the axis due to, for example, changes in the optical system over time or changes in the environment.

また、アークモニター板14上での像は鮮明でなく、又
、これを目視だけで正確な位置に合せることは、きわめ
て困難であった。
Furthermore, the image on the arc monitor plate 14 was not clear, and it was extremely difficult to align the image to an accurate position just by visual inspection.

更に、ランプが精密に正規の位置にないとマスク4面で
の照度のむらが無視できない程大きいので、従来は、先
ず精度の悪いアークモニター板14上での大乱の位置合
せを行なった後、マスク4面の照度分布を測定しながら
ランプ位置の微調整を行なっていたため、ランプの位置
合せはかなり面倒であった。
Furthermore, if the lamp is not precisely in the correct position, the unevenness of the illuminance on the four surfaces of the mask will be so large that it cannot be ignored. Lamp positioning was quite troublesome because the lamp position was finely adjusted while measuring the illuminance distribution on the four sides.

[発明の目的] 本発明は、上述の従来形における問題点に鑑み2次光源
であるオプティカル・インテグレータの強度分布を直接
モニターして、2次光源の強度分布を対称とすることで
、被照射面での照度分布が対称となって照度のむらが小
さくなりかつまた照度を最大にする様にランプ位置を正
確にかつ容易に合わせることを可能とする光源位置制御
装置を提供することを目的とする。
[Object of the Invention] In view of the problems with the conventional type described above, the present invention directly monitors the intensity distribution of the optical integrator, which is a secondary light source, and makes the intensity distribution of the secondary light source symmetrical. It is an object of the present invention to provide a light source position control device that makes it possible to accurately and easily adjust the lamp position so that the illuminance distribution on a surface is symmetrical, the unevenness of illuminance is reduced, and the illuminance is maximized. .

[実施例] 第1図に本発明の1実施例の検出部の概略図を示す。l
は2次光源であるところのオプティカル・インテグレー
タ、2は透過率1〜2%のハーフミラ−である。ハーフ
ミラ−2で反射された光はコンデンサレンズ3でマスク
4面に集光される。また、ハーフミラ−2を透過した光
束8a、8bはコンデンサレンズ5で集光されてマスク
4の面の中心と共役な点にピンホールを持つピンホール
板6を通過し、受光素子7に入射する。ランプ位置を合
せる場合には、受光素子7の出力をモニターしながら光
軸に対して対称となる光束8a、8bが同じ強度となる
様にランプ位置に調整すればよい。
[Embodiment] FIG. 1 shows a schematic diagram of a detection unit according to an embodiment of the present invention. l
2 is an optical integrator which is a secondary light source, and 2 is a half mirror with a transmittance of 1 to 2%. The light reflected by the half mirror 2 is focused by the condenser lens 3 onto the surface of the mask 4. Furthermore, the light beams 8a and 8b transmitted through the half mirror 2 are condensed by a condenser lens 5, pass through a pinhole plate 6 having a pinhole at a point conjugate to the center of the surface of the mask 4, and enter the light receiving element 7. . When adjusting the lamp position, the lamp position may be adjusted while monitoring the output of the light receiving element 7 so that the light beams 8a and 8b, which are symmetrical with respect to the optical axis, have the same intensity.

第2図に受光素子7の使用例を示す。ここでは受光素子
として第2図(a)のような4分割のフォートディテク
タを用いる例を示す。2次光源の強度分布が対称となる
には第2図(、a)の4分割されたフォトディテクタの
分割面AとCSBとDに入射する光の強度が等しくなれ
ばよい。すなわちランプ位置の合せ方は、具体的には第
2図(b)のように、フォートディテクタ出力を解析部
20に入力し、増巾解析結果としての出力のA−CとB
−DとA+B+C+Dをモニターして、光軸に垂直な平
面内での直交する軸方向の位置をA−CとB−Dが0と
なる様に調整し、光軸方向はA+B+C+Dが最大にな
るように調整する。受光素子7は光源が正規の位置にあ
る時にはA−CとB−DがOとなる位置にあらかじめ設
置されている。A+B+C+Dを最大の状態にすること
で絶対照度を太き(し照明効率をよ(できる。
FIG. 2 shows an example of how the light receiving element 7 is used. Here, an example is shown in which a four-divided fort detector as shown in FIG. 2(a) is used as a light receiving element. In order for the intensity distribution of the secondary light source to be symmetrical, it is sufficient that the intensities of the light incident on the dividing planes A, CSB, and D of the four-divided photodetector shown in FIG. 2(,a) are equal. Specifically, as shown in FIG. 2(b), the lamp position is adjusted by inputting the fort detector output to the analysis section 20 and comparing the outputs A-C and B as the width analysis results.
-D and A+B+C+D are monitored, and the positions in the orthogonal axial directions in the plane perpendicular to the optical axis are adjusted so that A-C and B-D become 0, and A+B+C+D becomes the maximum in the optical axis direction. Adjust as follows. The light receiving element 7 is installed in advance at a position where A-C and B-D are O when the light source is at the normal position. By maximizing A+B+C+D, you can increase the absolute illuminance and improve the lighting efficiency.

なお、受光素子についてはこの他にCCDエリアセンサ
ーを用いるようにしてもよい。
In addition, a CCD area sensor may be used as the light receiving element.

第3図は、本発明を半導体露光装置に実施した例を示す
。9は光源であるところの水銀ランプで、ランプ9のア
ーク中心は“楕円ミラーlOの第1焦点に位置する。ま
た、楕円ミラー10の第2焦点にはオプティカル・イン
テグレータlを配置する。11はミラーである。1のオ
プティカル・インテグレータ以下解析部20までの構成
は先に述べたとおりである。図のマスク4の下には図示
されていない、焼付けられるべきウェハを保持する部材
がある。
FIG. 3 shows an example in which the present invention is implemented in a semiconductor exposure apparatus. Reference numeral 9 denotes a mercury lamp as a light source, and the arc center of the lamp 9 is located at the first focus of an elliptical mirror 10.An optical integrator 1 is placed at the second focus of the elliptical mirror 10. The configuration from the optical integrator 1 to the analysis section 20 is as described above.Below the mask 4 in the figure is a member, not shown, that holds the wafer to be printed.

受光素子7より出力され入力光の解析部2oで増巾、解
析されて出力された信号は信号伝達手段28を経由して
スライド駆動源制御部30に入力される。
A signal outputted from the light receiving element 7, amplified and analyzed by the input light analysis section 2o, and outputted is inputted to the slide drive source control section 30 via the signal transmission means 28.

制御部30は入力信号に応じて駆動部40中のスライド
駆動源25. 26. 27に指令信号を、信号伝達手
段29を経由して送る。第4図に駆動部40の1例の詳
細図を示す。駆動源25.26.27はそれぞれ一方向
スライド用のスライド22,23.24をスライド方向
に指令信号に応じて駆動制御する。駆動源は、例えばス
ライドに付いているナツト部をボールネジシステムによ
ってスライド方向に押引することでスライドを駆動する
。スライド22はスライド23を図面Z方向にスライド
させる為の不図示のガイドを有し、又駆動源26を固定
支持している。同様にスライド24は、スライド22を
図面Y方向にスライドさせるための不図示のガイドを有
し、また駆動源25を固定支持している。スライド24
゛を図面X方向にスライドさせるためのガイドと駆動源
27は不図示の露光装置本体に設置された固定支持部5
0に設けられあるいは固定支持されている。コノヨウニ
スライF22,23. 24+tx、y、zスライドシ
ステムを形成する。ガイドは例えばリニアベアリングシ
ステムでよい。ここでスライド23のスライド方向は光
軸と平行方向、スライド22゜24のスライド方向は光
軸と垂直かつ互いに垂直方向であり、受光素子7の分割
面のA−C方向とそれに垂直なn−D方向はそれぞれス
ライド22.24が移動した時光源9からの光によるA
、CおよびB、Dのそれぞれの出力比変化が最も大きく
なるように向きを調節されている。制御部30はA−C
>Oの時、Aの出力がCの出力に比べて相対的に小さく
なる方向にスライド22を駆動するように駆動源25を
制御しこの移動の間A−CをモニタしA−C,=0とな
った時駆動源25を停止させる。この時行きすぎてA−
C<0となった時は前と逆方向にスライド22を駆動し
てA−C=0になった時停止させるようにしてもよい。
The control unit 30 controls the slide drive source 25 in the drive unit 40 in response to the input signal. 26. A command signal is sent to 27 via signal transmission means 29. FIG. 4 shows a detailed diagram of an example of the drive unit 40. Drive sources 25, 26, and 27 each drive and control the slides 22, 23, and 24 for one-way sliding in the sliding direction according to command signals. The drive source drives the slide by, for example, pushing or pulling a nut attached to the slide in the sliding direction using a ball screw system. The slide 22 has a guide (not shown) for sliding the slide 23 in the Z direction in the drawing, and also fixedly supports a drive source 26. Similarly, the slide 24 has a guide (not shown) for sliding the slide 22 in the Y direction in the drawing, and also fixedly supports a drive source 25. Slide 24
A guide and a drive source 27 for sliding the device in the direction
0 or fixedly supported. Konoyou Nisrai F22, 23. 24+tx, y, z slide system. The guide may for example be a linear bearing system. Here, the slide direction of the slide 23 is parallel to the optical axis, the slide directions of the slides 22 and 24 are perpendicular to the optical axis and perpendicular to each other, and the A-C direction of the dividing plane of the light receiving element 7 and the n- The D direction is A by the light from the light source 9 when the slides 22 and 24 move respectively.
, C, B, and D, the directions are adjusted so that each output ratio change is the largest. The control unit 30 is A-C
>O, the drive source 25 is controlled to drive the slide 22 in a direction in which the output of A is relatively smaller than the output of C, and A-C is monitored during this movement, and A-C,= When the value becomes 0, the drive source 25 is stopped. I went too far at this time A-
When C<0, the slide 22 may be driven in the opposite direction and stopped when A-C=0.

またある程度許容範囲を設け、この中に来た時停止させ
るようにしてもよい。最初にA−C<Oの時はこれと逆
の要領で制御する。またB−D≠0の時は駆動源27を
前記と同様の要領で制御部30が制御する。更に制御部
30は、駆動源26を制御して光源9が光軸方向の定め
られた一定区間を移動するようにし、その時の各点での
A+B+C+Dの値を記憶して、このうちの最大値を判
別して記憶、再び光源9を一定区間、A+B十〇+Dの
値をモニタしながら移動させ、A+B+C+Dの値が記
憶した最大値になった時に光源9が停止するようにする
。スライド23と22の対向部分に不図示のリニアポテ
ンショメータ等スライド23の位置情報を検出する手段
を設け、これから制御部30に信号伝達手段31を介し
て位置情報を送り、この情報に基づいて制御部30は光
源9が一定区間を移動するよう駆動源26を駆動させる
。一定区間は最小でも、絶対強度最大の点が常に含まれ
るような大きさおよび位置にとる。以上の制御方法を第
5図に示した。
Alternatively, a certain tolerance range may be set, and the operation may be stopped when the tolerance range is within this range. First, when A-C<O, control is performed in the opposite manner. Further, when B-D≠0, the control unit 30 controls the drive source 27 in the same manner as described above. Furthermore, the control unit 30 controls the drive source 26 so that the light source 9 moves in a predetermined certain section in the optical axis direction, stores the values of A+B+C+D at each point at that time, and calculates the maximum value among them. is determined and stored, and the light source 9 is moved again for a certain period while monitoring the value of A+B+D, and the light source 9 is stopped when the value of A+B+C+D reaches the stored maximum value. A means for detecting the position information of the slide 23 such as a linear potentiometer (not shown) is provided at the opposing portion of the slides 23 and 22, and the position information is sent to the control section 30 via the signal transmission means 31, and based on this information, the control section 30 drives the drive source 26 so that the light source 9 moves within a certain range. The fixed section is sized and positioned so that at least the point with the maximum absolute intensity is always included. The above control method is shown in FIG.

第5図に示した制御方法のうちの以降の過程は必要がな
ければ除いてもよい。この場合のまでの過程終了後すぐ
に5TART状態にもどるようなループにすれば光源の
位置を常に監視制御する事ができ、例えば不慮の事故等
で使用中に光源が許容範囲外にずれてもすぐに範囲内に
もどすことが可能ような事がなく、スループットが向上
する。
The subsequent steps in the control method shown in FIG. 5 may be omitted if unnecessary. In this case, if you create a loop that returns to the 5TART state immediately after completing the process up to this point, you can constantly monitor and control the position of the light source, and even if the light source moves out of the allowable range due to an unexpected accident, for example. There is no possibility of returning to the range immediately, and throughput is improved.

[発明の効果] 以上説明したように、本発明によって2次光源からの直
接光を受光素子で受けこの受光素子の出力によって自動
的にランプの位置を調整しているため光源としてのラン
プを被照射面例えばマスク面での照度分布が対称でむら
のない位置に正確にかつ容易に位置合せすることが可能
となった。
[Effects of the Invention] As explained above, according to the present invention, the direct light from the secondary light source is received by the light receiving element, and the position of the lamp is automatically adjusted based on the output of the light receiving element. It has become possible to accurately and easily align the illuminance distribution on the irradiation surface, for example, the mask surface, to a symmetrical and even position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の光源位置制御装置の受光部
を示す概略図、第2図(a)は同実施例の受光素子の例
の平面図、第2図(b)は同受光素子の1例の構造概略
図、第3図は本発明の1実施例の光源位置制御装置を用
いた半導体露光装置を示す概略図、第4図は光源駆動部
の1例を示す斜視図、第5図は該l実施例の制御装置の
作動方法を示すフローチャート、第6図は従来の光源位
置を調整する為の手段を有する半導体露光装置の概略図
である。 図中; t:オプテイカルインテグレータ 5:コンデンサレンズ 6:ピンホール板 7:受光素子 9:ランプ lO:楕円ミラー 20:解析部 30:駆動源制御部 40:光源駆動部である。
FIG. 1 is a schematic diagram showing a light receiving section of a light source position control device according to an embodiment of the present invention, FIG. 2(a) is a plan view of an example of a light receiving element of the same embodiment, and FIG. FIG. 3 is a schematic diagram showing a semiconductor exposure apparatus using a light source position control device according to an embodiment of the present invention, and FIG. 4 is a perspective view showing an example of a light source driving section. , FIG. 5 is a flowchart showing the operating method of the control device of the first embodiment, and FIG. 6 is a schematic diagram of a conventional semiconductor exposure apparatus having means for adjusting the position of the light source. In the figure; t: optical integrator 5: condenser lens 6: pinhole plate 7: light receiving element 9: lamp lO: elliptical mirror 20: analysis section 30: drive source control section 40: light source drive section.

Claims (3)

【特許請求の範囲】[Claims] (1)光源を含む照明光学系の被照射面の特定部分に入
射する光の照度状態を検出する検出手段、前記検出手段
からの信号に基づいて前記光源の位置を変化させる制御
手段、を有する事を特徴とする光源位置制御装置。
(1) It has a detection means for detecting the illuminance state of light incident on a specific part of the illuminated surface of an illumination optical system including a light source, and a control means for changing the position of the light source based on a signal from the detection means. A light source position control device characterized by:
(2)前記検出手段は光軸を中心に光軸と垂直な方向の
両側の照度差を検出する為の複数の受光素子を有する事
を特徴とする特許請求の範囲第1項記載の光源位置制御
装置。
(2) The light source position according to claim 1, wherein the detection means has a plurality of light receiving elements for detecting the difference in illuminance on both sides of the optical axis in a direction perpendicular to the optical axis. Control device.
(3)前記制御手段は前記照度差が実質的に無くなるよ
う前記光源位置を変化させる事を特徴とする特許請求の
範囲第2項記載の光源位置制御装置。
(3) The light source position control device according to claim 2, wherein the control means changes the light source position so that the illuminance difference is substantially eliminated.
JP61127595A 1986-06-02 1986-06-02 Exposure equipment Expired - Fee Related JPH0622193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127595A JPH0622193B2 (en) 1986-06-02 1986-06-02 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127595A JPH0622193B2 (en) 1986-06-02 1986-06-02 Exposure equipment

Publications (2)

Publication Number Publication Date
JPS62283629A true JPS62283629A (en) 1987-12-09
JPH0622193B2 JPH0622193B2 (en) 1994-03-23

Family

ID=14963968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127595A Expired - Fee Related JPH0622193B2 (en) 1986-06-02 1986-06-02 Exposure equipment

Country Status (1)

Country Link
JP (1) JPH0622193B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327015A (en) * 1986-07-18 1988-02-04 Nec Corp Reduction stepper
JP2002222753A (en) * 2001-01-26 2002-08-09 Canon Inc Aligner and method of adjusting position of its light source
JP2004533649A (en) * 2001-06-21 2004-11-04 カール ツァイス Lamp housing
EP1494224A2 (en) * 2003-06-30 2005-01-05 Daewoo Electronics Corporation Apparatus and method for aligning holographic ROM system
EP1594127A2 (en) 2004-05-06 2005-11-09 Daewoo Electronics Corporation Holographic ROM reader having servo control
US7459707B2 (en) 2004-10-28 2008-12-02 Canon Kabushiki Kaisha Exposure apparatus, light source apparatus and device fabrication

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327015A (en) * 1986-07-18 1988-02-04 Nec Corp Reduction stepper
JP2002222753A (en) * 2001-01-26 2002-08-09 Canon Inc Aligner and method of adjusting position of its light source
JP4585697B2 (en) * 2001-01-26 2010-11-24 キヤノン株式会社 Exposure apparatus and light source position adjustment method
JP2004533649A (en) * 2001-06-21 2004-11-04 カール ツァイス Lamp housing
EP1494224A2 (en) * 2003-06-30 2005-01-05 Daewoo Electronics Corporation Apparatus and method for aligning holographic ROM system
EP1494224A3 (en) * 2003-06-30 2006-01-25 Daewoo Electronics Corporation Apparatus and method for aligning holographic ROM system
EP1594127A2 (en) 2004-05-06 2005-11-09 Daewoo Electronics Corporation Holographic ROM reader having servo control
EP1594127A3 (en) * 2004-05-06 2006-11-08 Daewoo Electronics Corporation Holographic ROM reader having servo control
US7459707B2 (en) 2004-10-28 2008-12-02 Canon Kabushiki Kaisha Exposure apparatus, light source apparatus and device fabrication

Also Published As

Publication number Publication date
JPH0622193B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US5153419A (en) Device for detecting position of a light source with source position adjusting means
JP3181050B2 (en) Projection exposure method and apparatus
US6115107A (en) Exposure apparatus
JP3360686B2 (en) Illumination optical apparatus, projection exposure apparatus, exposure method, and element manufacturing method
US5162642A (en) Device for detecting the position of a surface
JP2893778B2 (en) Exposure equipment
US4639838A (en) Shadowless lighting equipment for medical use
US4580900A (en) Auto focus alignment and measurement system and method
US6833918B2 (en) Light scattering particle size distribution measuring apparatus and method of use
JPS62283629A (en) Light source position controller
JPS5983165A (en) Light source device for illumination
KR950012568A (en) Exposure equipment
JPS6370419A (en) Projection exposure device
JPH06349710A (en) Lighting optical device
JPH01303721A (en) Plane inclination detector
JPH1030988A (en) Automatic focus correcting method and apparatus therefor
JPH11135411A (en) Scanning aligner
JPH11251220A (en) Exposure equipment and exposure method
JPS6252929A (en) Device for illumination optics
JP2503568B2 (en) Projection exposure device
JP2012149984A (en) Displacement detecting deice, exposure device, and device manufacturing method
JPH10284400A (en) Aligner
JPH04364020A (en) Pattern detection device and exposure device
JPH0620036B2 (en) Exposure method and apparatus
JP3008591B2 (en) Exposure apparatus and circuit manufacturing method using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees