JPS62283276A - Flow amount adjusting method for valve - Google Patents

Flow amount adjusting method for valve

Info

Publication number
JPS62283276A
JPS62283276A JP12666586A JP12666586A JPS62283276A JP S62283276 A JPS62283276 A JP S62283276A JP 12666586 A JP12666586 A JP 12666586A JP 12666586 A JP12666586 A JP 12666586A JP S62283276 A JPS62283276 A JP S62283276A
Authority
JP
Japan
Prior art keywords
valve
force
pressure
diaphragm
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12666586A
Other languages
Japanese (ja)
Inventor
Masahiko Watanabe
正彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP12666586A priority Critical patent/JPS62283276A/en
Publication of JPS62283276A publication Critical patent/JPS62283276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To enable a delivery flow amount to be remotely controlled, by controlling pressure force of a working medium, given to a valve unit, through the pressure force of fluid acting on the valve unit. CONSTITUTION:A diaphragm type valve 2 is developed for automatic irrigation, and the valve 2 provides its working medium derivation inlet to be not arranged directly to a pressure chamber 5 in the back part of a diaphragm 4 but formed in a cylinder chamber 13 behind a piston 15 longitudinally moving in a cylinder 16. The piston 15 and a spring 14 are provided to be arranged in the cylinder 16 generating force separating the piston 15 and the diaphragm 4 from a valve seat 3. Air is used as a pressure medium, and its pressure is regulated by a solenoid valve. If assumed Q for force by this pressure, P for force of fluid acting on a valve unit and R for force of spring tension, the force Q is controlled so that a relation, where Q=P+R, is obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は作動媒体の導出入によって開閉制御される流体
吐出バルブの開度調節方法に関し、詳細には該バルブか
ら吐出される流体の圧力が微小に変動する場合であって
も該バルブの開度を正確に遠隔調節することのできるバ
ルブの流4i調節方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for adjusting the opening degree of a fluid discharge valve whose opening and closing are controlled by introducing and injecting a working medium. The present invention relates to a method for adjusting the flow rate 4i of a valve, which allows accurate remote control of the opening degree of the valve even when the pressure of the discharged fluid varies minutely.

[従来の技術] 本出願人は、作動媒体の導出入によって開閉制御される
バルブについて既に実願昭60−67496号や実願昭
60−76104号等の出願を行っている。
[Prior Art] The present applicant has already filed applications such as U.S. Pat. No. 60-67496 and U.S. Pat.

第2図は通水管1内を流れるかんがい水をかんがい必要
光(例えばうね間)に供給したり、該供給を停止したり
する為のダイヤフラム式バルブ2を示す断面説明図であ
る。作動媒体注入口から制御用作動媒体を矢印A方向に
圧入して圧力チャンバー5内へ高圧充満させた場合には
、該圧力によってダイヤフラム4が弁座3側に押圧当接
され(図面の破線位置)取水口からのかんがい水の取入
れを弁座3において遮断する。逆に圧力チャンバー5か
ら作動媒体を放出してダイヤフラム4を弁座3から後退
させた場合(図面の実線位置)には、かんがい水は取水
口から矢印Waに沿ってバルブ内に流入され更に放出口
から矢印wbに沿って外部へ排出される。尚調節ねじ8
はストッパー9を図面の左右に8勅させるものであり、
ダイヤフラム4全開時のかんがい水数出量が調節される
FIG. 2 is an explanatory cross-sectional view showing a diaphragm valve 2 for supplying or stopping the supply of irrigation water flowing through the water pipe 1 to areas where irrigation is required (for example, between ridges). When the control working medium is pressurized in the direction of arrow A from the working medium inlet to fill the pressure chamber 5 with high pressure, the diaphragm 4 is pressed against the valve seat 3 side by the pressure (at the position indicated by the broken line in the drawing). ) The intake of irrigation water from the water intake is shut off at the valve seat 3. Conversely, when the working medium is released from the pressure chamber 5 and the diaphragm 4 is retreated from the valve seat 3 (solid line position in the drawing), irrigation water flows into the valve from the water intake along the arrow Wa and is further released. It is discharged to the outside from the exit along the arrow wb. In addition, adjustment screw 8
is to move the stopper 9 8 times to the left and right of the drawing,
The amount of irrigation water when the diaphragm 4 is fully opened is adjusted.

[発明が解決しようとする問題点] 第2図に示す通水管1は水源である貯水池に連結され、
常時一定流量を確保するために種々の労力がはられれて
いる。ところが実線の貯水池の貯水量はインプット量(
降水量)とアウトプット量(かんがい供給量や蒸発量等
)が毎日の様に変動するため一定とならず、ある特定の
ダイヤフラム式バルブ2に注目すると、当該バルブから
流出するかんがい水量にもばらつきが生じる危険がある
。この様な危険にもかかわらずバルブ2の制御を全開と
全開の2ポジシヨンだけで行うこととすると、給水量が
違ったものになってしまい、設計量から大幅に狂うこと
もあって、著しい場合には作物の育成に悪影響を及ぼす
こともある。そこでこのような供給水量のばらつきをな
くすために、圃場内に設けられるバルブ2を開度調節の
可能なものヒし、作業者によってその都度開度を調節し
て回らせるという方式が採用されている。しかし作業者
は広大な圃場を隅なく歩き回らなければならず、たいへ
ん効率の悪い作業が強要されることとなる。
[Problems to be solved by the invention] The water pipe 1 shown in FIG. 2 is connected to a reservoir that is a water source,
Various efforts are made to ensure a constant flow rate at all times. However, the amount of water stored in the reservoir shown by the solid line is the input amount (
Precipitation) and output volume (irrigation supply volume, evaporation volume, etc.) fluctuate on a daily basis and are not constant, and when focusing on a particular diaphragm valve 2, the amount of irrigation water flowing out from the valve also varies. There is a risk that this may occur. Despite this danger, if valve 2 were to be controlled only in the two positions of fully open and fully open, the amount of water supplied would be different, which could deviate significantly from the designed amount, and in severe cases. may have a negative effect on crop growth. Therefore, in order to eliminate such variations in the amount of water supplied, a method has been adopted in which valves 2 installed in the field are capable of adjusting the opening, and the operator turns the valve by adjusting the opening each time. There is. However, workers are forced to walk around the vast fields, making them very inefficient.

本発明者らは、このような実情に着目し、遠隔操作によ
ってバルブからの吐出流体量を調節でき、しかも吐出さ
れる流体の圧力が変動しても適正なバルブ開度が選定で
きる様な方法を開発することを目的に種々の研究を行っ
た結果、本発明方法を完成させるに至った。
The present inventors focused on this situation and developed a method that allows the amount of fluid discharged from a valve to be adjusted by remote control, and also allows the selection of an appropriate valve opening degree even when the pressure of the fluid being discharged fluctuates. As a result of various researches aimed at developing this method, we have completed the method of the present invention.

[問題点を解決するムの手段] 上記目的を達成し得た本発明方法は、弁体を弁座から押
し離す方向に作用する流体の力をP、弁体を弁座側に押
しつける方向に作用する作動媒体の力をQとしたとき、
前記弁体に接続され該弁体を弁座から離反させる方向に
作用するばねを設けて該ばねの力をRとし、Q=P+R
の式を満足する様にQを制御することによって弁座から
吐出する流体流量を調節する方法である点に要旨を有す
るものである。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, reduces the force of the fluid acting in the direction of pushing the valve body away from the valve seat, P, and the force of the fluid acting in the direction of pushing the valve body toward the valve seat side. When the force of the working medium acting is Q,
A spring is connected to the valve body and acts in a direction to move the valve body away from the valve seat, and the force of the spring is R, and Q=P+R.
The gist of this method is that it is a method of adjusting the flow rate of fluid discharged from a valve seat by controlling Q so as to satisfy the following equation.

[作用] 本発明方法に適用されるバルブは、次の(1)〜(5)
項に示される条件を備えるものである。
[Function] The valve applied to the method of the present invention has the following (1) to (5).
The conditions shown in section 1.

(1)流体は弁座の開口を通して吐出されるものであり
、該弁座に弁体を当接することによって流体の吐出を停
止させ、逆に弁座から弁体を離反させることによって流
体の吐出を許すものであること。
(1) Fluid is discharged through the opening of the valve seat, and the fluid discharge is stopped by bringing the valve body into contact with the valve seat, and conversely, the fluid is discharged by separating the valve body from the valve seat. be allowed.

(2)弁座と弁体の間隔S(第1図参照)の大小によっ
て弁座からの吐出流量が調節されるものであること。
(2) The discharge flow rate from the valve seat can be adjusted by adjusting the distance S between the valve seat and the valve body (see FIG. 1).

(3)弁体は、作動媒体の圧力Qによって弁座へ押し付
けられるようなものであること。
(3) The valve body must be pressed against the valve seat by the pressure Q of the working medium.

(4)弁座からの吐出流体は、弁体を弁座から離反させ
る方向の力Pを作用するものであること。
(4) The fluid discharged from the valve seat should exert a force P in the direction of moving the valve body away from the valve seat.

(5)弁体にはばねが接続され、該ばねの力によって弁
体を弁座から離反させる力Rが弁イ末に作用されるもの
であること。
(5) A spring is connected to the valve body, and the force of the spring applies a force R to the end of the valve that causes the valve body to move away from the valve seat.

上記条件を満足するバルブを使って弁体と弁座の間隔S
を種々変化させたところ、吐出流体からの力Pは第3図
の曲線P(破線Paについては後述する)に示される様
に全閉から全開に亘って漸次低下していくことが分かっ
た。即ち全閉状態においては最高の力P0が弁体に作用
し、間隔Sを全閉から全開にむけて大きくしていくに従
って弁体の回りから放出される流体量(即ち弁体に作用
せずに逃げる量)が増加し、その結果弁体を弁座から押
し離そうとする力Pは徐々に低減される。
Using a valve that satisfies the above conditions, the distance S between the valve body and valve seat
It was found that the force P from the discharged fluid gradually decreased from fully closed to fully open, as shown by the curve P in FIG. 3 (the broken line Pa will be described later). That is, in the fully closed state, the maximum force P0 acts on the valve body, and as the distance S increases from fully closed to fully open, the amount of fluid released from around the valve body (that is, the amount of fluid that does not act on the valve body) increases. As a result, the force P that attempts to push the valve body away from the valve seat is gradually reduced.

また弁体に接続されたばね(第1図では引きばね)14
が弁体に及ぼす力Rは第3図の直線Rに示す様に前記間
隔Sが大きくなればなる程減少する。即ち間隔Sと力R
は反比例する。
Also, a spring (tension spring in Fig. 1) 14 connected to the valve body
As shown by the straight line R in FIG. 3, the force R exerted on the valve body decreases as the distance S increases. That is, the distance S and the force R
is inversely proportional.

そこで例えば第3図に示すグラフにおいて、弁座と弁体
の間隔が今S1点において固定されているとすると、弁
体を弁座から離反させようとする力はR1とPlの和と
なる。これに対して弁体を弁座へ押し付ける様に作用す
る作動媒体の力Qは前記R1とPlの和と等しく、Q+
 =P+ +R+1となってつり合っており、この状態
における流体の吐出流量は流体の圧力Pと間隔Sとの関
係によって決定されることが分かる。そしてばね力Rは
ばねの伸び状態によって決められるものであり系外から
制御することはできないので、Qの調節によって制御し
なければならないことも理解されるところである。
For example, in the graph shown in FIG. 3, if the distance between the valve seat and the valve body is currently fixed at point S1, the force that tends to move the valve body away from the valve seat is the sum of R1 and Pl. On the other hand, the force Q of the working medium that acts to press the valve body against the valve seat is equal to the sum of R1 and Pl, and Q+
=P+ +R+1, and it can be seen that the discharge flow rate of the fluid in this state is determined by the relationship between the fluid pressure P and the spacing S. It is also understood that since the spring force R is determined by the state of extension of the spring and cannot be controlled from outside the system, it must be controlled by adjusting Q.

一方間隔S、の状態における吐出流体流量が仮に不足し
ており、間隔SをS2まで広げなければ必要流量が得ら
れないとすると、S2におけるR2及びP2によって求
められる力の和(P2+R2)の値をグラフ又は計算に
よって求め、さらにp2 +R2”Qzとなる様に作動
媒体の力QをQ2へ変更させるのである。
On the other hand, if the discharge fluid flow rate in the state of the interval S is insufficient and the required flow rate cannot be obtained unless the interval S is increased to S2, then the value of the sum of forces (P2 + R2) determined by R2 and P2 at S2 is determined by a graph or calculation, and the force Q of the working medium is changed to Q2 so that p2 +R2''Qz.

つまり作動媒体の力Qを、ばねの力Rと流体の力Pの和
とつり合う様に操作すれば、弁座と弁体の間隔Sを希望
値に設定でき、吐出流体の圧力と前記間隔Sによって決
定される流体流量が任意に調節できることとなるのであ
る。このときばねを配設しないで流体の力Pと作動媒体
の力Qのつり合いのみによって弁体の位置を調節するこ
とも理論上は可能であるが、第3図に示す様に曲線Pは
緩やかな傾斜を示し、これに要する作動媒体の圧力調整
も精密さを必要とされる。これに対してばねRを配設し
た場合にはPとRの和は急峻な曲線Qを示し、作動媒体
Qの圧力調整誤差による間隔Sの変動が少なくなり、制
御精度を向上することが理解される。
In other words, by manipulating the force Q of the working medium to balance the sum of the force R of the spring and the force P of the fluid, the distance S between the valve seat and the valve body can be set to a desired value, and the pressure of the discharged fluid and the distance S This means that the fluid flow rate determined by can be adjusted arbitrarily. At this time, it is theoretically possible to adjust the position of the valve body only by balancing the force P of the fluid and the force Q of the working medium without providing a spring, but as shown in Figure 3, the curve P is gentle. The pressure of the working medium required for this slope must be adjusted with precision. On the other hand, when a spring R is provided, the sum of P and R shows a steep curve Q, and it is understood that fluctuations in the interval S due to pressure adjustment errors of the working medium Q are reduced, improving control accuracy. be done.

尚作動媒体の力Qの制御に当たっては、レギュレータ等
を用いることにより圧力源付近において操作できるので
、圧力源から離れた遠くに配設されるバルブであっても
、集中的に遠隔制御することが可能となる。
In addition, when controlling the force Q of the working medium, it can be operated near the pressure source by using a regulator, etc., so even if the valve is located far away from the pressure source, it can be centrally controlled remotely. It becomes possible.

[実施例] 5s図は自動かんがい用に開発されたダイヤフラム式バ
ルブ2の実施例を示す断面説明図である。第2図に示し
たバルブと構造的に相違する点は、以下の通りである。
[Example] Figure 5s is a cross-sectional explanatory diagram showing an example of a diaphragm type valve 2 developed for automatic irrigation. The structural differences from the valve shown in FIG. 2 are as follows.

即ち作動媒体導出入口はダイヤフラム4背部の圧力チャ
ンバー5に直接配設するのではなく、シリンダ16内を
進退するピストン15の後方に相当するシリンダ室13
に作動媒体導出人口12として形成する。シリンダ16
内には内壁に沿って摺動自在なピストン15が設けられ
、ピストン15の先端にはストッパー9と共にダイヤフ
ラム4を固定的に取付ける。ざらにピストン15とシリ
ンダ16奥壁の間を架けごす様に引きばね14を配設し
、ピストン15及びダイヤフラム4を弁座3から引離す
方向の力を生じさせる。
That is, the working medium outlet/inlet is not disposed directly in the pressure chamber 5 at the back of the diaphragm 4, but rather in the cylinder chamber 13 corresponding to the rear of the piston 15 moving back and forth within the cylinder 16.
The working medium is formed as a working medium derived population 12. cylinder 16
A piston 15 that is slidable along the inner wall is provided inside the piston 15, and a diaphragm 4 and a stopper 9 are fixedly attached to the tip of the piston 15. A tension spring 14 is disposed so as to extend roughly between the piston 15 and the rear wall of the cylinder 16, and generates a force in the direction of separating the piston 15 and the diaphragm 4 from the valve seat 3.

こうしてダイヤフラム4には吐出流体の力P及び引きば
ね14の力Rによって図面右側へ移動させようとする力
が作用され、他方矢印A方向から作動媒体を導入するこ
とによってダイヤフラム4を図面左側へ8勅させようと
する力Qを生じさせる。
In this way, a force is applied to the diaphragm 4 by the force P of the discharged fluid and the force R of the tension spring 14 to move it to the right in the drawing, and on the other hand, by introducing the working medium from the direction of arrow A, the diaphragm 4 is moved 8 to the left in the drawing. Generates a force Q that forces you to do so.

第4図は第1図に示したダイヤフラム式バルブ2を圃場
内に多数設けたときに使用される作動媒体(圧縮空気)
供給源の例を示す概略説明図である。尚図中の実線は管
路を示し、破線は制御系路を示す。作動媒体である空気
は圧縮機20において加圧され、レギュレータ21によ
って定圧化され圃場内のダイヤフラム式バルブ2の閉鎮
のために電磁弁25a、25b及び分配器26に供給さ
れ、ここではバルブ2閉傾用圧縮空気を送給するブロッ
クに屈するダイヤプラム式バルブ2群のみを遭択して圧
縮空気を分配供給する。また圧縮空気の一部は電空レギ
ュレータ22に供給されて圧力調整された後、電6u弁
25a、25bへ供給され、その一部は分配器26を介
して圃場内のいずれかのブロックに属するバルブ2へ送
給される。
Figure 4 shows the working medium (compressed air) used when a large number of diaphragm valves 2 shown in Figure 1 are installed in a field.
It is a schematic explanatory diagram showing an example of a supply source. In addition, solid lines in the figure indicate pipe lines, and broken lines indicate control system lines. Air, which is a working medium, is pressurized by a compressor 20, made constant by a regulator 21, and supplied to solenoid valves 25a, 25b and a distributor 26 for closing the diaphragm valve 2 in the field. Compressed air is distributed and supplied by selecting only two groups of diaphragm valves that are bent to the block for supplying compressed air for closing tilt. In addition, a part of the compressed air is supplied to the electro-pneumatic regulator 22 to adjust the pressure, and then supplied to the electro-6u valves 25a and 25b, and a part of the compressed air is sent to one of the blocks in the field via the distributor 26. It is fed to valve 2.

Z&H弁25 a、  25 bにおけるバルブ2開閉
のための切換え、及び電空レギュレータ22における圧
縮空気圧の設定はコントローラ23によって制御され、
該コントローラ23へは貯水池27におけろ水頭値がイ
ンプットされる。
The switching of the Z&H valves 25 a and 25 b to open and close the valve 2 and the setting of the compressed air pressure in the electropneumatic regulator 22 are controlled by the controller 23.
The water head value in the reservoir 27 is input to the controller 23 .

第4図に示すT、磁弁25a、25bの作用を説明する
と、電磁弁25aにはバルブ2全閉用の圧縮空気が通過
せしめられ、分配器26を介していずれかのブロックに
屈するバルブ2群へ送られ、該バルブ群を完全に閉鎖す
る。一方′rL磁弁25bには電空レギュレータ22に
よって調圧された圧縮空気が通過せしめられ、分配器2
6を介して連通されるいずれかのブロックに属するバル
ブ2群を適当開度に設定して開放する。例えば第1図に
示したバルブ2の弁座3内径を46a1mとした場合、
該バルブ2へ供給されるかんがい水の水頭及び弁座3か
ら吐出される水量との関係は、間隔Sとの関係を考慮す
ると第5図(グラフ)に示される如く算定される。即ち
貯水池27の水頭が1.0mあってかんがい水を供給す
るブロックにおいて1つのバルブ2から約60Jl/+
ninの割合の給水を行いたい場合には、前記間隔Sを
2〜4mmの間に設定すれば良いことになり、さらに詳
しく算出した結果Sは2.4■に設定すれば良いことが
分かった。
To explain the operation of the T and magnetic valves 25a and 25b shown in FIG. valves to completely close the valves. On the other hand, compressed air whose pressure has been regulated by the electropneumatic regulator 22 is passed through the 'rL magnetic valve 25b, and the distributor 2
Two groups of valves belonging to any one of the blocks communicated through the valve 6 are set to an appropriate opening degree and opened. For example, if the inner diameter of the valve seat 3 of the valve 2 shown in Fig. 1 is 46a1m,
The relationship between the water head of the irrigation water supplied to the valve 2 and the amount of water discharged from the valve seat 3 is calculated as shown in FIG. 5 (graph) in consideration of the relationship with the interval S. That is, in a block where the water head of the reservoir 27 is 1.0 m and supplies irrigation water, approximately 60 Jl/+ is generated from one valve 2.
If you want to supply water at a rate of 9.9mm, it is sufficient to set the above-mentioned interval S between 2 and 4mm, and as a result of more detailed calculations, it was found that S should be set at 2.4mm. .

第6図はばねの引き定数を4.6 kg/cmとし、水
頭が変動した場合に、前記間隔Sにおいてつり合う力Q
(単位面積当たりの空気圧も含む、ただしこのときシリ
ンダ16の内径は28mmとする)を選定するためのグ
ラフであり、グラフ右側の縦軸に記した数字を始点とす
る斜線が圧縮空気の力Qに相当する。即ち前例において
間隔Sを2.4 mmに設定する場合には、R+1mの
グラフとの交点Bを得て空気の力をグラフ左側の値から
読み取り空気圧約1.1 Kg/ cm”を得る。つま
り第4図に示す図において電空レギュレータ22の設定
値を1.1Kg/cm2に設定すれば、水頭1mの条件
下において7f111弁25bに連通されるブロック内
のバルブ2から601/ff1inの流量でかんがい水
吐出を行うことができるようになる。
Figure 6 shows the force Q balanced at the distance S when the spring tension constant is 4.6 kg/cm and the water head changes.
(Including the air pressure per unit area, however, the inner diameter of the cylinder 16 is 28 mm).The diagonal line starting from the number written on the vertical axis on the right side of the graph is the force Q of compressed air. corresponds to That is, in the previous example, when setting the interval S to 2.4 mm, obtain the intersection point B with the graph of R + 1 m, read the air force from the value on the left side of the graph, and obtain the air pressure of approximately 1.1 Kg/cm. In the diagram shown in FIG. 4, if the set value of the electropneumatic regulator 22 is set to 1.1 Kg/cm2, under the condition of a water head of 1 m, a flow rate of 601/ff1 inch is obtained from valve 2 in the block communicating with the 7f111 valve 25b. Irrigation water can now be discharged.

尚第6図に示す60 fl / min及び1501/
minの曲線はダイヤフラム式バルブ2におけるおおよ
その使用下限及び上限を示し、該グラフに囲まれる範囲
が該バルブ2の流量調節適用範囲と言える。
Furthermore, 60 fl/min and 1501/min shown in Figure 6
The min curve shows the approximate lower and upper limits of use for the diaphragm valve 2, and the range surrounded by this graph can be said to be the applicable range of flow rate adjustment of the valve 2.

第7図は貯水池の水頭が上昇又は低下したときに、バル
ブ2から吐出される水量を一定に保つためにはどのよう
な作動が行われるかを示すフローチャートである。即ち
貯水池の水頭が上昇した場合には、第1図に示すダイヤ
フラム式バルブ2はダイヤフラム4が弁座3側から離反
する方向に8勤せしめられ、その結果バルブ2からの吐
出水量が増加してしまう。この増加を抑えるには圧縮空
気の空気圧を上昇させてダイヤフラム4を弁座3側へ適
当量8動させる必要があり、これによって水頭上昇前の
流量と同等の水圧を得ることができる。つまり上昇した
水頭値と所望水量から、弁座3とダイヤフラム4の適正
間隔Sを第5図のグラフ等に基づいて算定し、そして該
間隔Sと前記水頭から第6図のグラフ等によって修正空
気圧を求め、第4図に示すコントローラ23から電圧レ
ギュレータ22を制御して所定値まで圧縮空気圧を高め
るのである。
FIG. 7 is a flowchart showing what operations are performed to keep the amount of water discharged from the valve 2 constant when the water head of the reservoir rises or falls. That is, when the water head of the reservoir rises, the diaphragm 4 of the diaphragm valve 2 shown in FIG. Put it away. In order to suppress this increase, it is necessary to increase the air pressure of the compressed air and move the diaphragm 4 toward the valve seat 3 by an appropriate amount, thereby making it possible to obtain a water pressure equivalent to the flow rate before the water head rises. In other words, from the increased water head value and the desired water volume, calculate the appropriate spacing S between the valve seat 3 and the diaphragm 4 based on the graph in FIG. The controller 23 shown in FIG. 4 controls the voltage regulator 22 to increase the compressed air pressure to a predetermined value.

こうして間隔Sを適正値にセットして水頭上昇前と同等
の流量を維持させる。一方水圧が低下した場合において
も同様の制御を行って常にバルブ2において一定流量が
確保される様に自動制御する。
In this way, the interval S is set to an appropriate value to maintain the same flow rate as before the water head rose. On the other hand, even when the water pressure decreases, similar control is performed to automatically control the valve 2 so that a constant flow rate is always ensured.

また広大な圃場においては、貯水池に近い圃場ブロック
と遠い圃場ブロックとでは、かんがい水の損失水頭の違
いに起因してバルブ2からの流量が不均一になることが
考えられる。そこでこれを解消するために水圧の力P値
を予め第3図の破線Paに示す様に修正しておき、流量
の相違を生じない様にQ値を変化させたり、或はバルブ
2に設ける引きばね14のばね定数を変えておく等の手
段を利用して、全圃場に対して均一な給水を行う。
Furthermore, in a vast field, it is conceivable that the flow rate from the valve 2 becomes uneven due to differences in the head loss of irrigation water between the field blocks near the reservoir and the field blocks far away. Therefore, in order to solve this problem, the water pressure force P value is corrected in advance as shown by the broken line Pa in Figure 3, and the Q value is changed so as not to cause a difference in flow rate, or the value is provided in valve 2. By using means such as changing the spring constant of the tension spring 14, water is uniformly supplied to the entire field.

本発明の流量調節方法は上記例で示した自動かんがい用
のバルブにのみ適用されるものではなく、流体を利用す
る他の分野に使用されるバルブ等においても同様に利用
することができる。
The flow rate adjustment method of the present invention is not only applicable to the automatic irrigation valve shown in the above example, but can also be similarly applied to valves used in other fields that utilize fluids.

〔発明の効果] 本発明方法を利用することによってバルブからの吐出流
量を遠隔操作で調節できる様になり、しかも吐出流体の
圧力が変動してもこれに対応して正確に流体流出量を制
御できる様になった。。
[Effects of the Invention] By using the method of the present invention, it becomes possible to adjust the discharge flow rate from the valve by remote control, and even if the pressure of the discharge fluid changes, the fluid flow rate can be accurately controlled in response to this. Now I can do it. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に利用されるバルブの実施例を示す
断面説明図、第2図はダイヤフラム式バルブの例を示す
断面説明図、第3図は本発明方法の作用を説明するため
のグラフ、第4図は本発明方法に利用される作動媒体供
給源の実施例を示す概略説明図、第5図は間隔Sにおけ
る流体水圧と流量との関係を示すグラフ、第6図は間隔
Sと作動媒体圧(空気圧)の関係を示すグラフ、第7図
はバルブ吐出量を一定に保つための作動を示すフローチ
ャートである。 1・・・通水管 2・・・ダイヤフラム式バルブ 3・・・弁座       4・・・ダイヤフラム5・
・・圧力チャンバー  6・・・パツキン8・・・ねじ
部      9・・・ストッパー10・・・吐出口 
    11・・・ハンドル12・・・作動流体導出入
管 13・・・シリンダ室   14・・・引きばね15・
・・ピストン    16・・・シリンダ20・・・圧
縮@      21・・・レギュレータ22・・・電
空レギュレータ
FIG. 1 is a cross-sectional explanatory diagram showing an example of a valve used in the method of the present invention, FIG. 2 is a cross-sectional explanatory diagram showing an example of a diaphragm type valve, and FIG. Graph, FIG. 4 is a schematic explanatory diagram showing an embodiment of the working medium supply source used in the method of the present invention, FIG. 5 is a graph showing the relationship between fluid water pressure and flow rate at interval S, and FIG. FIG. 7 is a graph showing the relationship between and working medium pressure (air pressure), and FIG. 7 is a flowchart showing the operation for keeping the valve discharge amount constant. 1... Water pipe 2... Diaphragm type valve 3... Valve seat 4... Diaphragm 5...
...Pressure chamber 6...Packing 8...Threaded part 9...Stopper 10...Discharge port
11... Handle 12... Working fluid inlet/outlet pipe 13... Cylinder chamber 14... Retraction spring 15.
... Piston 16 ... Cylinder 20 ... Compression @ 21 ... Regulator 22 ... Electropneumatic regulator

Claims (1)

【特許請求の範囲】[Claims] 弁座と弁体の間隙を変化させることによって弁座より吐
出する流体流量を調節する方法において、弁体を弁座か
ら押し離す方向に作用する流体の力をP、弁体を弁座側
に押しつける方向に作用する作動媒体の力をQとしたと
き、前記弁体に接続され該弁体を弁座から離反させる方
向に作用するばねを設けて該ばねの力をRとし、Q=P
+Rの式を満足する様にQを制御することによって弁座
から吐出する流体流量を調節することを特徴とするバル
ブの流量調節方法。
In a method of adjusting the flow rate of fluid discharged from the valve seat by changing the gap between the valve seat and the valve body, P is the force of the fluid that acts in the direction of pushing the valve body away from the valve seat, and P is the force of the fluid that acts in the direction of pushing the valve body away from the valve seat, and When the force of the working medium acting in the pressing direction is Q, a spring connected to the valve body and acting in a direction to move the valve body away from the valve seat is provided, and the force of the spring is R, and Q=P.
A method for adjusting the flow rate of a valve, characterized in that the flow rate of fluid discharged from the valve seat is adjusted by controlling Q so as to satisfy the formula +R.
JP12666586A 1986-05-30 1986-05-30 Flow amount adjusting method for valve Pending JPS62283276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12666586A JPS62283276A (en) 1986-05-30 1986-05-30 Flow amount adjusting method for valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12666586A JPS62283276A (en) 1986-05-30 1986-05-30 Flow amount adjusting method for valve

Publications (1)

Publication Number Publication Date
JPS62283276A true JPS62283276A (en) 1987-12-09

Family

ID=14940839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12666586A Pending JPS62283276A (en) 1986-05-30 1986-05-30 Flow amount adjusting method for valve

Country Status (1)

Country Link
JP (1) JPS62283276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127841A1 (en) * 2015-08-05 2017-02-08 Reinhold Schulte Filling assembly and supply device for a filling assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127841A1 (en) * 2015-08-05 2017-02-08 Reinhold Schulte Filling assembly and supply device for a filling assembly

Similar Documents

Publication Publication Date Title
US4543985A (en) Pressure regulator
JP6541489B2 (en) Liquid material discharge device
JP2630439B2 (en) Moderator
US20110226354A1 (en) Flow Controller
JPH0553962B2 (en)
CA1186972A (en) Pressure compensated flow control system
CA1128403A (en) Pressure-regulator for gaseous and liquid flow-media
JPH10503036A (en) Dead loop type bypass valve
US4917001A (en) Drive control valve for constant speed
JPS62283276A (en) Flow amount adjusting method for valve
CN100335827C (en) Magnetic valve for controlling flow
US703687A (en) Relief-valve for reservoirs containing fluid under pressure.
DK1255942T3 (en) Pressure control valve
JPH08270806A (en) Automatic pressure regulating valve
JPS593771B2 (en) You can't wait for a long time.
JP2001078596A (en) Method for controlling flow rate of water supply system and device therefor
GB1317103A (en) Flow control valve unit for liquid pressure media
US4495794A (en) Automatic on-off valve for use with a pneumatic micrometer
RU2079731C1 (en) Pressure regulator
JPH0737134Y2 (en) Pressure reducing valve for water supply device
JPS6212081Y2 (en)
SU1269751A3 (en) Pressure regulator
WO2022108614A1 (en) Hydrostatically adjustable valve and associated system
JPS57130118A (en) Control device for constant pressure of gas
JP2835609B2 (en) Pilot valve type shutoff valve