JPS62282602A - Polyester hollow yarn-like separating membrane - Google Patents
Polyester hollow yarn-like separating membraneInfo
- Publication number
- JPS62282602A JPS62282602A JP61126215A JP12621586A JPS62282602A JP S62282602 A JPS62282602 A JP S62282602A JP 61126215 A JP61126215 A JP 61126215A JP 12621586 A JP12621586 A JP 12621586A JP S62282602 A JPS62282602 A JP S62282602A
- Authority
- JP
- Japan
- Prior art keywords
- structural formula
- copolyester
- acid
- separation membrane
- hollow fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 33
- 229920000728 polyester Polymers 0.000 title description 18
- 229920001634 Copolyester Polymers 0.000 claims abstract description 36
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims description 45
- 239000012510 hollow fiber Substances 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 17
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 125000005274 4-hydroxybenzoic acid group Chemical group 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 abstract description 20
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 abstract description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 abstract description 15
- 239000002253 acid Substances 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000002074 melt spinning Methods 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 abstract description 3
- 239000012298 atmosphere Substances 0.000 abstract description 3
- 150000002009 diols Chemical class 0.000 abstract description 3
- 238000006068 polycondensation reaction Methods 0.000 abstract description 3
- 150000002148 esters Chemical class 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 34
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 15
- 238000009987 spinning Methods 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- PKZGKWFUCLURJO-GRHBHMESSA-L (z)-but-2-enedioate;dimethyltin(2+) Chemical compound C[Sn+2]C.[O-]C(=O)\C=C/C([O-])=O PKZGKWFUCLURJO-GRHBHMESSA-L 0.000 description 4
- 238000005886 esterification reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 3
- 235000019646 color tone Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000005336 allyloxy group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- NCYNKWQXFADUOZ-UHFFFAOYSA-N 1,1-dioxo-2,1$l^{6}-benzoxathiol-3-one Chemical compound C1=CC=C2C(=O)OS(=O)(=O)C2=C1 NCYNKWQXFADUOZ-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- VTDMBRAUHKUOON-UHFFFAOYSA-N 4-[(4-carboxyphenyl)methyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1CC1=CC=C(C(O)=O)C=C1 VTDMBRAUHKUOON-UHFFFAOYSA-N 0.000 description 1
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical group C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- VDIRVLMLGJSQSE-UHFFFAOYSA-N benzene-1,3-dicarboxylic acid;benzene-1,4-diol Chemical group OC1=CC=C(O)C=C1.OC(=O)C1=CC=CC(C(O)=O)=C1 VDIRVLMLGJSQSE-UHFFFAOYSA-N 0.000 description 1
- RYGHNMANMHVMMN-UHFFFAOYSA-N benzene-1,4-diol;terephthalic acid Chemical group OC1=CC=C(O)C=C1.OC(=O)C1=CC=C(C(O)=O)C=C1 RYGHNMANMHVMMN-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PCILLCXFKWDRMK-UHFFFAOYSA-N naphthalene-1,4-diol Chemical compound C1=CC=C2C(O)=CC=C(O)C2=C1 PCILLCXFKWDRMK-UHFFFAOYSA-N 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000005498 phthalate group Chemical group 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/48—Polyesters
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
(産業上の利用分野)
本発明は、耐熱性、成形性に優れたサーモトロピ・ツク
液晶性コポリエステルからなる中空糸状分離膜に関する
ものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a hollow fiber separation membrane made of thermotropic liquid crystalline copolyester with excellent heat resistance and moldability. .
(従来の技術)
気体混合物や溶液、エマルジョン等の混合物から特定の
物質を分離する方法として、濃縮法1分別沈澱法、遠心
分離法1分離膜による濾過法等があるが1分離膜による
濾過法は、コストが安いこと8分離効率が良いこと等の
利点により近年急速に発展してきている。(Prior art) Methods for separating specific substances from mixtures such as gas mixtures, solutions, and emulsions include a concentration method, a fractional precipitation method, a centrifugation method, and a filtration method using a separation membrane. has been rapidly developed in recent years due to its advantages such as low cost and high separation efficiency.
例えば2分離膜による濾過法は、■アンモニア合成の際
の廃ガスからの水素の回収、■水性ガスの組成の調節、
■天然ガスからのヘリウムの回収。For example, the filtration method using a two-separation membrane can: 1) recover hydrogen from waste gas during ammonia synthesis, 2) adjust the composition of water gas,
■Recovery of helium from natural gas.
■メタンの濃縮、■酸素の濃縮、■各種合成ガスからの
水素の分離等の気体の分離や蛋白、コロイド物質、微生
物等の分離、廃水処理等工業用、医薬用2食品用、燃料
用等の液体の分離法として多方面に実用化されている。■Concentration of methane, ■Concentration of oxygen, ■Separation of gases such as hydrogen separation from various synthetic gases, separation of proteins, colloidal substances, microorganisms, etc., industrial use such as wastewater treatment, pharmaceutical use, food use, fuel use, etc. It has been put into practical use in many fields as a method for separating liquids.
このような分離膜としては、従来、ポリアルキレンテレ
フタレートや酢酸セルローズを素材としたものが用いら
れてきたが、耐熱性、耐薬品性。Conventionally, such separation membranes have been made of polyalkylene terephthalate or cellulose acetate, but these membranes are heat and chemical resistant.
機械的強度等に問題があった。There were problems with mechanical strength, etc.
このような特性の比較的良好な素材して、ポエスルホン
、ポリイミド、ポリテトラフルオロエチレン等の合成高
分子を用いたものが提案されている(特開昭61−42
307号等)。As materials with relatively good properties, materials using synthetic polymers such as polysulfone, polyimide, and polytetrafluoroethylene have been proposed (Japanese Unexamined Patent Publication No. 61-42).
307 etc.).
しかし、このような素材を用いても、上記のような特性
には優れているが、肝心の分離効率が不十分であるとい
う問題が残されていた。However, even if such a material is used, although it has excellent properties as described above, there remains the problem that the essential separation efficiency is insufficient.
一方、耐熱性高分子として、加工性に優れたサーモトロ
ピック液晶性コポリエステルが注目されており、これを
用いた繊維について盛んに研究されている。(例えば、
特公昭55−482号公報等)。On the other hand, as a heat-resistant polymer, thermotropic liquid crystalline copolyester, which has excellent processability, is attracting attention, and fibers using this are being actively researched. (for example,
(Special Publication No. 55-482, etc.).
そこで、サーモトロピック液晶性コポリエステルからな
る中空糸を分離膜として使用することが考えられるが、
サーモトロピック液晶性コポリエステルからなる繊維は
、高強度、高弾性率という優れた物性を有しているにも
かかわらず、一般に高重合度のものは溶融粘度が高(、
溶融紡糸が困難であり、溶融紡糸時の操業性を良くする
ため1比較的低重合度のものを用い1得られた糸条を長
時間熱処理して強度を高めたり(特公昭55−2000
8号)、溶融紡糸の条件を工夫して、紡糸したままの繊
維で実用的な強度を有するものとする(特開昭58−9
1811号、同58−91812号、同54−1386
21号。Therefore, it is conceivable to use hollow fibers made of thermotropic liquid crystalline copolyester as a separation membrane.
Although fibers made of thermotropic liquid crystalline copolyesters have excellent physical properties such as high strength and high elastic modulus, those with a high degree of polymerization generally have a high melt viscosity (,
Melt spinning was difficult, and in order to improve the operability during melt spinning, 1) yarns with a relatively low degree of polymerization were used, 1) the obtained yarn was heat treated for a long time to increase its strength (Japanese Patent Publication No.
No. 8), the conditions of melt spinning are devised so that the as-spun fiber has practical strength (Japanese Patent Laid-Open No. 58-9
No. 1811, No. 58-91812, No. 54-1386
No. 21.
同52−114723号等)を採用する必要があり、中
空糸状分離膜を得るには実用的でなかった。No. 52-114723, etc.), which was not practical for obtaining a hollow fiber separation membrane.
(発明が解決しようとする問題点)
本発明は、従来の中空糸状分離膜製造における欠点を解
消し、容易に製造することができ1分離係数が高く、高
温で使用することが可能な耐熱性を有し、高強度のサー
モドロピンク液晶性コポリエステルからなる中空糸状分
離膜を提供しようとするものである。(Problems to be Solved by the Invention) The present invention solves the drawbacks of conventional hollow fiber separation membrane manufacturing, and provides a heat-resistant membrane that can be easily manufactured, has a high separation coefficient, and can be used at high temperatures. The purpose of the present invention is to provide a hollow fiber separation membrane made of thermodropink liquid crystalline copolyester with high strength.
(問題点を解決するための手段) 本発明の要旨は1次のとおりである。(Means for solving problems) The gist of the present invention is as follows.
熱変形温度が150℃以上で、主鎖を構成する単位の5
〜95モル%が下記構造式(1)で表される単位である
サーモトロピック液晶性コポリエステルからなり、極限
粘度が0,5以上である中空糸で構成された中空糸状分
離膜。The heat distortion temperature is 150℃ or higher, and 5 of the units constituting the main chain are
A hollow fiber separation membrane comprising a thermotropic liquid crystalline copolyester in which ~95 mol% is a unit represented by the following structural formula (1), and comprising hollow fibers having an intrinsic viscosity of 0.5 or more.
(Ar’は3価の芳香族基を示す。ただし、芳香環は置
換基を有していてもよい。〕
本発明におけるコポリエステルは、主鎖を構成する単位
の5〜95モル%、好ましくは10〜80モル%、より
好ましくは20〜40モル%が前記構造式(I)で表さ
れる単位であるサーモトロピック液晶性コポリエステル
であり、熱変形温度が150℃以上で1通常、350°
C以下1好ましくは300℃以下の温度で溶融成形でき
るものである。(Ar' represents a trivalent aromatic group. However, the aromatic ring may have a substituent.) The copolyester in the present invention preferably contains 5 to 95 mol% of the units constituting the main chain. is a thermotropic liquid crystalline copolyester in which 10 to 80 mol%, more preferably 20 to 40 mol%, of units represented by the structural formula (I) is a thermotropic liquid crystalline copolyester having a heat distortion temperature of 150°C or higher, usually 350°C. °
It can be melt-molded at a temperature of C or lower, preferably 300°C or lower.
構造式(1)で表される単位が多すぎると強度が低下し
、一方、少なすぎると融点が高くなりすぎたりする。If there are too many units represented by structural formula (1), the strength will decrease, while if there are too few, the melting point will become too high.
構造式(I)におけるAr’としては、ベンゼン環及び
ナフタリン環が最も好ましい。また、構造式(1)にお
いて芳香環の水素原子は炭素原子数1〜20のアルキル
基、アリール基、アルコキシ基、アリロキシ基もしくは
ハロゲン原子で置換されていてもよい。Ar' in structural formula (I) is most preferably a benzene ring or a naphthalene ring. Further, in Structural Formula (1), the hydrogen atom of the aromatic ring may be substituted with an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkoxy group, an allyloxy group, or a halogen atom.
構造式(1)の単位は、含リン芳香族ジオール成分と芳
香族ジカルボン酸成分とから誘導されるものである。The unit of structural formula (1) is derived from a phosphorus-containing aromatic diol component and an aromatic dicarboxylic acid component.
含リン芳香族ジオールの具体例としては5次の式(al
〜(dlで表されるものが挙げられるが、特に好ましい
ものは9式(al及び式(b)で表されるものである。A specific example of the phosphorus-containing aromatic diol is the 5th order formula (al
-(dl), but particularly preferred are those represented by formula 9 (al and formula (b)).
芳香族ジカルボン酸としては、テレフタル酸(TPA)
及びイソフタル酸(IPA)が好適であり、 TPAと
IPAとをモル比で100:0〜O: 100. 好
ましくはtoo:o〜50 : 50.最適には100
:0〜80 : 20の割合で用いるのが適当である。As aromatic dicarboxylic acid, terephthalic acid (TPA)
and isophthalic acid (IPA) are preferred, and the molar ratio of TPA and IPA is 100:0 to O:100. Preferably too:o~50:50. Optimally 100
It is appropriate to use the ratio of: 0 to 80: 20.
構造式(I)の単位とともにコポリエステルを形成する
第2の単位は、構造式(1)の単位とともに溶融紡糸性
の良好なサーモトロピック液晶性コポリエステルを形成
するものであればよいが、下記構造式(n)で示される
オキシカルボン酸残基からなる単位及び下記構造式(I
[l)で示されるるアリレート単位が好ましく、特に前
者が好ましい。The second unit that forms a copolyester with the unit of structural formula (I) may be any unit that forms a thermotropic liquid crystalline copolyester with good melt spinnability together with the unit of structural formula (1), but the following units may be used. A unit consisting of an oxycarboxylic acid residue represented by the structural formula (n) and the following structural formula (I
The arylate unit represented by [l] is preferred, and the former is particularly preferred.
−0−Ar2−CO −(If)
−O−Ar3−0−QC−Ar’−CO −(I[[)
ここで、 Ar”、 Ar’、 Ar’は2価の芳香族
基を示し、具体的には、ベンゼン環及びナフタリン環が
好ましく、ベンゼン環及びナフタリン環の水素原子は炭
素原子数1〜20のアルキル基、アリール基、アルコキ
シ基、アリロキシ基もしくはハロゲン原子で置換されて
いてもよい。-0-Ar2-CO -(If) -O-Ar3-0-QC-Ar'-CO -(I[[)
Here, Ar'', Ar', Ar' represent a divalent aromatic group, specifically, a benzene ring and a naphthalene ring are preferable, and the hydrogen atom of the benzene ring and naphthalene ring has 1 to 20 carbon atoms. It may be substituted with an alkyl group, aryl group, alkoxy group, allyloxy group or halogen atom.
これらの具体例としては、4−ヒドロキシ安息香酸残基
、6−ヒドロキシ−2−ナフトエ酸残基。Specific examples of these include 4-hydroxybenzoic acid residue and 6-hydroxy-2-naphthoic acid residue.
ハイドロキノンテレフタレート残基、ハイドロキノンイ
ソフタレート残基、1.4−ナフトハイドロキノンテレ
フタレート残基、2.6−ナフトハイドロキノンテレフ
タレート残基、レゾルシンテ・レフタレート残基等が挙
げられるが、最も好ましいものは、4−ヒドロキシ安息
香酸残基である。Examples include hydroquinone terephthalate residue, hydroquinone isophthalate residue, 1,4-naphthohydroquinone terephthalate residue, 2,6-naphthohydroquinone terephthalate residue, resorcinte phthalate residue, and the most preferred one is 4-hydroxy It is a benzoic acid residue.
また、溶融紡糸性の良好なサーモトロピック液晶性コポ
リエステルを形成する範囲で、上記以外の成分を共重合
してもよく、そのような共重合成分としては、4.4’
−ジヒドロキシジフェニル。In addition, components other than those mentioned above may be copolymerized within the range of forming a thermotropic liquid crystalline copolyester with good melt spinnability. Such copolymerized components include 4.4'
-dihydroxydiphenyl.
ナフタル酸、2.2−ビス(4′−カルボキシフェニル
)プロパン、ビス(4−カルボキシフェニル)メタン、
ビス(4−カルボキシフェニル)エーテル等が挙げられ
る。naphthalic acid, 2.2-bis(4'-carboxyphenyl)propane, bis(4-carboxyphenyl)methane,
Bis(4-carboxyphenyl) ether and the like can be mentioned.
本発明における特に好ましいコポリエステルの一例とし
て、構造式(I)で表される単位が前記式(alで示さ
れる9、10−ジヒドロ−9−オキサ−10−(2’、
5’−ジヒドロキシフェニル)ホスファフェナントレン
−10−オキシド(PHQ)とTPA/IPAとから誘
導される単位、構造式(■)で表される単位が4−ヒド
キシ安息香酸(4HBA)残基からなる単位であるコポ
リエステルについて、その製造法の一例を説明する。As an example of a particularly preferred copolyester in the present invention, the unit represented by the structural formula (I) is 9,10-dihydro-9-oxa-10-(2',
A unit derived from 5'-dihydroxyphenyl)phosphaphenanthrene-10-oxide (PHQ) and TPA/IPA, a unit represented by the structural formula (■) consisting of a 4-hydroxybenzoic acid (4HBA) residue. An example of a manufacturing method for the copolyester unit will be explained.
(イ) TPA /IPAからなる酸成分とPIIQの
ジアセテート体(PHQ−A)からなるジオール成分と
48B^のアセテート体(4118A−A)からなるオ
キシカルボン酸成分とをヒドロキシル基とカルボキシル
基とが当量となる量(及び好ましくは同時に全ヒドロキ
シル基の量の0.01〜0.25倍当量の無水酢酸)も
しくは(ロ) TPA/IPAからなる酸成分とPHQ
からなるジオール成分と4HBAからなるオキシカルボ
ン酸成分とをヒドロキシル基とカルボキシル基とが当量
となる量及び全ヒドロキシル基の量の1.05〜1.2
5倍当量の無水酢酸を反応器に仕込み、不活性雰囲気中
で、常圧下、150℃を超えない温度で、0.5〜4時
間エステル化反応させる。次いで、不活性雰囲気中、常
圧下、150〜300″Cの温度で、0.5〜3時間酸
交換反応させ、さらに、230〜300℃の温度で反応
を続ける。その際、フルバキュームまでの時間が1時間
以上となるような減圧スケジュールで減圧を開始する。(a) An acid component consisting of TPA/IPA, a diol component consisting of a diacetate of PIIQ (PHQ-A), and an oxycarboxylic acid component consisting of an acetate of 48B^ (4118A-A) are combined with hydroxyl groups and carboxyl groups. (and preferably acetic anhydride equivalent to 0.01 to 0.25 times the amount of all hydroxyl groups at the same time) or (b) an acid component consisting of TPA/IPA and PHQ
The diol component consisting of 4HBA and the oxycarboxylic acid component consisting of 4HBA are mixed in an amount such that hydroxyl groups and carboxyl groups are equivalent and 1.05 to 1.2 of the total amount of hydroxyl groups.
Five equivalents of acetic anhydride are charged into a reactor, and the esterification reaction is carried out in an inert atmosphere at a temperature not exceeding 150° C. under normal pressure for 0.5 to 4 hours. Then, the acid exchange reaction is carried out in an inert atmosphere at a temperature of 150 to 300"C under normal pressure for 0.5 to 3 hours, and the reaction is continued at a temperature of 230 to 300"C. Start depressurization using a decompression schedule that lasts at least 1 hour.
その後順次昇温し、酢酸を溜出させ、最終的に通常30
0〜350℃の温度で、1トル程度の高減圧下に数十分
〜数時間、溶融相又は固相で重縮合反応させることによ
って、繊維形成性のコポリエステルを得ることができる
。After that, the temperature is raised sequentially to distill acetic acid, and the final temperature is usually 30
A fiber-forming copolyester can be obtained by carrying out a polycondensation reaction in the melt phase or solid phase at a temperature of 0 to 350° C. under a high vacuum of about 1 Torr for several tens of minutes to several hours.
通常9重縮合反応には触媒が用いられるが1本発明にお
けるコポリエステルの製造には、各種金属化合物及び有
機スルホン酸化合物の中から選ばれた1種以上の化合物
が用いられる。Although a catalyst is usually used in the 9-polymer condensation reaction, one or more compounds selected from various metal compounds and organic sulfonic acid compounds are used in the production of the copolyester in the present invention.
金属化合物としては、アンチモン、チタン、ゲルマニウ
ム、スズ、亜鉛、アルミニウム、マグネシウム、カルシ
ウム、マンガン、ナトリウムあるいはコバルト等の化合
物が用いられ、一方1有機スルホン酸化合物としては、
スルホサリチル酸。As the metal compound, compounds such as antimony, titanium, germanium, tin, zinc, aluminum, magnesium, calcium, manganese, sodium or cobalt are used, while as the organic sulfonic acid compound,
Sulfosalicylic acid.
0−スルホ安息香酸無水物等の化合物が用いられる。特
に好ましいものは、ジメチルスズマレエートやO−スル
ホ安息香酸無水物である。Compounds such as 0-sulfobenzoic anhydride are used. Particularly preferred are dimethyltin maleate and O-sulfobenzoic anhydride.
触媒の添加量は、ポリエステルの構成単位1モルに対し
通常0.I X 10−’〜100 X 10−’モル
、好ましくは0.5XlO−’〜50 X 10”モル
、最適には1×10− ’〜1.QX10−’モルが適
当である。The amount of catalyst added is usually 0.00% per mole of polyester structural unit. IX10-' to 100X10-' moles, preferably 0.5X10-' to 50X10" moles, optimally 1x10-' to 1.QX10-' moles are suitable.
なお1重縮合反応の過程でポリエステルの構成単位の種
類によっては固化し1固相状態となる場合もあるし、溶
融状態のまま重縮合できる場合もある。Depending on the type of constituent units of the polyester, it may solidify into a single solid phase during the single polycondensation reaction, or it may be polycondensed in a molten state.
本発明におけるコポリエステルは、中空糸にした状態で
、極限粘度〔η〕が0.5以上であることが望ましく、
好ましくは1.0〜10.0.最適には3,0〜6.0
である。〔η〕がこの範囲より小さいと耐熱性を始めと
する各種の物理的1機械的特性値が劣り、一方、 〔η
〕がこの範囲より大きいと溶融粘度が高くなりすぎて流
動性等が損なわれたり。It is desirable that the copolyester in the present invention has an intrinsic viscosity [η] of 0.5 or more when formed into hollow fibers,
Preferably 1.0 to 10.0. Optimally 3.0-6.0
It is. If [η] is smaller than this range, various physical and mechanical property values including heat resistance will be inferior;
] is larger than this range, the melt viscosity becomes too high and fluidity etc. are impaired.
融点が高くなりすぎて紡糸温度を著しく高くしなければ
ならなくなったりして好ましくない。This is not preferable because the melting point becomes too high and the spinning temperature must be increased significantly.
したがって、紡糸に供するポリエステルの〔η〕は、紡
糸時の〔η〕の低下を見込んで、ポリエステル中の水分
率が1100pp程度のとき、前記した値よりも通常0
.1以上〔η〕の高いポリエステルを使用するのが適当
である。ポリエステル中の水分率を1ooppm程度と
するには、減圧下、150〜200℃の温度で、8〜4
8時間程度乾燥すればよい。Therefore, [η] of the polyester to be subjected to spinning is usually 0.0% compared to the above value when the moisture content in the polyester is about 1100 pp, taking into account the decrease in [η] during spinning.
.. It is appropriate to use a polyester with a high [η] of 1 or more. In order to make the moisture content in polyester about 1 ooppm, at a temperature of 150 to 200°C under reduced pressure,
All you have to do is dry it for about 8 hours.
また1本発明におけるコポリエステルは、耐熱性を確保
するため、熱変形温度が150℃以上、好ましくは17
0°C以上であることが必要である。コポリエステルの
好ましい熱的特性値としては融点330’C以下、軟化
点200°C以上、好ましくは融点300℃以下、軟化
点220℃以上1最適には融点280〜300℃、軟化
点220〜280℃のものが、耐熱性と各種の物理的1
機械的特性とを両立させる点で適当である。In addition, in order to ensure heat resistance, the copolyester in the present invention has a heat distortion temperature of 150°C or higher, preferably 17°C.
It is necessary that the temperature is 0°C or higher. Preferred thermal properties of the copolyester include a melting point of 330°C or less, a softening point of 200°C or more, preferably a melting point of 300°C or less, and a softening point of 220°C or more. ℃ ones, heat resistance and various physical 1
This is suitable in terms of achieving both mechanical properties.
このようにして得られたコポリエステルを溶融紡糸して
中空糸とするのであるが、溶融紡糸は。The copolyester thus obtained is melt-spun into hollow fibers.
次のA、Bの条件を満足する条件で行うの好ましい。It is preferable to carry out the process under conditions that satisfy the following conditions A and B.
A:紡出糸条を紡糸口金の下部に設けたポリエステルの
軟化点以上の第1加熱ゾーンを通過させる。A: The spun yarn is passed through a first heating zone provided at the bottom of the spinneret at a temperature equal to or higher than the softening point of polyester.
B:第1加熱ゾーンを通過した糸条を第1加熱ゾーンの
下部に設けたポリエステルの軟化点未満で、ガラス転移
点以上の第2加熱ゾーンを通過させる。B: The yarn passed through the first heating zone is passed through the second heating zone at a temperature lower than the softening point of the polyester provided below the first heating zone and higher than the glass transition point.
条件Aの加熱ゾーンは、紡糸口金から吐出された糸条を
、その軟化点以上に加熱して、糸条をを効かつ、均一に
細化させ、繊維軸の方向にサーモトロピック液晶性ポリ
エステルの分子を配向させるとともに、繊維軸方向の均
斉度を保つのに好適である。In the heating zone of condition A, the yarn discharged from the spinneret is heated to above its softening point to effectively and uniformly thin the yarn, and to spread the thermotropic liquid crystalline polyester in the direction of the fiber axis. It is suitable for orienting molecules and maintaining uniformity in the fiber axis direction.
また1条件Bの第2加熱ゾーンは、第1加熱ゾーンを通
過した糸条をその軟化点未満、ガラス転移点以上の温度
に加熱し、均一に細化させ、繊維軸方向の均斉度を保つ
のに好適である。In addition, the second heating zone of 1 condition B heats the yarn that has passed through the first heating zone to a temperature below its softening point and above its glass transition point to uniformly thin it and maintain uniformity in the fiber axis direction. It is suitable for
加熱ゾーンの雰囲気温度を前記した温度範囲とするには
1例えば次のようにすればよい。すなわち、紡出糸条の
外周から中心に向けて通常0.1〜107!/分の流量
10.1〜10m/秒の流速で所定範囲の温度の気体を
吹きつける加熱フードを設置すればよい。この雰囲気温
度は前記した範囲内の温度で、できるだけ一定値に制御
することが好ましい。In order to set the ambient temperature of the heating zone within the above-mentioned temperature range, for example, the following procedure may be used. That is, the distance from the outer periphery to the center of the spun yarn is usually 0.1 to 107! A heating hood may be installed that blows gas at a temperature within a predetermined range at a flow rate of 10.1 to 10 m/sec. It is preferable that the ambient temperature be controlled to be as constant as possible within the above-mentioned range.
紡糸口金としては、中空糸用のもの1例えば、C字状ス
リットノズルを有するものが使用される。As the spinneret, one for hollow fibers, for example, one having a C-shaped slit nozzle is used.
C字状スリットノズルを有するものを使用する場合、加
熱ゾーンの加熱面に対してノズルの切欠き開口部の位置
が相対するようにすることが中空糸として、完全なもの
にするのに好適である。When using a C-shaped slit nozzle, it is preferable to position the notch opening of the nozzle opposite to the heating surface of the heating zone in order to make the hollow fiber perfect. be.
中空糸状に溶融紡出された糸条を、紡出時の内径に対し
て70%以下、好ましくは50%以下の内径となるよう
に冷却、固化させることが望ましい。It is desirable to cool and solidify the melt-spun filament in the form of a hollow fiber so that the inner diameter becomes 70% or less, preferably 50% or less of the inner diameter at the time of spinning.
この要件が満足されないと中空状態を維持するのに十分
な強度が得られなかったり9分離膜として分離係数が不
十分となったり、さらには紡糸時の操業性が損なわれた
りすることがあり、好ましくない。If this requirement is not met, sufficient strength may not be obtained to maintain the hollow state, the separation coefficient may be insufficient as a 9-separation membrane, and the operability during spinning may be impaired. Undesirable.
なお、紡糸速度は、100〜1500m /分程度が好
ましい。Note that the spinning speed is preferably about 100 to 1500 m/min.
また、紡糸パック部及び/又は加熱ゾーンにおいて、ポ
リマーの流動方向に対してほぼ平行方向に磁界をかけて
、紡出糸条の分子配向を制御する方法を併用することも
好ましい。It is also preferable to use a method of controlling the molecular orientation of the spun yarn by applying a magnetic field in a direction substantially parallel to the flow direction of the polymer in the spinning pack section and/or the heating zone.
次に9図面を用いて中空糸を製造する方法を具体的に説
明する。Next, a method for manufacturing hollow fibers will be specifically explained using nine drawings.
第1図は中空糸を製造するのに好適に用いられる紡糸引
取装置の一実施B様を示す概略図であり。FIG. 1 is a schematic diagram showing an embodiment B of a spinning take-off apparatus suitably used for producing hollow fibers.
紡糸口金面の下方で2個の集束ガイドを用いてこれらの
糸条を交互に押しつけて集束した場合の例を示す。An example is shown in which two focusing guides are used below the spinneret surface to alternately press and focus these yarns.
紡糸口金1から吐出された糸条2は、第1加熱フード3
で雰囲気温度を調整された第1加熱ゾーンを通過した後
、第2加熱フード4で雰囲気温度を調整された第2加熱
ゾーンを通過し、集束ガイド群5で集束され、チムニ−
6を経て、オイリングローラ7でオイリングされ、第1
ゴデツトローラ8.第2ゴデツトローラ9で引き取られ
、ワインダーlOでパッケージ11として巻き上げられ
る。The yarn 2 discharged from the spinneret 1 is passed through the first heating hood 3
After passing through the first heating zone where the ambient temperature is adjusted with the second heating hood 4, the second heating zone where the ambient temperature is adjusted with the second heating hood 4 is focused by the focusing guide group 5, and the chimney
6, it is oiled by an oiling roller 7, and the first
Godets Troller 8. It is taken up by the second godet roller 9 and wound up as a package 11 by the winder IO.
加熱フード3の長さは特に制限されないが9通常数cm
〜数十cm、好ましくは、 20〜80cm程度が適当
である。また、加熱フード3の長さは、この程度の範囲
であれば、長い方が、一般に紡糸速度を上げることが可
能となる。The length of the heating hood 3 is not particularly limited, but is usually several cm.
~ several tens of cm, preferably about 20 to 80 cm is appropriate. Further, as long as the length of the heating hood 3 is within this range, the longer the length, the faster the spinning speed can generally be increased.
加熱フード4の長さも特に制限されず1通常数cm〜数
十cm+好ましくは、20〜80cm程度が適当である
が、加熱フード3よりも一般に長めの方が好ましく、紡
糸引取糸のウースター斑(U%)が小さくなるような最
適の長さとすることが望ましい。The length of the heating hood 4 is also not particularly limited, and is usually several cm to several tens of cm + preferably about 20 to 80 cm, but it is generally longer than the heating hood 3 and is preferred to avoid Worcester spots ( It is desirable to set the length to an optimum value so that the U%) is small.
なお、このような方法で得られるポリエステル中空糸は
、紡糸したままの状態で十分実用的な強度を示すが、特
に高強度が要求される場合には。Note that the polyester hollow fibers obtained by such a method exhibit sufficient strength for practical use in the as-spun state, especially when high strength is required.
熱処理を施すことにより、さらに強度を高めることがで
きる。The strength can be further increased by heat treatment.
本発明の分離膜は、特に耐熱性と強度を要求される用途
に使用される分離膜として有用である。The separation membrane of the present invention is particularly useful as a separation membrane used in applications requiring heat resistance and strength.
例えば、天然ガスからのヘリウムの分離、各種合成ガス
からの水素の分離等に好ましく使用される。For example, it is preferably used for the separation of helium from natural gas, hydrogen from various synthetic gases, and the like.
この場合、窒素とヘリウムあるいは一酸化炭素と水素の
透過係数の比、すなわち1分離膜の分離係数が50以上
でないと実用的でないが1本発明の分離膜はこれに十分
対応できるものである。In this case, it is not practical unless the ratio of the permeability coefficients of nitrogen and helium or carbon monoxide and hydrogen, that is, the separation coefficient of one separation membrane, is 50 or more, and the separation membrane of the present invention can sufficiently cope with this.
また2本発明の分離膜には1分離係数や分画数を改良す
るため1種々の無機塩や有機化合物を適宜添加すること
ができる。Furthermore, various inorganic salts and organic compounds can be appropriately added to the separation membrane of the present invention in order to improve the separation coefficient and fraction number.
(作 用)
本発明の分離膜が優れた分離係数を有する理由は明らか
ではないが、サーモトロピック液晶性コポリエステルの
配向性、結晶性等に起因するものと推察される。(Function) Although the reason why the separation membrane of the present invention has an excellent separation coefficient is not clear, it is presumed that it is due to the orientation, crystallinity, etc. of the thermotropic liquid crystalline copolyester.
(実施例) 次に、実施例を挙げて本発明をさらに詳しく説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.
ポリマーの極限粘度〔η〕は、フェノールと四塩化エタ
ンとの等重量混合溶媒中、20°Cで測定した溶液粘度
から求めた。The intrinsic viscosity [η] of the polymer was determined from the solution viscosity measured at 20°C in a mixed solvent of equal weights of phenol and tetrachloroethane.
サーモトロピック液晶性はホットステージ付Leitz
偏光顕微鏡で確認した。Thermotropic liquid crystal Leitz with hot stage
Confirmed using a polarizing microscope.
ポリエステルの軟化点(Ts)は、メトクー社製自動融
点測定装置を用い、顕微鏡下でホットステージ上に2本
の繊維を互いに交差させて置き、2℃/分の割合で昇温
し、繊維の交点が変形して融着する温度として求めた。The softening point (Ts) of polyester is determined by using an automatic melting point measuring device manufactured by Metcoup Co., Ltd., placing two fibers crossed on a hot stage under a microscope, raising the temperature at a rate of 2°C/min, and measuring the temperature of the fibers. It was determined as the temperature at which the intersection deforms and fuses.
また、ポリエステルのガラス転移点(Tg)は、パーキ
ンエルマー社製示差走査熱量計(DSCZ型)を用いて
測定した。Further, the glass transition point (Tg) of the polyester was measured using a differential scanning calorimeter (DSCZ type) manufactured by PerkinElmer.
さらに、ポリエステルの熱変形温度(HDT)は。Furthermore, the heat distortion temperature (HDT) of polyester is.
ASTM D 648規格に基づいて、1/8iンの厚
さの成形品に対し、大荷重(18,6kg/ cnl)
で測定した。Based on ASTM D 648 standard, high load (18,6 kg/cnl) for 1/8 inch thick molded parts
It was measured with
実施例1
反応装置にPIIQ−Aと4HBA−Aと無水酢酸をモ
ル比で2.5 : 7.5 : 2及びPIIQ−Aと
等モルのTPAを仕込み。Example 1 A reaction apparatus was charged with PIIQ-A, 4HBA-A, and acetic anhydride in a molar ratio of 2.5:7.5:2, and TPA in an equimolar amount with PIIQ-A.
触媒としてジメチルスズマレエートをポリエステルの構
成単位1モルに対して4X10−’モル加え。Dimethyltin maleate was added as a catalyst in an amount of 4 x 10-' mol per mol of the polyester structural unit.
窒素雰囲気下で、常圧、145℃の温度で、1時間エス
テル化反応させた。次いで、窒素雰囲気下で。Esterification reaction was carried out under a nitrogen atmosphere at normal pressure and a temperature of 145° C. for 1 hour. Then under nitrogen atmosphere.
常圧、2oO℃の温度で、1時間酸交換反応させた。An acid exchange reaction was carried out for 1 hour at normal pressure and a temperature of 200°C.
その後、200℃から昇温速度25°C/時間で275
°Cまで界温し、この際、90分間で1トルに到達する
ような減圧スケジュールで減圧を開始した。次いで。Then, from 200°C to 275°C at a heating rate of 25°C/hour.
°C, and at this time, depressurization was started using a depressurization schedule that reached 1 Torr in 90 minutes. Next.
順次昇温し、酢酸を溜出させながら、最終的に320’
C,1)ルの減圧下で1時間溶融重合した。While gradually raising the temperature and distilling acetic acid, the temperature reached 320'
C,1) Melt polymerization was carried out for 1 hour under reduced pressure.
得られたコポリエステルは、〔η) 4.95.Ts
265’c、 Tg 186℃、 IIDT 184°
Cで3色調の良い液晶性コポリエステルであった。The obtained copolyester has a [η) of 4.95. Ts
265'c, Tg 186°C, IIDT 184°
It was a liquid crystalline copolyester with a rating of C and three good color tones.
このコポリエステルを、中空糸用ノズルを10孔有する
直径90mmの紡糸口金を用いて、紡糸温度330℃、
紡糸速度300 m /分、第1加熱ゾーンの温度27
5℃、第2加熱ゾーンの温度200’Cの紡糸条件で紡
糸した。This copolyester was spun at a spinning temperature of 330° C. using a spinneret with a diameter of 90 mm and having 10 hollow fiber nozzles.
Spinning speed 300 m/min, temperature of the first heating zone 27
Spinning was carried out under spinning conditions of 5° C. and a temperature of 200° C. in the second heating zone.
なお、加熱フード3,4としては1次の条件で1円筒形
のものを使用した。In addition, as the heating hoods 3 and 4, cylindrical ones were used under the primary conditions.
■加熱風吹き出し面の内径 100mm■加熱フ
ード3の長さ 30cm■加熱フード4の
長さ 60cm■加熱風量 各試験毎に予
備試験を行い、U%が最も小さくなる量とした。■Inner diameter of heating air blowing surface: 100 mm ■Length of heating hood 3: 30 cm ■Length of heating hood 4: 60 cm ■Volume of heating air A preliminary test was conducted for each test, and the amount was determined to minimize U%.
また、溶融紡出糸を、溶融紡出時の内径の40%となる
ように冷却、固化させた。Further, the melt-spun yarn was cooled and solidified to have an inner diameter of 40% of the melt-spun yarn.
得られた中空糸は、 〔η) 4.58.外径1.6龍
。The obtained hollow fiber has [η) 4.58. Outer diameter 1.6 dragon.
内径1.ONであった。Inner diameter 1. It was ON.
この中空糸をを助長50cmで50本束ねて分離膜モジ
ュールを作成した。A separation membrane module was prepared by bundling 50 of these hollow fibers with a length of 50 cm.
このモジュールの性能を測定したところ、水素ど一酸化
炭素との混合ガスに対する150℃における水素の分離
係数は180であった。When the performance of this module was measured, the separation coefficient of hydrogen at 150° C. for a mixed gas of hydrogen and carbon monoxide was 180.
実施例2
溶融紡出糸を、溶融紡出時の内径の70%となるように
冷却、固化させた以外は実施例1と同様に試験したとこ
ろ、モジュールの水素と一酸化炭素との混合ガスに対す
る150°Cにおける水素の分離係数は65であった。Example 2 A test was conducted in the same manner as in Example 1, except that the melt-spun yarn was cooled and solidified to 70% of the inner diameter at the time of melt-spinning. The separation factor for hydrogen at 150°C was 65.
実施例3
反応装置にPIIQとレゾルシン(R3)と411 B
Aと無水酢酸をモル比で3:1:6:15及びPI(
QとI?Sの和と等モルのTPA/IPA(モル比90
/10)を仕込み、触媒としてジメチルスズマレエート
をポリエステルの構成単位1モルに対し4 X 10−
’モル加え、窒素雰囲気下、常圧、130℃で2時間エ
ステル化反応させた。その後、窒素雰囲気下、常圧、2
20℃で1時間酸交換反応させた。その後、220°C
から昇温速度20°C/時間で、280℃まで昇温し、
この際、60分間で1トルに到達するような減圧スケジ
ュールで減圧を開始した。その後、順次昇温し、酢酸を
溜出させながら反応を行い、最終的に310℃、1トル
の減圧下で2時間溶融重合した。Example 3 PIIQ, resorcinol (R3) and 411 B in a reactor
A and acetic anhydride in a molar ratio of 3:1:6:15 and PI (
Q and I? Equivalent mole of TPA/IPA to the sum of S (molar ratio 90
/10) and dimethyltin maleate as a catalyst at 4 x 10-
1 mol was added, and an esterification reaction was carried out at 130° C. under nitrogen atmosphere at normal pressure for 2 hours. After that, under nitrogen atmosphere, normal pressure, 2
Acid exchange reaction was carried out at 20°C for 1 hour. After that, 220°C
The temperature was raised from 280°C at a heating rate of 20°C/hour,
At this time, depressurization was started on a depressurization schedule that would reach 1 Torr in 60 minutes. Thereafter, the temperature was raised sequentially to carry out the reaction while distilling acetic acid, and finally melt polymerization was carried out at 310° C. for 2 hours under a reduced pressure of 1 Torr.
得られたコポリエステルは、〔η〕3.Q6.Ts 2
58’C,7g177℃、 lID7171℃で2色調
の良い液晶性コポリエステルであった。The obtained copolyester has [η]3. Q6. Ts 2
It was a liquid crystalline copolyester with two good color tones at 58'C, 7g at 177°C, and ID at 7171°C.
このコポリエステルを用い1溶融紡出糸を、溶融紡出時
の内径の21%となるように冷却、固化させた以外は実
施例1と同様に紡糸し、 〔η) 2.89のポリエス
テル中空糸を得た。Using this copolyester, one melt-spun yarn was spun in the same manner as in Example 1, except that it was cooled and solidified so that the inner diameter was 21% of the inner diameter at the time of melt-spinning, and a polyester hollow yarn of [η) 2.89 was obtained. Got the thread.
この中空糸を用いて実施例1と同様にして分離膜モジュ
ールを作成して試験したところ、モジュールの水素と一
酸化炭素との混合ガスに対する100℃における水素の
分離係数は、293であった。When a separation membrane module was prepared and tested in the same manner as in Example 1 using this hollow fiber, the separation coefficient of hydrogen at 100° C. for a mixed gas of hydrogen and carbon monoxide in the module was 293.
実施例4
反応装置にPIIQ とハイドロキノン(lI[l)と
4 II B Aと無水酢酸をモル比で4:1:5;1
8及びPIIQとIIQの和と等モルのTPA/IPA
(モル比80/20)を仕込み。Example 4 PIIQ, hydroquinone (lI[l), 4 II B A, and acetic anhydride were placed in a reactor in a molar ratio of 4:1:5;1
8 and the sum of PIIQ and IIQ and equimolar TPA/IPA
(mole ratio 80/20).
触媒としてジメチルスズマレエートをポリエステルの構
成単位1モルに対し4X10−’モル加え1窒素雰囲気
下で、常圧、150℃で45分間エステル化反応させた
。その後、窒素雰囲気下で、常圧、180℃で、3時間
酸交換反応させた。その後、180℃から昇温速度50
℃/時間で、280℃まで昇温し、この際。4×10 −' mol of dimethyltin maleate was added as a catalyst per 1 mol of the polyester structural unit, and an esterification reaction was carried out at 150° C. for 45 minutes at normal pressure under a nitrogen atmosphere. Thereafter, an acid exchange reaction was carried out under nitrogen atmosphere at normal pressure and 180° C. for 3 hours. After that, from 180℃, the heating rate was 50℃.
At this time, the temperature was increased to 280°C at a rate of °C/hour.
90分間で1トルに到達するような減圧スケジュールで
減圧を開始した。その後、順次昇温し、酢酸を溜出させ
ながら反応を行い、最終的に325°C11トルの減圧
下で2時間溶融重合した。Depressurization was started on a depressurization schedule to reach 1 Torr in 90 minutes. Thereafter, the temperature was raised sequentially to carry out the reaction while distilling off acetic acid, and finally melt polymerization was carried out at 325° C. under a reduced pressure of 11 torr for 2 hours.
得られたコポリエステルは、〔η) 1.43.Ts
273’C,Tg 190℃、 )ID7171℃で1
色調の良い液晶性コポリエステルであった。The obtained copolyester has [η) 1.43. Ts
273'C, Tg 190℃, ) 1 at ID7171℃
It was a liquid crystalline copolyester with good color tone.
このコポリエステルを用い、溶融紡出糸を、溶融紡出時
の内径の70%となるように冷却、固化させた以外は実
施例1と同様に紡糸し、 〔η) 1.38のポリエス
テル中空糸を得た。Using this copolyester, the melt-spun yarn was spun in the same manner as in Example 1, except that it was cooled and solidified so that the inner diameter was 70% of the inner diameter at the time of melt-spinning, and a hollow polyester of [η) 1.38 was obtained. Got the thread.
この中空糸を用いて実施例1と同様にして分離膜モジュ
ールを作成して試験したところ、モジュールの水素と一
酸化炭素との混合ガスに対する100℃における水素の
分離係数は、75であった。When a separation membrane module was prepared and tested in the same manner as in Example 1 using this hollow fiber, the separation coefficient of hydrogen at 100° C. for a mixed gas of hydrogen and carbon monoxide in the module was 75.
実施例5〜10
第1表に示した原料を使用して実施例1と同様にして第
1表に示したコポリエステルを得た。Examples 5 to 10 The copolyesters shown in Table 1 were obtained in the same manner as in Example 1 using the raw materials shown in Table 1.
なお、第1表において(b) 、 (c) 、 (d)
は、それぞれ前記の構造式(b) +’ (c) 、
(d)の有機リン化合物。In Table 1, (b), (c), (d)
are respectively the above structural formulas (b) +' (c),
(d) The organic phosphorus compound.
NGは、1,4−ナフトハイドロキノンを示し、フェノ
ール性水酸基をジアセテート体に変換したものを用いた
。NG represents 1,4-naphthohydroquinone, which was obtained by converting the phenolic hydroxyl group into a diacetate form.
これらのコポリエステルを用いて、実施例1と同様に紡
糸して中空糸としくただし溶融紡出時の内径と冷却、固
化後の中空糸の内径との比d/Dが第1表に示した値と
なるようにした。)、モジュールを作成して試験した。These copolyesters were spun into hollow fibers in the same manner as in Example 1, but the ratio d/D of the inner diameter at the time of melt spinning to the inner diameter of the hollow fibers after cooling and solidification is shown in Table 1. value. ), the module was created and tested.
得られたモジュールの水素と一酸化炭素との混合ガスに
対する100℃における水素の分離係数を第1表に示す
。Table 1 shows the separation coefficient of hydrogen at 100° C. for a mixed gas of hydrogen and carbon monoxide in the obtained module.
(発明の効果)゛
本発明によれば、従来技術では得られなかった高い分離
係数を有する分離膜が提供され、同時に次のような効果
が奏される。(Effects of the Invention) According to the present invention, a separation membrane having a high separation coefficient that could not be obtained with the prior art is provided, and at the same time, the following effects are achieved.
(1)耐熱性と耐薬品性1機械的強度に優れた中空糸状
分離膜を得ることができる。(1) Heat resistance and chemical resistance 1 A hollow fiber separation membrane with excellent mechanical strength can be obtained.
(2)中空糸を製造する溶融紡糸時の操業性が良く。(2) Good operability during melt spinning to produce hollow fibers.
かつ均斉度の良い中空糸が経済的に得られ、その結果、
均斉度の良い中空糸状分離膜を経済的に製造することが
できる。Hollow fibers with good uniformity can be obtained economically, and as a result,
Hollow fiber separation membranes with good uniformity can be economically produced.
第1図は本発明の分離膜に使用する中空糸を紡糸する際
に好適に用いられる紡糸引取装置の一実施態様を示す概
略図である。
1−・紡糸口金、3−第1加熱フード。
4・−第2加熱フード。FIG. 1 is a schematic diagram showing an embodiment of a spinning take-off device suitably used when spinning hollow fibers used in the separation membrane of the present invention. 1--Spinneret, 3--First heating hood. 4.-Second heating hood.
Claims (5)
位の5〜95モル%が下記構造式( I )で表される単
位であるサーモトロピック液晶性コポリエステルからな
り、極限粘度が0.5以上である中空糸で構成された中
空糸状分離膜。 ▲数式、化学式、表等があります▼( I ) 〔Ar^1は3価の芳香族基を示す、ただし、芳香環は
置換基を有していてもよい。〕(1) The thermotropic liquid crystalline copolyester has a heat distortion temperature of 150°C or higher, 5 to 95 mol% of the units constituting the main chain are units represented by the following structural formula (I), and the intrinsic viscosity is A hollow fiber separation membrane composed of hollow fibers having a molecular weight of 0.5 or more. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [Ar^1 represents a trivalent aromatic group, however, the aromatic ring may have a substituent. ]
5〜95モル%と下記構造式(II)で表される単位95
〜5モル%とからなるものである特許請求の範囲第1項
記載の中空糸状分離膜。 −O−Ar^2−CO−(II) 〔Ar^2は2価の芳香族基を示す。〕(2) Copolyester has 5 to 95 mol% of units represented by structural formula (I) and 95 mol% of units represented by the following structural formula (II)
5 mol % of the hollow fiber separation membrane according to claim 1. -O-Ar^2-CO-(II) [Ar^2 represents a divalent aromatic group. ]
されるものである特許請求の範囲第1項又は第2項記載
の中空糸状分離膜。 ▲数式、化学式、表等があります▼(3) The hollow fiber separation membrane according to claim 1 or 2, wherein the unit represented by structural formula (I) is represented by the following structural formula. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
されるものである特許請求の範囲第1項又は第2項記載
の中空糸状分離膜。 ▲数式、化学式、表等があります▼(4) The hollow fiber separation membrane according to claim 1 or 2, wherein the unit represented by structural formula (I) is represented by the following structural formula. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
香酸残基である特許請求の範囲第2項、第3項又は第4
項記載の中空糸状分離膜。(5) Claims 2, 3, or 4, wherein the unit represented by structural formula (II) is a 4-hydroxybenzoic acid residue.
Hollow fiber separation membrane as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61126215A JPS62282602A (en) | 1986-05-31 | 1986-05-31 | Polyester hollow yarn-like separating membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61126215A JPS62282602A (en) | 1986-05-31 | 1986-05-31 | Polyester hollow yarn-like separating membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62282602A true JPS62282602A (en) | 1987-12-08 |
JPH0582250B2 JPH0582250B2 (en) | 1993-11-18 |
Family
ID=14929580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61126215A Granted JPS62282602A (en) | 1986-05-31 | 1986-05-31 | Polyester hollow yarn-like separating membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62282602A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100341293B1 (en) * | 1999-12-20 | 2002-06-22 | 박호군 | Morphologically controlled thermotropic liquid crystalline polymer blended high selective gas membrane |
JP2018040077A (en) * | 2016-09-07 | 2018-03-15 | 東レ株式会社 | Liquid crystal polyester multifilament |
-
1986
- 1986-05-31 JP JP61126215A patent/JPS62282602A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100341293B1 (en) * | 1999-12-20 | 2002-06-22 | 박호군 | Morphologically controlled thermotropic liquid crystalline polymer blended high selective gas membrane |
JP2018040077A (en) * | 2016-09-07 | 2018-03-15 | 東レ株式会社 | Liquid crystal polyester multifilament |
Also Published As
Publication number | Publication date |
---|---|
JPH0582250B2 (en) | 1993-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU775350B2 (en) | Catalyst for polyester production and process for producing polyester with the same | |
EP0218366B1 (en) | Polyester polymers of 3-hydroxy-4'-(4-hydroxyphenyl) benzophenone or 3,4'-dihydroxybenzophenone and dicarboxylic acids | |
US4447592A (en) | Anisotropic melt polyesters of 6-hydroxy-2-naphthoic acid | |
JPH0192410A (en) | Filament of fiber forming polyester copolymer | |
JPS60135428A (en) | Aromatic polyester and its production | |
JPS62282602A (en) | Polyester hollow yarn-like separating membrane | |
JPS63152625A (en) | Novel polyester and production thereof | |
JPS62177211A (en) | Production of polyester fiber | |
JPS62263318A (en) | Production of hollow polyester fiber | |
JP3185414B2 (en) | Aromatic copolyesterimide | |
US4399270A (en) | Fiber-forming polyesters of ketodiols | |
JPS61143425A (en) | Aromatic polyester and production thereof | |
KR800001711B1 (en) | Improvements in or relating to synthetic polyester | |
JPS6312630A (en) | Totally aromatic copolyester | |
US5006631A (en) | Aromatic polyester carbonate from diphenol mixture | |
EP0102757B1 (en) | Fiber-forming polyesters of aromatic ketohydroxy acids | |
JPS63161020A (en) | Thermotropic liquid crystal copolyester | |
JPS63146927A (en) | Aromatic copolyesteramide | |
JPS62133114A (en) | Polyester fiber material for reinforcement | |
JPH06157735A (en) | New polyester and fiber thereof | |
JPS63210127A (en) | Aromatic copolyester | |
JP3056601B2 (en) | Copolyester and its fiber | |
JPS63277235A (en) | Polyester based polymer and production thereof | |
JPS62133113A (en) | Polyester fiber | |
JPS5829819A (en) | Melt-anisotropic aromatic polyester and its production |