JPS6228323B2 - - Google Patents

Info

Publication number
JPS6228323B2
JPS6228323B2 JP54007843A JP784379A JPS6228323B2 JP S6228323 B2 JPS6228323 B2 JP S6228323B2 JP 54007843 A JP54007843 A JP 54007843A JP 784379 A JP784379 A JP 784379A JP S6228323 B2 JPS6228323 B2 JP S6228323B2
Authority
JP
Japan
Prior art keywords
mos
compound
present
fes
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54007843A
Other languages
Japanese (ja)
Other versions
JPS55100422A (en
Inventor
Toshio Miki
Kenichi Kakumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP784379A priority Critical patent/JPS55100422A/en
Publication of JPS55100422A publication Critical patent/JPS55100422A/en
Publication of JPS6228323B2 publication Critical patent/JPS6228323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固体同士の表面化学反応を利用して潤
滑性を得るようにした自己潤滑性の転がり軸受に
関するものである。 転がり軸受用の潤滑性としてはグリス、油類が
広く用いられるが高温下、あるいは真空下では燃
焼、あるいは蒸発のおそれがあつて使用出来ず、
また粉末等の固体潤滑剤も清浄さを要求される環
境下では使用が難かしい。 このため従来にあつては、上記したような潤滑
剤を軸受に注入添加するのではなく、予め軸受の
摩擦面にMo(モリブデン)、W(タングステン)
又はその化合物を付着しておき、軸受を摩擦面に
おけるこれら物質と反応するH2S(硫化水素)等
のガス雰囲気下で使用し、摩擦中に固体潤滑膜を
生成せしめるようにしたもの、又は軸受の摩擦面
を金、銀、鉛等の軟質金属、あるいはMoS2(二
硫化モリブデン)、WS(硫化タングステン)等
で構成される固体潤滑膜で直接被覆したものが用
いられている。 しかし、前者の場合は雰囲気ガスを必要とする
ため真空下での使用が困難であり、また後者は固
体摩擦膜の摩耗、剥離が激しく寿命が短いという
欠点があつた。 本発明はかかる事情に鑑みなされたものであつ
て、その目的とするところは、摩擦面の一方に
Mo又はその化合物を、他方にS(イオウ)又は
その化合物を夫々存在させ、両摩擦面間の表面化
学反応を利用して摩擦中にMoS2等よりなる固体
潤滑膜を必要個所に必要分だけ継続的に生成せし
めることにより、経年使用に耐え、真空、且つ高
温下においても的確な潤滑性が得られ、清浄性が
要求される条件下においても使用が可能な自己潤
滑性転がり軸受を提供するにある。 以下本発明を玉軸受に適用した場合について図
面に基き説明する。 第1図は本発明品たる玉軸受の略示半截図であ
り、図中、1はボール、2は外輪、3は内輪であ
つて、ボール1は同心的に配設された外輪2、内
輪3夫々の軌導面2a,3a間において保持面4
に回転自在に支持された状態で介装されていて、
外輪2、内輪3の相対的な回転移動に際し、ボー
ル1は保持器4に支持されつつ外輪2の軌導面2
aと内輪3の軌導面3aとに転接して回転するよ
うになつている。 ボール1、外輪2、内輪3及び保持器4はいず
れも耐熱性の鋼材で形成され、ボール1はこれを
形成する鋼材自体にMo又はその化合物を通常の
軸受鋼よりも多く含ませるか、あるいはスパツタ
リング等の方法で外周全面にMo又はその化合物
層を形成することによつて摩擦面たる外周面に
Moを存在させてあり、また外輪2、内輪3はそ
の一方又は双方の軌導面2a,3aにスパツタリ
ング等の方法によりMoS2を薄く付着せしめてあ
り、更に保持器4はボール1との摩擦面たるボー
ル受面にはS又はその化合物、例えばFeS(硫化
鉄)又はAg2S(硫化銀)等を存在せしめてあ
る。勿論、ボール1の外周面にS又はその化合物
を、また保持器4のボール受面にMo又はその化
合物を存在せしめてもよく、互いに摺接する摩擦
面の一方にMo又はその化合物を、他方にS又は
その化合物を存在するようにすればよい。また、
上記したMo又はその化合物、S又はその化合物
を摩擦面の表面に存在せしめる方法についても前
記した以外の従来公知の方法を適宜採択してもよ
い。 而して、かく構成された本発明品はその使用雰
囲気を選ばないが高真空、且つ高温の雰囲気下で
使用した場合についてみると、先ず使用初期にお
いては、ボール1外周面のMoと保持器4のボー
ル受面におけるFeS等とは未反応状態であり、後
述するMoS2の如き固体潤滑膜は生成されていな
いが外輪2、内輪3の各軌導面2a,3aには薄
くであるが固体潤滑膜たるMoS2を当初において
存在せしめてあり、このMoS2がボール1と外輪
2、内輪3の軌導面2a,3aとの間、ひいては
ボール1と保持器4との間の潤滑機能を果し、軸
受は円滑に機能する。そしてこの間、ボール1の
外周面と保持器4のボール保持面との間に作用す
る負荷応力、摩擦力、高温下での使用によるボー
ル1、保持器4自体の昇温及び摩擦に伴う微視的
昇温のためにボール1外周面のMoと保持器4の
保持面におけるS又は硫化物とが下記(1)、(2)、(3)
式のような化学反応を起して固体潤滑剤たる
MoS2の膜が生成されていく。すなわち、先ず保
持器4の保持面におけるFeS又はAg2Sが分解し
てSを生成する。 FeS→Fe+S ……(1) Ag2S→2Ag+S ……(2) 次に、このSがボール1の外周面に介在する
Moと反応し、MoS2が生成される。 Mo+2S→MoS2 ……(3) 従つて、外輪2、内輪3の各軌導面2a,3a
に形成されているMoS2が軸受の使用開始後早期
に摩耗損失してしまつても、これに替わつてボー
ル1と保持器4との間に化学反応によつて順次
MoS2が生成されることとなり、ボール1と保持
器4との間はもとよりボール1と外輪、内輪3の
軌導面2a,3aとの間の潤滑機能を継続的に果
すこととなる。しかも上記した化学反応は負荷応
力、摩擦力の程度に比例して促進されるため負荷
応力、摩擦力の大きい部分、換言すれば潤滑性を
より必要とする部分にそれに応じたMoS2が生成
されることとなり、反応素材が有効に利用される
こととなる。 ところで、前記(1)、(2)式に示す化学反応は下記
(4)、(5)式に示す化学反応と可逆的である。 Fe+S→FeS ……(4) 2Ag+S→Ag2S ……(5) 従つて、(1)、(2)式で分解生成したSが(4)、(5)式
の反応により再びFeSに戻るのか、あるいは(3)式
でMoと化合してMoS2を生成し得るか若干の疑問
があつたがFeS、MoS2、及びAg2Sについてこれ
らの生成キブスエネルギを算出し、反応の優先性
を調べた結果MoS2の生成、すなわち(3)式の反応
がFeS、Ag2Sの生成、すなわち(4)又は(5)式の反
応を優先することが確認された。 次に、上記反応の優先性についての判定過程に
ついて説明する。 判定は常温(25℃)と高温(527℃)とにおい
て夫々生成ギブスエネルギを求め、その値がより
低いものの生成が他に優先して生起されるものと
した。 25℃(298〓)における各物質の標準生成ギブ
スエネルギΔGf(298〓)は表1で与えられる
〔昭和41年 丸善発行 日本化学学会編 化学便
覧基礎編(以下参照書籍という)参照〕
The present invention relates to a self-lubricating rolling bearing that obtains lubricity by utilizing surface chemical reactions between solids. Grease and oil are widely used as lubricants for rolling bearings, but they cannot be used at high temperatures or under vacuum due to the risk of combustion or evaporation.
Furthermore, solid lubricants such as powder are also difficult to use in environments where cleanliness is required. For this reason, in the past, instead of injecting and adding lubricant to the bearing as described above, Mo (molybdenum) and W (tungsten) were added to the friction surface of the bearing in advance.
Or, the compound is attached and the bearing is used in a gas atmosphere such as H 2 S (hydrogen sulfide) that reacts with these substances on the friction surface, so that a solid lubricant film is generated during friction, or The friction surfaces of bearings are directly coated with a solid lubricant film made of soft metals such as gold, silver, or lead, or MoS 2 (molybdenum disulfide), WS (tungsten sulfide), etc. However, the former method requires atmospheric gas, making it difficult to use in a vacuum, and the latter method suffers from severe abrasion and peeling of the solid friction film, resulting in a short service life. The present invention has been made in view of the above circumstances, and its purpose is to
Mo or its compound is present on the other side, and S (sulfur) or its compound is present on the other side, and by utilizing the surface chemical reaction between both friction surfaces, a solid lubricant film made of MoS 2 etc. is formed in the necessary places and in the necessary amount during friction. To provide a self-lubricating rolling bearing that can withstand long-term use by being continuously produced, has accurate lubricity even under vacuum and high temperatures, and can be used even under conditions where cleanliness is required. It is in. Hereinafter, a case where the present invention is applied to a ball bearing will be explained based on the drawings. FIG. 1 is a schematic half-cut diagram of a ball bearing according to the present invention. In the figure, 1 is a ball, 2 is an outer ring, and 3 is an inner ring. 3 between the respective raceway surfaces 2a and 3a, the holding surface 4
is rotatably supported by the
During relative rotational movement between the outer ring 2 and the inner ring 3, the balls 1 are supported by the retainer 4 and rotate against the raceway surface 2 of the outer ring 2.
a and the raceway surface 3a of the inner ring 3 to rotate. The ball 1, the outer ring 2, the inner ring 3, and the cage 4 are all made of heat-resistant steel, and the ball 1 is made of steel that contains Mo or its compound in a higher amount than normal bearing steel, or By forming a layer of Mo or its compound on the entire outer circumference by sputtering or other methods, it is possible to
In addition, a thin layer of MoS 2 is applied to one or both of the raceway surfaces 2a and 3a of the outer ring 2 and inner ring 3 by a method such as sputtering. S or a compound thereof, such as FeS (iron sulfide) or Ag 2 S (silver sulfide), is present on the ball receiving surface. Of course, S or a compound thereof may be present on the outer peripheral surface of the ball 1, and Mo or a compound thereof may be present on the ball receiving surface of the cage 4, and Mo or a compound thereof may be present on one of the friction surfaces that slide against each other, and Mo or a compound thereof may be present on the other side. S or a compound thereof may be present. Also,
Regarding the method of making the above-mentioned Mo or its compound, S or its compound present on the surface of the friction surface, conventionally known methods other than those described above may be adopted as appropriate. Therefore, although the product of the present invention configured in this manner is not limited to any atmosphere, when used in a high vacuum and high temperature atmosphere, first of all, in the initial stage of use, the Mo on the outer circumferential surface of the ball 1 and the retainer are 4 is in an unreacted state with FeS, etc. on the ball receiving surface, and a solid lubricant film such as MoS 2 , which will be described later, is not formed, although it is thin on each raceway surface 2a, 3a of the outer ring 2 and inner ring 3. MoS 2 , which is a solid lubricant film, is initially made to exist, and this MoS 2 has a lubricating function between the balls 1 and the raceway surfaces 2a and 3a of the outer ring 2 and inner ring 3, as well as between the balls 1 and the cage 4. and the bearing functions smoothly. During this time, the load stress and frictional force that act between the outer circumferential surface of the balls 1 and the ball holding surface of the cage 4, the temperature rise of the balls 1 and cage 4 themselves due to use under high temperatures, and the microscopic effects due to friction. In order to increase the target temperature, Mo on the outer peripheral surface of the ball 1 and S or sulfide on the retaining surface of the cage 4 are mixed as shown below (1), (2), (3)
It becomes a solid lubricant by causing a chemical reaction as shown in the formula
A film of MoS 2 is formed. That is, first, FeS or Ag 2 S on the holding surface of the cage 4 decomposes to generate S. FeS→Fe+S ……(1) Ag 2 S→2Ag+S ……(2) Next, this S is interposed on the outer peripheral surface of ball 1
Reacts with Mo to produce MoS2 . Mo+2S→MoS 2 ...(3) Therefore, each raceway surface 2a, 3a of outer ring 2 and inner ring 3
Even if the MoS 2 formed in the bearing wears out early after the bearing starts to be used, it will be replaced by a chemical reaction between the balls 1 and the cage 4.
MoS 2 is generated, and it continuously performs a lubricating function not only between the balls 1 and the retainer 4 but also between the balls 1 and the raceway surfaces 2a and 3a of the outer ring and the inner ring 3. Moreover, the above chemical reaction is promoted in proportion to the degree of applied stress and frictional force, so MoS 2 is generated in areas with large applied stress and frictional force, in other words, in areas that require more lubricity. This means that the reactive materials can be used effectively. By the way, the chemical reactions shown in equations (1) and (2) above are as follows.
It is reversible to the chemical reactions shown in equations (4) and (5). Fe+S→FeS...(4) 2Ag+S→Ag 2 S...(5) Therefore, the S decomposed and produced in equations (1) and (2) returns to FeS again through the reactions in equations (4) and (5). There was some doubt as to whether MoS 2 could be produced by combining with Mo in equation (3), but we calculated the production energies of FeS, MoS 2 , and Ag 2 S, and determined the priority of the reaction. As a result of the investigation, it was confirmed that the production of MoS 2 , that is, the reaction of formula (3) takes precedence over the production of FeS and Ag 2 S, that is, the reaction of formula (4) or (5). Next, the process of determining the priority of the reaction will be explained. Judgment was made by determining the Gibbs energy of formation at room temperature (25°C) and high temperature (527°C), and determining that the formation with a lower value occurs preferentially over the others. The standard Gibbs energy of formation ΔGf (298〓) for each substance at 25℃ (298〓) is given in Table 1 [Refer to the Basics of Chemistry Handbook (hereinafter referred to as reference book), edited by the Chemical Society of Japan, published by Maruzen in 1966]

【表】 表1から明らかなようにMoS2の標準生成ギブ
スエネルギが最も低く、従つてMoS2の生成反応
が他に優先して生起されることが解る。 次に、527℃(800〓)におけける生成ギブスエ
ネルギΔGfを求める。一般にT〓における生成
ギブスエネルギΔGf(T〓)は下記(5)式で与え
られる。 ΔGf(T〓)=ΔHf(T〓)−T・ΔSf(T〓) ……(5) 但し、 ΔHf(T〓):T〓における生成熱 ΔSf(T〓):T〓におけるエントロピー ところで、上記生成熱ΔHf(T〓)は下記(6)
式で、またエントロピーΔSf(T〓)は下記(7)式
で与えられる。 ΔHf(T〓)=ΔHf(298〓)+ 298ΔCpdT ……(6) 但し、 ΔHf(298〓):標準生成熱 ΔCp:分子熱Cpの変化量であつて下記(6′)式
で与えられる。 ΔCpAaBb−(aCpA+bCpB) ……(6′) 但し、 CpAaBb:原子数aのA分子と原子数bのB分子
とからなる化学物質AaBbの分子熱 CpA:A分子の分子熱 CpB:B分子の分子熱 ΔSf(T〓)=ΔSf(298〓)+ 298ΔCpdlnT ……(7) 但し、 ΔSf(298〓):標準エントロピーであつて下記
(7′)式で与えられる。 ΔSf(298〓)=1/T{ΔHf(298〓)−ΔGf(298〓)} ……(7′) 上式においてΔSf(298〓)、ΔHf(298〓)、
ΔGf(298〓)についてはいずれも前記参照書籍
のものを利用することとして、先ずCp及びΔCp
を求める。Cpは、前記参照書籍から引用したCp
値を第2図に示す如く横軸に絶対温度T〓を、縦
軸にCp分子熱(原子熱)をとつた座標上にプロ
ツトし、このグラフからTの関数として近似的に
求めた。第2図においてA,B………Eは夫々
MoS2、FeS、Fe、Mo、Sの各分子熱(原子熱)
値を示している。また、ΔCpは上記手順で求め
たCp値を(3)式で示す化学反応についての(6′)
式、すなわち、例えばMoS2の場合は下記(6″)
式に代入して求めた。 ΔCp=CpMO1S2−(1・CpMO+2・CpS) ……(6″) これら、Cp、ΔCp値をkcal単位に変換して示
したのが表2である。FeSについても同様にして
求めた。
[Table] As is clear from Table 1, the standard production Gibbs energy of MoS 2 is the lowest, and therefore it can be seen that the production reaction of MoS 2 occurs preferentially over other reactions. Next, find the Gibbs energy generated ΔGf at 527°C (800〓). Generally, the generated Gibbs energy ΔGf(T) at T is given by the following equation (5). ΔGf(T〓)=ΔHf(T〓)−T・ΔSf(T〓) ……(5) However, ΔHf(T〓): Heat of formation at T〓 ΔSf(T〓): Entropy at T〓 By the way, the above The heat of formation ΔHf (T〓) is as follows (6)
In addition, the entropy ΔSf(T〓) is given by the following equation (7). ΔHf(T〓)=ΔHf(298〓)+ T 298 ΔCpdT...(6) However, ΔHf(298〓): Standard heat of formation ΔCp: Change in molecular heat Cp, given by equation (6') below. It will be done. ΔCp AaBb − (aCp A + bCp B ) ... (6') However, Cp AaBb : Molecular heat of chemical substance AaBb consisting of A molecule with number of atoms a and B molecule with number of atoms b Cp A : Molecular heat of A molecule Cp B : Molecular heat of B molecule ΔSf(T〓)=ΔSf(298〓)+ T 298 ΔCpdlnT...(7) However, ΔSf(298〓): Standard entropy, given by equation (7') below . ΔSf (298〓) = 1/T {ΔHf (298〓) − ΔGf (298〓)} ... (7') In the above equation, ΔSf (298〓), ΔHf (298〓),
As for ΔGf (298〓), first, Cp and ΔCp are used as mentioned in the reference book.
seek. Cp is Cp quoted from the above reference book
The values were plotted on a coordinate system with absolute temperature T on the horizontal axis and Cp molecular heat (atomic heat) on the vertical axis as shown in FIG. 2, and were approximately determined as a function of T from this graph. In Figure 2, A, B...E are respectively
Molecular heat (atomic heat) of MoS 2 , FeS, Fe, Mo, S
It shows the value. In addition, ΔCp is the Cp value obtained in the above procedure as (6′) for the chemical reaction shown by equation (3).
formula, i.e. below for e.g. MoS 2 (6″)
It was obtained by substituting into the formula. ΔCp=Cp MO1S2 −(1・Cp MO +2・Cp S ) …(6″) Table 2 shows these Cp and ΔCp values converted into kcal units. FeS was also found in the same way. Ta.

【表】 また、FeS及びMoS2についてのΔSf(298〓)
は(7′)式においてT=800とし、ΔHf(298
〓)、ΔGf(298〓)は参照書籍の数位を引用し
て下記表3の如くに与えられる。
[Table] Also, ΔSf (298〓) for FeS and MoS 2
In equation (7'), T = 800 and ΔHf(298
〓) and ΔGf(298〓) are given as shown in Table 3 below by quoting the number of reference books.

【表】 (7)式の右辺第1項に表3により、また右辺第2
項は800 298ΔCp1/TdTであつて、このΔCp
は表2 により夫々求められるからFeS、MoS2のΔSf
(800〓)は表4の如くに与えられる。
[Table] According to Table 3, the first term on the right-hand side of equation (7) and the second term on the right-hand side
The term is 800 298 ΔCp1/Td T , and this ΔCp
are calculated from Table 2, so ΔSf of FeS and MoS 2
(800〓) is given as shown in Table 4.

【表】 (6)式において右辺第1項は参照書籍により、ま
た右辺第2項は800 298ΔCpdTであつて、表2に

いて夫々求められるからFeS、MoS2のΔHf(800
〓)は表5の如くに与えられる。
[Table] In equation (6), the first term on the right side is 800 298 ΔCpdT, and the second term on the right side is 800 298 ΔCpdT, which can be calculated based on Table 2 .
〓) is given as shown in Table 5.

【表】 以上のことから(5)式において右辺第1項は表5
より、また右辺第2項はT=800として表4より
求められるからΔGf(800〓)は表6の如くに与
えられる。
[Table] From the above, the first term on the right side of equation (5) is shown in Table 5.
Therefore, since the second term on the right side is obtained from Table 4 with T=800, ΔGf (800〓) is given as shown in Table 6.

【表】 なお、Ag2SのΔGf(800〓)は結果のみを示す
と−14.4kcal・mol-1となる。 以上のことからMoS2のΔGf(800〓)はFeS又
はAg2Sのそれよりも明らかに低く、従つて527℃
においても、MoS2の生成反応、すなわち(3)式で
示す反応がFeSの生成反応、すなわち(4)式又は(5)
式で示す反応よりも優先的に生起されることが解
る。 以上の如く本発明軸受にあつては、固体摩擦面
の一方にMo又はその化合物を、他方にS又はそ
の化合物を夫々存在させたから両摩擦面間の表面
化学反応を利用して摩擦中に固体潤滑膜が生成せ
しめられることとなり、固体潤滑膜を必要個所に
必要分だけ、しかも継続的に生成せしめることが
可能となり、経年使用に耐え、真空、且つ高温下
においても的確に潤滑性が得られ、加えて清浄性
が要求される条件下においても使用が可能である
など本発明は優れた効果を奏するものである。
[Table] In addition, the ΔGf (800〓) of Ag 2 S is −14.4 kcal·mol −1 when only the results are shown. From the above, the ΔGf (800〓) of MoS 2 is clearly lower than that of FeS or Ag 2 S, and therefore 527℃
Also, the production reaction of MoS 2 , that is, the reaction shown in equation (3), is the production reaction of FeS, that is, the reaction shown in equation (4) or (5).
It can be seen that this reaction occurs more preferentially than the reaction shown in the formula. As described above, in the bearing of the present invention, since Mo or its compound is present on one of the solid friction surfaces and S or its compound is present on the other, the surface chemical reaction between the two friction surfaces is utilized to solidify the solid during friction. A lubricating film is generated, and it is possible to continuously generate a solid lubricating film in the necessary amount in the necessary places, and it can withstand long-term use and provide accurate lubricity even under vacuum and high temperatures. In addition, the present invention has excellent effects such as being usable even under conditions where cleanliness is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品の略示半截図、第2図は分子
熱(又は原子熱)と絶対温度との関係を示すグラ
フである。 1……ボール、2……外輪、3……内輪、4…
…保持器。
FIG. 1 is a schematic half-cut diagram of the product of the present invention, and FIG. 2 is a graph showing the relationship between molecular heat (or atomic heat) and absolute temperature. 1...Ball, 2...Outer ring, 3...Inner ring, 4...
...Retainer.

Claims (1)

【特許請求の範囲】 1 互いに摺接する固体部分夫々の摩擦面の一方
にモリブデン又はその化合物を、他方に硫化物を
存在させたことを特徴とする自己潤滑性転がり軸
受。 2 前記各固体部分はいずれも耐熱性鋼材であつ
て、その一方はモリブデン又はその化合物を、他
方は硫化物を含む材料で形成されていることを特
徴とする特許請求の範囲第1項記載の自己潤滑性
転がり軸受。 3 前記モリブデン又はその化合物及び硫化物は
固体部分の摩擦面の表面に付着せしめられている
ことを特徴とする特許請求の範囲第1項記載の自
己潤滑性転がり軸受。
[Scope of Claims] 1. A self-lubricating rolling bearing characterized in that molybdenum or a compound thereof is present on one of the friction surfaces of the solid parts that are in sliding contact with each other, and sulfide is present on the other. 2. The solid portion according to claim 1, wherein each of the solid portions is made of heat-resistant steel, one of which is made of molybdenum or a compound thereof, and the other of which is made of a material containing sulfide. Self-lubricating rolling bearing. 3. The self-lubricating rolling bearing according to claim 1, wherein the molybdenum or its compound and sulfide are attached to a friction surface of a solid portion.
JP784379A 1979-01-25 1979-01-25 Self-lubricant ball bearing Granted JPS55100422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP784379A JPS55100422A (en) 1979-01-25 1979-01-25 Self-lubricant ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP784379A JPS55100422A (en) 1979-01-25 1979-01-25 Self-lubricant ball bearing

Publications (2)

Publication Number Publication Date
JPS55100422A JPS55100422A (en) 1980-07-31
JPS6228323B2 true JPS6228323B2 (en) 1987-06-19

Family

ID=11676885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP784379A Granted JPS55100422A (en) 1979-01-25 1979-01-25 Self-lubricant ball bearing

Country Status (1)

Country Link
JP (1) JPS55100422A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913683U (en) * 1982-07-15 1984-01-27 株式会社ボッシュオートモーティブ システム Thrust bearing device for rotating swash plate compressor
NL9401234A (en) * 1994-07-27 1996-03-01 Skf Ind Trading & Dev Roller bearing with a low friction lining.
KR100274435B1 (en) * 1998-03-03 2000-12-15 헬무트 슈타이어 Solid lubricant coating method of bearing
CA2704078C (en) * 2007-12-07 2017-05-16 Applied Nano Surfaces Sweden Ab Manufacturing of low-friction elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211502A (en) * 1963-08-29 1965-10-12 Edward R Lamson Lubricated bearing assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211502A (en) * 1963-08-29 1965-10-12 Edward R Lamson Lubricated bearing assembly

Also Published As

Publication number Publication date
JPS55100422A (en) 1980-07-31

Similar Documents

Publication Publication Date Title
US8003582B2 (en) Grease, rolling bearing, constant velocity joint, and rolling parts
JPH08100819A (en) Grease lubrication rolling device bearing with solid lubricant coating
US3300667A (en) Electrically conductive solid lubricant members and process and apparatus employing them
US5741762A (en) Lubricated rolling contact devices, a method for lubricating rolling contact devices, and a composition for lubricating rolling contact devices
JPS6228323B2 (en)
WO2022137810A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
EP1498472B1 (en) Use of a Grease Composition in a Rolling Bearing
KR20240095370A (en) Sliding members and bearings
US3211502A (en) Lubricated bearing assembly
JPH03255224A (en) Bearing for vacuum use
US3523079A (en) Electrically conductive solid lubricant members and process and apparatus employing them
US3437592A (en) Electrically conductive solid lubricant members and apparatus employing them
US4261741A (en) Antifriction alloy
JPH02221714A (en) Solid lubricant bearing
JPS63246507A (en) Cage for rolling bearing
JP2877828B2 (en) Rolling bearing
US3265617A (en) Lubricant
JP2568843B2 (en) Heat-resistant cage for rolling bearings
JP4653989B2 (en) Rolling bearing
JPH07243447A (en) Sliding member, rolling bearing, rotary anode x-ray tube and manufacture of sliding member
SU476309A1 (en) Anti-friction self-lubricating material
JP2004353800A (en) Bearing and its manufacturing method
JPH04140510A (en) Solid lubricated rolling bearing
JP4427983B2 (en) Manufacturing method of bearing components
JPH1130236A (en) Bearing metal material and rolling bearing