JPS62282619A - Composite membrane for separating gas - Google Patents

Composite membrane for separating gas

Info

Publication number
JPS62282619A
JPS62282619A JP12604786A JP12604786A JPS62282619A JP S62282619 A JPS62282619 A JP S62282619A JP 12604786 A JP12604786 A JP 12604786A JP 12604786 A JP12604786 A JP 12604786A JP S62282619 A JPS62282619 A JP S62282619A
Authority
JP
Japan
Prior art keywords
membrane
gas separation
cross
solvent
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12604786A
Other languages
Japanese (ja)
Inventor
Tasuke Sawada
太助 沢田
Yozo Yoshino
吉野 庸三
Shigeru Ryuzaki
粒崎 繁
Takafumi Kajima
孝文 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12604786A priority Critical patent/JPS62282619A/en
Publication of JPS62282619A publication Critical patent/JPS62282619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite membrane for separating gas which is insoluble in an organic solvent and enhanced in mechanical strength by laminating a gas separation membrane having a hydroxy group on a porous supporting membrane and subjecting the gas separation membrane to cross-linking polymerization. CONSTITUTION:A gas separation membrane having a hydroxyl group is dissolved in an organic solvent and this soln. is developed on the water surface to form a thin membrane and this is laminated on a porous supporting membrane. Thereafter in case of immersing this membrane into a soln. dissolved with a multifunctional reagent which is subjected to cross-linking polymerization with the hydroxyl group and evaporating the solvent, cross-linking polymerization of the hydroxy group of the gas separation membrane and the reagent is caused. In case of evaporating the solvent and progressing the cross-linking reaction by heating or the like to subject the membrane to cross-linking polymerization, a network structural material insoluble in the organic solvent is obtained. Thereby not only the resistance to solvent is imparted but also the mechanical strength is enhanced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は気体分離用複合膜に関し、特に酸素富化気体を
得る気体分離用複合膜に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a composite membrane for gas separation, and more particularly to a composite membrane for gas separation for obtaining oxygen-enriched gas.

従来の技術 近年、有機高分子を用いた気体分離膜が数多く提案され
ている。この方法により空気中の酸素を安価に分離濃縮
できるならば、燃焼、製鉄、窯業。
BACKGROUND OF THE INVENTION In recent years, many gas separation membranes using organic polymers have been proposed. If oxygen in the air could be separated and concentrated at low cost using this method, it would be useful in the combustion, iron and ceramic industries.

廃棄物処理、医療様関係に大いに貢献できると期待され
る。たとえば燃焼システムにおいて、通常の空気の代り
に酸素富化空気を用いて燃焼を行な焼排ガス量の減少が
期待でき、省エネルギー燃焼システムが構築できる。こ
のような酸素富化空気を得るための気体分離膜は、空気
等の酸素含有気体から、選択的に酸素を分離する機能が
大きいこと、効率よく酸素を透過させる機能が大きいこ
と、すなわち、酸素選択係数と酸素透過係数が大きいこ
とが要求される。
It is expected that it will greatly contribute to waste treatment and medical fields. For example, in a combustion system, oxygen-enriched air is used instead of normal air to perform combustion, and the amount of combustion exhaust gas can be expected to be reduced, making it possible to construct an energy-saving combustion system. Gas separation membranes for obtaining such oxygen-enriched air must have a high ability to selectively separate oxygen from oxygen-containing gases such as air, and a high ability to efficiently transmit oxygen. It is required that the selection coefficient and oxygen permeability coefficient are large.

一般に有機高分子は選択係数が大きくなると、酸素透過
係数が小さくなる。燃焼においては酸素濃度が30%程
度でも十分燃焼効率が向上する。
Generally, as the selectivity coefficient of an organic polymer increases, the oxygen permeability coefficient decreases. In combustion, combustion efficiency is sufficiently improved even when the oxygen concentration is around 30%.

従って選択係数は2程度で十分であり、むしろ気体透過
係数の大きい材料が望ましい。このような材料としては
シリコーンが考えられる。しかしシリコーン、すなわち
オルガノポリシロキサンは機械的強度が十分でなく薄膜
として使用できない。
Therefore, a selection coefficient of about 2 is sufficient, and a material with a large gas permeability coefficient is preferable. Silicone can be considered as such a material. However, silicone, ie, organopolysiloxane, does not have sufficient mechanical strength and cannot be used as a thin film.

そのため気体透過係数は低下するが膜の機械強度を向上
させ、製膜を可能ならしめるため他の高分子とのブロッ
ク共重合体が提案されている。たと    ′えば特開
昭61−121485号公報には、オルガノポリシロキ
サンとポリカーボネート共重合体が、また特開昭56−
28606号公報には、α。
Therefore, block copolymers with other polymers have been proposed in order to improve the mechanical strength of the membrane and make membrane formation possible, although the gas permeability coefficient decreases. For example, JP-A-61-121485 discloses an organopolysiloxane and polycarbonate copolymer;
No. 28606 includes α.

ω−二官能性ポリシロキサンと側鎖に芳香環をもつスチ
レン系高分子との共重合体が提案されている。上記のよ
うなオルガノポリシロキサン共重合体を有機溶剤に溶解
し、多孔性支持膜上に塗布したり、水面上に溶液を展開
し、有機溶剤を蒸発させることにより製膜し、多孔性支
持体上に移し取り気体分離用複合膜を作成する方法等が
ある。
A copolymer of an ω-bifunctional polysiloxane and a styrene polymer having an aromatic ring in the side chain has been proposed. The organopolysiloxane copolymer described above is dissolved in an organic solvent and coated on a porous support membrane, or the solution is spread on the water surface and the organic solvent is evaporated to form a film. There are methods of creating a composite membrane for gas separation by transferring the gas to the top.

発明が解決しようとする問題点 しかしながら、上記のようなオルガノポリシロキサン共
重合体は、当然のことながら有機溶剤に弱い。実用に供
される気体分離用複合膜は多孔性支持膜上に、0.1〜
0.5層程度の膜厚を有するオルガノポリンロキサン共
重合体気体分離膜が積層されている。この気体分離用複
合膜を用いて気体分離を行なう時、分離しようとする混
合気体中に有機溶剤が共存している場合は、有機溶剤に
より気体分離膜が侵かされ気体分離能を矢するという欠
点を有していた。従って有機溶剤が共存するような所で
は有機溶剤に可能な膜による気体分離は行なえず、行な
うとすれば有機溶剤を除去する必要がある。
Problems to be Solved by the Invention However, the above organopolysiloxane copolymers are naturally sensitive to organic solvents. Composite membranes for gas separation used in practical use have a porous support membrane with a
Organoporinroxane copolymer gas separation membranes each having a thickness of about 0.5 layers are laminated. When performing gas separation using this composite membrane for gas separation, if an organic solvent coexists in the gas mixture to be separated, the organic solvent will attack the gas separation membrane and reduce its gas separation performance. It had drawbacks. Therefore, in places where organic solvents coexist, gas separation using a membrane, which is possible with organic solvents, cannot be performed, and if separation is to be performed, it is necessary to remove the organic solvents.

本発明は上記欠点に鑑み、分離しようとする混合気体中
に有機溶剤が共存していても、有機溶剤により気体分離
膜が侵かされない気体分離用複合膜を提供するものであ
る。
In view of the above drawbacks, the present invention provides a composite membrane for gas separation in which the gas separation membrane is not attacked by the organic solvent even if an organic solvent coexists in the mixed gas to be separated.

問題点を解決するだめの手段 この目的を達成するために本発明の気体分離用複合膜は
、多孔性支持膜上に、ヒドロキン基を有する気体分離膜
を積層し、かつその気体分離膜を架橋重合させることに
より構成されている。
Means for solving the problem In order to achieve this object, the composite membrane for gas separation of the present invention is produced by laminating a gas separation membrane having a hydroquine group on a porous support membrane, and cross-linking the gas separation membrane. It is constructed by polymerization.

作  用 この構成により、気体分離膜を網状組織体とすることが
でき、有機溶剤に不溶な気体分離膜を作成することがで
きる。ヒドロキシ基を有する気体分離膜を有機溶剤に溶
解し、水面上に展開し薄膜を作成し、多孔性支持膜上に
積層する。その後、ヒドロキシ基と架橋重合する多官能
試薬を溶解した溶液に浸漬し、溶剤を蒸発させると、気
体分離膜のヒドロキシ基と架橋重合が起こる。たとえば
アルコキシド基を有するアルコキンチタンの場合下記に
示すような架橋重合が進み綱状組織ができると考えられ
る。
Function: With this configuration, the gas separation membrane can be formed into a network structure, and a gas separation membrane that is insoluble in organic solvents can be created. A gas separation membrane having hydroxyl groups is dissolved in an organic solvent, spread on the water surface to create a thin film, and laminated on a porous support membrane. Thereafter, when it is immersed in a solution containing a polyfunctional reagent that crosslinks and polymerizes with hydroxyl groups and evaporates the solvent, crosslinking and polymerization with the hydroxyl groups of the gas separation membrane occurs. For example, in the case of alkoxytitanium having an alkoxide group, it is thought that crosslinking polymerization as shown below progresses to form a wire-like structure.

(R:アルキル基、アリル基) 溶剤を蒸発させ、加熱等により架橋反応を進行させ架橋
重合させると、有機溶剤に不溶な網状組織体となる。
(R: Alkyl group, allyl group) When the solvent is evaporated and the crosslinking reaction is proceeded by heating or the like to cause crosslinking polymerization, a network structure insoluble in organic solvents is formed.

また耐溶剤性を付与するばかりでなく、網状組織体であ
るため機械的強度も向上することとなる。
Moreover, it not only provides solvent resistance but also improves mechanical strength because it is a network structure.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

(実施例1) 多孔性支持膜としてポリプロピレン製の商品名「ジュラ
ガード(グレード2400)」(ポリプラスチック(ハ
)製)を、ヒドロキシ基を有する気体4M[L−1イ 
ゼ11しに一門也、ツク≦し・)しメ11岬チレンとポ
リジメチルンロキサンとの共重合体をベンゼンに2%(
重量%)溶解し、約5%(重量%)のテトラヒドロフラ
ンを加えた溶液を水面上に展開し、溶剤を蒸発させ薄膜
を作成し、上記多孔性支持膜上に積層(2層)した後、
ヒドロキン基と架橋重合する多官能試薬としてアルコキ
ンチタンであるジー1−プロポキシφビス(アセチルア
セトナト)チタン、商品名「チタンボンドI◇」(日本
 達(イ)製)をα−プロパツールに0.01係(重量
%)溶解した溶液に浸漬し、α−プロパツールを蒸発さ
せた後、架橋重合を進行させるため、60℃で1時間加
熱して気体分離用複合膜を作成した。
(Example 1) A porous support membrane made of polypropylene under the trade name "Duraguard (Grade 2400)" (manufactured by Polyplastics (C)) was treated with a gas having a hydroxyl group of 4M [L-1
Ze11 and Ichimonya, Tsuku≦shi・) and Me11 Misaki 2% (
After dissolving (wt%) and adding about 5% (wt%) tetrahydrofuran on the water surface, the solvent was evaporated to create a thin film, which was then laminated (two layers) on the porous support membrane.
Di-1-propoxyφbis(acetylacetonato)titanium, which is an alkoxytitanium, as a polyfunctional reagent that crosslinks with hydroquine groups, trade name ``Titanium Bond I◇'' (manufactured by Nippon Tatsu (I)), is used as α-propatool. A composite membrane for gas separation was prepared by immersing it in a solution containing 0.01% (wt%) of α-propanol to evaporate and then heating it at 60° C. for 1 hour to promote crosslinking polymerization.

(実施例2) 実施例1と同様の多孔性支持膜上に実施例1と同様の気
体分離膜を積層(2層)した後、ヒドロキシ基と架橋重
合する多官能試薬としてアルコそンシランであるN−β
(アミノエチル)r−アミンプロピルトリメトキシンラ
ン、商品名「’KBMら03」(信越化学工業(社))
をα−ブロバノールに0.01% (重量%)溶解した
溶液に浸漬し、α−プロパツールを蒸発させた後、架橋
重合を進行させるため、50゛Cで1時間加熱して気体
分離用複合膜を作成した。
(Example 2) After laminating (two layers) the same gas separation membrane as in Example 1 on the same porous support membrane as in Example 1, alcoson silane was used as a polyfunctional reagent that crosslinked and polymerized with hydroxyl groups. N-β
(Aminoethyl) r-aminepropyltrimethoxine run, trade name "'KBM et al. 03" (Shin-Etsu Chemical Co., Ltd.)
was immersed in a solution containing 0.01% (wt%) of α-propanol, and after evaporating the α-propanol, it was heated at 50°C for 1 hour to promote cross-linking polymerization. A membrane was created.

なお多孔性支持膜やヒドロキン基を含む気体分離膜やヒ
ドロキン基と架橋重合する多官能試薬は本実施例に限定
されるものではない。
Note that the porous support membrane, the gas separation membrane containing a hydroquine group, and the polyfunctional reagent that crosslinks and polymerizes with the hydroquine group are not limited to those in this example.

実施例1と同様の多孔性支持膜上に実施例1と同様の気
体分離膜を積層(2層)した気体分離用複合膜(従来例
)と実施例の気体分離用複合膜の初期性能と溶剤浸漬試
験(アセトン、テトラヒトフランに20秒浸漬)後の性
能を表に表した。性能として酸素透過流量と選択係数を
測定した。酸素透過流量の測定方法は、36朋φの気体
分離用複合膜に圧力1. okq/dの酸素ガスを加圧
し、酸素ガスが気体分離用複合膜を10m1透過するま
での時間を測定した。チン素ガスに関しても同様の方法
で測定し、選択係数を決定した。
Initial performance of a composite membrane for gas separation (conventional example) in which a gas separation membrane similar to that of Example 1 is laminated (two layers) on a porous support membrane similar to that of Example 1, and a composite membrane for gas separation of this example. The performance after a solvent immersion test (immersion in acetone or tetrahydrofuran for 20 seconds) is shown in the table. The oxygen permeation flow rate and selectivity coefficient were measured as performances. The method for measuring the oxygen permeation flow rate is to apply a pressure of 1.5 mm to a 36 mm diameter composite membrane for gas separation. Oxygen gas of okq/d was pressurized, and the time required for the oxygen gas to permeate 10 ml of the composite membrane for gas separation was measured. Chin gas was measured in the same manner and the selectivity coefficient was determined.

この表より明らかなように、有機溶剤に可溶な気体分離
膜を網状組織にすることにより耐溶剤性の気体分離用複
合膜が作成できた。
As is clear from this table, a solvent-resistant composite membrane for gas separation could be created by forming a gas separation membrane soluble in organic solvents into a network structure.

発明の効果 以上のように本発明は、多孔性支持膜上にヒドロキシ基
を有し有機溶剤に可溶な気体分離膜を、水面展開法など
により製膜し、積層した後、ヒドロキン基と架橋重合す
る多官能試薬を溶解した溶液に浸漬し、溶剤を蒸発させ
、加熱により反応を進行させ、架橋重合させ、網状組織
の気体分離膜を作成することにより、有機溶剤に不溶で
、機械的強度の向上した気体分離用複合膜を提供するこ
とができ、その実用的効果は犬なるものがある。
Effects of the Invention As described above, the present invention provides a gas separation membrane having hydroxyl groups on a porous support membrane and soluble in organic solvents, which is formed by a water surface development method, laminated, and then cross-linked with hydroquine groups. By immersing it in a solution containing a polyfunctional reagent to be polymerized, evaporating the solvent, advancing the reaction by heating, and cross-linking polymerizing it to create a gas separation membrane with a network structure, it is insoluble in organic solvents and has mechanical strength. A composite membrane for gas separation with improved properties can be provided, and its practical effects are significant.

Claims (1)

【特許請求の範囲】[Claims] 多孔性支持膜上に、ヒドロキシ基を有する気体分離膜を
積層し、かつその気体分離膜を架橋重合したことを特徴
とする気体分離用複合膜。
A composite membrane for gas separation, characterized in that a gas separation membrane having hydroxyl groups is laminated on a porous support membrane, and the gas separation membrane is cross-linked and polymerized.
JP12604786A 1986-05-30 1986-05-30 Composite membrane for separating gas Pending JPS62282619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12604786A JPS62282619A (en) 1986-05-30 1986-05-30 Composite membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12604786A JPS62282619A (en) 1986-05-30 1986-05-30 Composite membrane for separating gas

Publications (1)

Publication Number Publication Date
JPS62282619A true JPS62282619A (en) 1987-12-08

Family

ID=14925333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12604786A Pending JPS62282619A (en) 1986-05-30 1986-05-30 Composite membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS62282619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919694A (en) * 1987-12-28 1990-04-24 Idemitsu Kosan Company Limited Selective gas permeation membranes and method of manufacturing them
US4932986A (en) * 1989-05-09 1990-06-12 Allied-Signal Inc. Cross-linked gas selective membranes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919694A (en) * 1987-12-28 1990-04-24 Idemitsu Kosan Company Limited Selective gas permeation membranes and method of manufacturing them
US4932986A (en) * 1989-05-09 1990-06-12 Allied-Signal Inc. Cross-linked gas selective membranes

Similar Documents

Publication Publication Date Title
Liang et al. Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymer network supported membranes
JPS5535910A (en) Permselectivity composite membrane and preparation thereof
WO1999020378A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
JPH0317533B2 (en)
KR880007581A (en) Polytrialkyl Germanyl Propine Polymer and Membrane
JPH0323208B2 (en)
KR910009310A (en) Surface-Modified Multilayer Composite Oxygen Enriched Membrane and Method for Manufacturing the Same
Chen et al. Anticoagulant surface prepared by the heparinization of ionic polyurethane film
JPS62250929A (en) Semipermeable membrane mainly comprising polycarbonate derived from tetrahalobisphenol
JPS62282619A (en) Composite membrane for separating gas
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPH0824830B2 (en) Separation membrane
Chang et al. Performance enhancement of silicone/PVDF composite membranes for pervaporation by reducing cross-linking density of the active silicone layer
JPS6135823A (en) Gas permeable membrane
JPS63278525A (en) Production of vapor-liquid separation membrane
JPH0332728A (en) Gas separating laminated membrane
JPS62149308A (en) Production of composite membrane
JPS59120207A (en) Crosslinked composite membrane
JPH0372928A (en) Gas separation membrane
JPS60139316A (en) Preparation of gas separating laminated composite membrane
JPS61107908A (en) Manufacture of composite semipermeable membrane
DK0500185T3 (en) Semipermeable composite membrane, process for making it as well as using such membranes for separating components in an organic liquid phase or in the vapor phase
JPH0446172B2 (en)
JPH0677673B2 (en) Selective gas permeable flat membrane
JPH04317734A (en) Gas separating composite membrane and its production