JPS62263318A - Production of hollow polyester fiber - Google Patents

Production of hollow polyester fiber

Info

Publication number
JPS62263318A
JPS62263318A JP10444486A JP10444486A JPS62263318A JP S62263318 A JPS62263318 A JP S62263318A JP 10444486 A JP10444486 A JP 10444486A JP 10444486 A JP10444486 A JP 10444486A JP S62263318 A JPS62263318 A JP S62263318A
Authority
JP
Japan
Prior art keywords
polyester
spinning
heating zone
spinneret
liquid crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10444486A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kagawa
香川 欣史
Tetsuo Matsumoto
哲夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP10444486A priority Critical patent/JPS62263318A/en
Publication of JPS62263318A publication Critical patent/JPS62263318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled homogeneous fibers having a high strength and elastic modulus at a low cost, by melt discharging a thermotropic liquid crystalline wholly aromatic polyester through annular slits having a cut opening part and passing the discharged polyester through a heating zone having a heating surface opposite to the cut opening part. CONSTITUTION:A thermotropic liquid crystalline wholly aromatic polyester is melt discharged through a spinneret 1 equipped with spinning holes of a cross-sectional shape having annular slits with one cut opening part each arranged to oppose to a heating surface of a heating zone. The resultant spun filaments 2 are then passed through a heating zone 3 at a higher temperature than the softening point of the polyester provided below the spinneret 1, collected by collecting guides 4 and passed through a chimney 5. After applying an oiling agent with an oiling roller 6, the resultant yarn is taken off with the first godet roll 7 and second godet roll 8 and wound as a package 10 by a winder 9 to afford the aimed hollow fibers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、サーモドロピンク液晶性完全芳香族ポリエス
テルからなるポリエステル中空繊維を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing polyester hollow fibers made of thermodropink liquid crystalline fully aromatic polyester.

(従来の技術) 近年、高機能性高分子の中空繊維を用いた分離膜や透過
膜の研究が進められており、高度に繊維軸方向に配向し
た液晶性高分子からなる中空繊維は、高機能分離膜の開
発に不可欠である。
(Prior technology) In recent years, research on separation membranes and permeable membranes using hollow fibers of highly functional polymers has been progressing. It is essential for the development of functional separation membranes.

従来、液晶性高分子として、加工性に優れ1こサーモト
ロピック液晶性を有するポリエステルを用いた繊維が注
目されており、盛んに研究されている。(例えば、特公
昭55−482号公幸し等)。しかし。
BACKGROUND ART Conventionally, as a liquid crystalline polymer, fibers using polyester, which has excellent processability and thermotropic liquid crystallinity, have attracted attention and are being actively researched. (For example, Special Publication No. 55-482, etc.). but.

サーモドロピンク液晶性を有するポリエステルからなる
繊維は、高強度、高弾性率という優れた物性を有してい
るにもかかわらず、一般に高重合度のものは溶融粘度が
高く1溶融紡糸が困難であり。
Although fibers made of polyester with thermodropink liquid crystal properties have excellent physical properties such as high strength and high elastic modulus, those with a high degree of polymerization generally have a high melt viscosity and are difficult to melt spin. can be.

中空繊維を紡糸しようとする場合、接合部が剥離しやす
く、紡糸したままで十分高強度の繊維で。
When attempting to spin hollow fibers, the joints tend to peel off easily, and the fibers are sufficiently strong as they are spun.

完全な中空繊維を得ることは困難であった。It was difficult to obtain complete hollow fibers.

また1特公昭58−4085号公報には、ポリエチレン
テレフタレートのような熱可塑I主重合体を溶融紡糸し
て中空繊維を製造するに際し、横断面形状が1個の切欠
き開口部を有する環状スリットである紡糸孔を備え、か
つ切欠き開口部の各々が冷却用気流の吹き出し面に相対
するように配列された紡糸口金を通して紡出することに
より、中空率の大きい、均一な中空繊維を得る方法が開
示されている。
In addition, Japanese Patent Publication No. 1 Sho 58-4085 discloses that when producing hollow fibers by melt spinning a thermoplastic I main polymer such as polyethylene terephthalate, an annular slit having a cross-sectional shape with one notch opening is used. A method for obtaining uniform hollow fibers with a large hollowness ratio by spinning through a spinneret equipped with spinning holes and arranged such that each notch opening faces the blowing surface of the cooling air flow. is disclosed.

しかし、このような紡糸口金直下で冷却用気流を吹きつ
ける方法をサーモトロピック液晶性完全芳香族ポリエス
テルに適用しても、良好な特性を有する中空繊維は得ら
れない。
However, even if such a method of blowing a cooling air stream directly under a spinneret is applied to thermotropic liquid crystalline fully aromatic polyester, hollow fibers with good properties cannot be obtained.

(発明が解決しようとする問題点) 本発明は1サーモトロピツク液晶性完全芳香族ポリエス
テルを溶融紡糸して中空繊維を製造する方法において、
安定した紡糸状態を保ち、均一で。
(Problems to be Solved by the Invention) The present invention provides a method for producing hollow fibers by melt-spinning thermotropic liquid crystalline fully aromatic polyester.
Maintains a stable spinning state and is uniform.

高強度、高弾性率の中空繊維を経済的に製造する方法を
提供しようとするものである。
The present invention aims to provide a method for economically producing hollow fibers with high strength and high modulus.

(問題点を解決するための手段) 本発明の要旨は1次のとおりである。(Means for solving problems) The gist of the present invention is as follows.

サーモトロピック液晶性完全芳香族ポリエステルを溶融
紡糸して中空繊維を製造するに際し、下記A、Bの条件
を満足させることを特徴とするポリエステル中空繊維の
製造法。
A method for producing polyester hollow fibers, which is characterized in that the following conditions A and B are satisfied when producing hollow fibers by melt-spinning a thermotropic liquid crystalline fully aromatic polyester.

A;紡出糸条を紡糸口金の下部に設けたポリエステルの
軟化点以上の加熱ゾーンを通過させること。
A: Passing the spun yarn through a heating zone at a temperature equal to or higher than the softening point of polyester provided at the bottom of the spinneret.

B;横断面形状が1個の切欠き開口部を有する環・ 状
スリットである紡糸孔を備え、かつ切欠き開口部の各々
が加熱ゾーンの加熱面に相対するように配列された紡糸
口金を通して紡糸すること。
B; through a spinneret having a spinning hole whose cross-sectional shape is an annular slit with one notch opening and arranged such that each notch opening faces the heating surface of the heating zone; To spin.

本発明におけるサーモトロピック液晶性完全芳香族ポリ
エステルは特に限定されないが、特に好ましいものは1
次に述べるポリエステルであり。
The thermotropic liquid crystalline fully aromatic polyester in the present invention is not particularly limited, but particularly preferred are 1
This is the polyester mentioned next.

以下このポリエステルを例にとって1本発明のポリエス
テル中空繊維の製造法を説明する。
The method for producing the polyester hollow fiber of the present invention will be explained below by taking this polyester as an example.

すなわち1本発明において特に好ましいポリエステルは
、主鎖を構成する単位の5〜95モル%が下記構造式(
I)で表される単位であるサーモトロピック液晶性完全
芳香族コポリエステルである。
That is, in the particularly preferred polyester in the present invention, 5 to 95 mol% of the units constituting the main chain have the following structural formula (
It is a thermotropic liquid crystalline fully aromatic copolyester having units represented by I).

(Ar’は3価の芳香族基を示す。ただし、芳香環は置
換基を有していてもよい。〕 構造式(1)で表される単位を5〜95モル%、好まし
くは10〜80モル%、より好ましくは20〜40モル
%含有するサーモトロピック液晶性を有するコポリエス
テルで、良好な溶融紡糸性を有するものが好適である。
(Ar' represents a trivalent aromatic group. However, the aromatic ring may have a substituent.) 5 to 95 mol% of the unit represented by structural formula (1), preferably 10 to 95 mol% A copolyester having thermotropic liquid crystallinity containing 80 mol%, more preferably 20 to 40 mol%, and having good melt spinnability is suitable.

構造式(1)で表される単位が多すぎると強度が低下し
、一方、少なすぎると融点が高くなりすぎたりする。
If there are too many units represented by structural formula (1), the strength will decrease, while if there are too few, the melting point will become too high.

構造式(1)におけるAr’としては、ベンゼン環及び
ナフタリン環が最も好ましい。また、構造式(1)にお
いて芳香環の水素原子は炭素原子数1〜20のアルキル
基、アリール基、アルコキシ基、アリロキシ基もしくは
ハロゲン原子で置換されていてもよい。
Ar' in structural formula (1) is most preferably a benzene ring or a naphthalene ring. Further, in Structural Formula (1), the hydrogen atom of the aromatic ring may be substituted with an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkoxy group, an allyloxy group, or a halogen atom.

構造式(1)の単位は、含リン芳香族ジオール成分と芳
香族ジカルボン酸成分とから誘導されるものである。
The unit of structural formula (1) is derived from a phosphorus-containing aromatic diol component and an aromatic dicarboxylic acid component.

含リン芳香族ジオールの具体例としては1次の弐(a)
〜(dlで表されるものが挙げられるが、特に好ましい
ものは1式(al及び式(blで表されるものである。
Specific examples of phosphorus-containing aromatic diols include primary 2(a)
Examples include those represented by ~(dl), but particularly preferred are those represented by formula 1 (al) and formula (bl).

芳香族ジカルボン酸としては、テレフタル酸(TPA)
及びイソフタル酸(IPA)が好適であり、 TPAと
rp八とをモル比で100:0〜0 : 100.  
好ましくは100:O〜50 : 50.最適にはto
o:o〜80 : 20の割合で用いるのが適当である
As aromatic dicarboxylic acid, terephthalic acid (TPA)
and isophthalic acid (IPA) are preferred, and the molar ratio of TPA and RP8 is 100:0 to 0:100.
Preferably 100:O to 50:50. Optimally to
It is appropriate to use the ratio of o:o to 80:20.

構造式(I)の単位とともにコポリエステルを形成する
第2の単位は、構造式(1)の単位とともに溶1誼紡糸
性の良好なサーモトロピック液晶性を有するコポリエス
テルを形成するものであればよいが、下記構造式(I[
)で示されるオキシカルボン酸残基からなる単位及び下
記構造式(lI[)で示されるるアリレート単位が好ま
しく、特に前者が好ましい。
The second unit that forms a copolyester together with the unit of structural formula (I) may be one that forms a copolyester having thermotropic liquid crystallinity with good spinnability together with the unit of structural formula (1). However, the following structural formula (I[
) A unit consisting of an oxycarboxylic acid residue and an arylate unit represented by the following structural formula (lI[) are preferred, with the former being particularly preferred.

一〇−Ar2−Co −(II) −O−Ar’−0−QC−Ar’−C○−(II[)こ
こで、 Ar”、 Ar3. Ar’は2価の芳香族基
を示し、具体的には、ベンゼン環及びナフタリン環が好
ましく、ベンゼン環及びナフタリン環の水素原子は炭素
原子数1〜20のアルキル基、アリール基、アルコキシ
基、アリロキシ基もしくはハロゲン原子で置換されてい
てもよい。
10-Ar2-Co -(II) -O-Ar'-0-QC-Ar'-C○-(II[) where Ar", Ar3. Ar' represents a divalent aromatic group, Specifically, a benzene ring and a naphthalene ring are preferred, and the hydrogen atoms of the benzene ring and naphthalene ring may be substituted with an alkyl group, an aryl group, an alkoxy group, an allyloxy group, or a halogen atom having 1 to 20 carbon atoms. .

これらの具体例としては、4−ヒドロキシ安息香酸残基
、6−ヒドロキシ−2−ナフトエ酸残基。
Specific examples of these include 4-hydroxybenzoic acid residue and 6-hydroxy-2-naphthoic acid residue.

ハイドロキノンテレフタレート残基、ハイドロキノンイ
ソフタレート残基、1,4−ナフトハイドロキノンテレ
フタレート残基、2,6−ナフトハイドロキノンテレフ
タレート残基、レゾルシンテレフタレート残基等が挙げ
られるが、最も好ましいものは14−ヒドロキシ安息香
酸残基である。
Examples include hydroquinone terephthalate residue, hydroquinone isophthalate residue, 1,4-naphthohydroquinone terephthalate residue, 2,6-naphthohydroquinone terephthalate residue, resorcinol terephthalate residue, and the most preferred one is 14-hydroxybenzoic acid. It is a residue.

また、78融紡糸性の良好なサーモトロピック液晶性コ
ポリエステルを形成する範囲で、上記以外の成分を共重
合してもよく、そのような共重合成分としては、4.4
’−ジヒドロキシジフェニル。
In addition, components other than the above may be copolymerized within the range of forming a thermotropic liquid crystalline copolyester with good 78 melt spinnability, and such copolymerized components include 4.4
'-dihydroxydiphenyl.

ナフタル酸等が挙げられる。Examples include naphthalic acid.

本発明の繊維を形成する。好ましいコポリエステルの一
例として、構造式 (1)で表される単位が前記式0I
I)で示される9、10−ジヒドロ−9−オキサ−10
−(215′−ジヒドロキシフェニル)ホスファフェナ
ントレン−10−オキシド(pH1l))とTPA /
IPAとから誘導される単位、構造式(II)で表され
る単位が4−ヒドロキシ安息香酸(4HBA)残基から
なる単位であるコポリエステルについて、その製造法の
一例を説明する。
Forming the fiber of the invention. As an example of a preferable copolyester, the unit represented by the structural formula (1) has the above formula 0I
9,10-dihydro-9-oxa-10 represented by I)
-(215'-dihydroxyphenyl)phosphaphenanthrene-10-oxide (pH 1l)) and TPA/
An example of a method for producing a copolyester in which the unit derived from IPA and the unit represented by the structural formula (II) is a unit consisting of a 4-hydroxybenzoic acid (4HBA) residue will be described.

(イ) TPA /IPAからなる酸成分とPR[]の
ジアセテート体(PHQ−A)からなるジオール成分と
411 B Aのアセテート体(411BA−A)から
なるオキシカルボン酸成分とをヒドロキシル基とカルボ
キシル基とが当量となる量(及び好ましく−ま同時に全
ヒドロキシル基の量の0.01〜0.25倍当量の無水
酢酸)もしくは(ロ)TPA/rPAからなる酸成分と
pH(]からなるジオール成分と4HBAからなるオキ
シカルボン酸成分とをヒドロキシル基とカルボキシル基
とが当量となる量及び全ヒドロキシル基の量の1.05
〜1.25倍当量の無水酢酸を反応器に仕込み、常圧下
1150°Cを超えない温度で、0.5〜4時間エステ
ル化反応させる。次いで、不活性雰囲気中、常圧下11
50〜300℃の温度で、0.5〜3時間酸交換反応さ
せ、さらに。
(b) An acid component consisting of TPA/IPA, a diol component consisting of a diacetate of PR[] (PHQ-A), and an oxycarboxylic acid component consisting of an acetate of 411BA (411BA-A) with a hydroxyl group. An amount equivalent to carboxyl groups (and preferably - at the same time, 0.01 to 0.25 times equivalent amount of acetic anhydride to the amount of all hydroxyl groups) or (b) an acid component consisting of TPA/rPA and pH () The diol component and the oxycarboxylic acid component consisting of 4HBA are mixed in an amount such that hydroxyl groups and carboxyl groups are equivalent and 1.05 of the total amount of hydroxyl groups.
~1.25 times the equivalent of acetic anhydride is charged into a reactor, and the esterification reaction is carried out at a temperature not exceeding 1150°C under normal pressure for 0.5 to 4 hours. Then, in an inert atmosphere under normal pressure 11
Acid exchange reaction is carried out for 0.5 to 3 hours at a temperature of 50 to 300°C, and further.

230〜300°Cの温度で反応を続ける。その際1 
フルバキュームまでの時間が1時間以上となるような減
圧スケジュールで減圧を開始する。その後順次昇温し、
酢酸を漏出させ、最終的に通常300〜350°Cの温
度下11トル程度の高減圧下に数十分〜数時間、溶融相
又は固相で重縮合反応させることによって、繊維形成性
のコポリエステルを得ることができる。
Continue the reaction at a temperature of 230-300°C. At that time 1
Start depressurization using a decompression schedule that will take at least 1 hour to reach full vacuum. After that, the temperature is gradually increased,
By leaking acetic acid and finally carrying out a polycondensation reaction in the melt phase or solid phase under a high vacuum of about 11 torr at a temperature of usually 300 to 350°C for several tens of minutes to several hours, a fiber-forming copolymer is produced. Polyester can be obtained.

通常1重縮合反応には触媒が用いられるが1本発明にお
けるコポリエステルの製造には1各f重金属化合物及び
有機スルホン酸化合物の中から選ばれた1種以上の化合
物が用いられる。
Usually, a catalyst is used in the polycondensation reaction, but in the production of the copolyester in the present invention, one or more compounds selected from heavy metal compounds and organic sulfonic acid compounds are used.

かかる金属化合物としては、アンチモン、チタン、ゲル
マニウム、スズ1亜鉛、アルミニウム。
Such metal compounds include antimony, titanium, germanium, tin-zinc, and aluminum.

マグネシウム、カルシウム、マンガン、ナトリウムある
いはコバルト等の化合物が用いられ、一方。
On the other hand, compounds such as magnesium, calcium, manganese, sodium or cobalt are used.

有機スルホン酸化合物としては1 スルホサリチル−酸
、0−スルホ安息香酸無水物等の化合物が用いられる。
As the organic sulfonic acid compound, compounds such as 1 sulfosalicyl acid and 0-sulfobenzoic anhydride are used.

特に好ましいものは、ジメチルスズマレエートや0−ス
ルホ安息香酸無水物である。
Particularly preferred are dimethyltin maleate and 0-sulfobenzoic anhydride.

触媒の添加量は、ポリエステルの構成単位1モルに対し
通常0.I X 10−’〜100 X 10−’モル
、好ましくは0.5 X 10−’〜50X10−’モ
ル、最適には1×1O−4〜l0XIO−’モルが適当
である。
The amount of catalyst added is usually 0.00% per mole of polyester structural unit. I X 10-' to 100 X 10-' mol, preferably 0.5 X 10-' to 50 X 10-' mol, optimally 1x1O-4 to 10XIO-' mol are suitable.

なお1重縮合反応の過程でポリエステルの構成単位あ種
類によっては因化し、固相状態となる場合もあるし、)
容融状態のまま重縮合できる場合もある。
In addition, during the single polycondensation reaction, depending on the type of polyester structural unit, it may become a solid phase.)
In some cases, polycondensation can be carried out in the molten state.

本発明におけるコポリエステルは、繊維にした状態で、
極限粘度〔η〕が0.5以上であることが望ましく、好
ましくは1.0〜10.0、最適には3.0〜6.0で
ある。〔η〕かごの範囲より小さいと耐熱性を始めとす
る各種の物理的1機械的特性値が劣り、一方、 〔η〕
がこの範囲より大きいと溶融粘度が高くなりすぎて流動
性等が損なわれたり、融点が高くなりすぎて紡糸温度を
著しく高くしなければならなくなったりして好ましくな
い。
The copolyester in the present invention is made into fibers, and
It is desirable that the intrinsic viscosity [η] is 0.5 or more, preferably 1.0 to 10.0, most preferably 3.0 to 6.0. [η] If it is smaller than the cage range, various physical and mechanical properties such as heat resistance will be inferior; on the other hand, [η]
If it is larger than this range, the melt viscosity becomes too high, impairing fluidity, etc., or the melting point becomes too high, making it necessary to raise the spinning temperature significantly, which is not preferable.

したがって、紡糸に供するポリエステルの〔η〕は、紡
糸時の〔η〕の低下を見込んで、ポリエステル中の水分
率が1100pp程度のとき、前記した値よりも通常0
.1以上〔η〕の高いポリエステルを使用するのが適当
である。ポリエステル中の水分率t1100ppm程度
とすルニは、減圧下、150〜200 ’cの温度で、
8〜48時間程度乾燥すればよい。
Therefore, [η] of the polyester to be subjected to spinning is usually 0.0% compared to the above value when the moisture content in the polyester is about 1100 pp, taking into account the decrease in [η] during spinning.
.. It is appropriate to use a polyester with a high [η] of 1 or more. When the moisture content in polyester is about 1100 ppm, Luni is heated under reduced pressure at a temperature of 150 to 200'C.
It may be dried for about 8 to 48 hours.

また1本発明におけるコポリエステルの熱的特性値とし
ては融点330℃以下、軟化点200”C以上。
In addition, the thermal properties of the copolyester in the present invention include a melting point of 330° C. or lower and a softening point of 200"C or higher.

好ましくは融点300℃以下、軟化点220’C以上、
最適には融点280〜300°C1軟化点220〜28
0°Cのものが、耐熱性と各種の物理的1機械的特性値
とを両立させる点で適当である。
Preferably a melting point of 300°C or lower, a softening point of 220'C or higher,
Optimally melting point 280-300°C1 softening point 220-28
A temperature of 0°C is suitable in terms of achieving both heat resistance and various physical and mechanical property values.

このようにして得られたコポリエステルを、前述のA〜
Bの条件を満足する紡糸条件で紡糸する。
The thus obtained copolyester was
Spinning is performed under spinning conditions that satisfy condition B.

すなわち、まず、溶融紡出した糸条を紡糸口金の下部に
設けた加熱ゾーンを通過させる。条件Aの加熱ゾーンは
、紡糸口金から吐出されたポリエステル糸条を、その軟
化点以上に加熱して、ポリエステル糸条を有効かつ、均
一に細化させ、繊維軸の方向にサーモトロピック液晶性
ポリエステルの分子を配向させるとともに、繊維軸方向
の均斉度を保つのに必須である。
That is, first, the melt-spun yarn is passed through a heating zone provided at the bottom of the spinneret. The heating zone of condition A heats the polyester yarn discharged from the spinneret to a temperature higher than its softening point, effectively and uniformly thins the polyester yarn, and forms thermotropic liquid crystalline polyester in the direction of the fiber axis. It is essential to orient the molecules of the fibers and maintain uniformity in the fiber axis direction.

加熱ゾーンの雰囲気温度を前記した温度範囲とするには
1例えば次のようにすればよい。すなわち、紡出糸条の
外周から中心に向けて通常0.1〜101/分の流量、
0.1〜10m/秒の流速で所定範囲の温度の気体を吹
きつける加熱フードを設置すればよい。この雰囲気温度
は前記した範囲内の温度で、できるだけ一定値に制御す
ることが好ましい。
In order to set the ambient temperature of the heating zone within the above-mentioned temperature range, for example, the following procedure may be used. That is, the flow rate is usually 0.1 to 101/min from the outer periphery to the center of the spun yarn,
A heating hood that blows gas at a predetermined temperature range at a flow rate of 0.1 to 10 m/sec may be installed. It is preferable that the ambient temperature be controlled to be as constant as possible within the above-mentioned range.

次に1条件Aとともに1条件B、すなわち、加熱ゾーン
の加熱面に対して紡糸孔の切欠き開口部の位置が相対す
るようにすることが中空繊維として、完全なものにする
のに必須である。
Next, 1 condition A and 1 condition B, that is, making sure that the position of the notch opening of the spinning hole is opposite to the heating surface of the heating zone is essential for making the hollow fiber perfect. be.

加熱ゾーンの加熱面に対して紡糸孔の切欠き開口部の位
置が異なるときには、紡出糸条の配向性。
When the position of the notch opening of the spinning hole with respect to the heating surface of the heating zone is different, the orientation of the spun yarn.

結晶性、伸度等の物性が異なったり、また一部間口部を
有する状態となり中空繊維として完全なものにならなか
ったり、あるいは、得られる中空繊維が脆りなものとな
ったりして好ましくない。
This is undesirable because physical properties such as crystallinity and elongation may be different, or the hollow fibers may not be perfect because they have some openings, or the hollow fibers obtained may be brittle.

なお、紡糸速度は、100〜1500m/分程度が好ま
しい。
Note that the spinning speed is preferably about 100 to 1500 m/min.

また、紡糸パック部及び/又は加熱ゾーンにおいて、ポ
リマーの流動方向に対してほぼ平行方向に磁界をかけて
、紡出糸条の分子配向を制御する方法を併用することも
好ましい。
It is also preferable to use a method of controlling the molecular orientation of the spun yarn by applying a magnetic field in a direction substantially parallel to the flow direction of the polymer in the spinning pack section and/or the heating zone.

次に9図面を用いて本発明の方法を具体的に説明する。Next, the method of the present invention will be specifically explained using nine drawings.

第1図は本発明の方法に好適に用いられる紡糸引取装置
の一実施態様を示す概略図であり、紡糸口金面の下方で
2個の集束ガイドを用いてこれらの糸条を交互に押しつ
けて集束した場合の例を示す。
FIG. 1 is a schematic diagram showing an embodiment of a spinning take-off device suitably used in the method of the present invention, in which two focusing guides are used to alternately press these yarns below the spinneret surface. An example of focusing is shown below.

紡糸口金1から吐出された糸条2は、加熱フード3で雰
囲気温度を調整された加熱ゾーンを通過し、集束ガイド
群4で集束され、チムニ−5を経て、オイリングローラ
6でオ・イリングされ、第1ゴデツトローラ7、第2ゴ
デツトローラ8で引き取られ、ワインダー9でパッケー
ジ10として巻き上げられる。
The yarn 2 discharged from the spinneret 1 passes through a heating zone whose atmospheric temperature is adjusted by a heating hood 3, is focused by a focusing guide group 4, passes through a chimney 5, and is oiled by an oiling roller 6. , the first godet roller 7 and the second godet roller 8, and are wound up as a package 10 by a winder 9.

加熱フード3の長さは特に制限されないが1通常数cm
−数十cm、好ましくは、 20〜80cm程度が適当
である。また、加熱フード3の長さは、この程度の範囲
であれば、長い方が、一般に紡糸速度を上げることが可
能となる。
The length of the heating hood 3 is not particularly limited, but it is usually several cm.
-Several tens of cm, preferably about 20 to 80 cm, is appropriate. Further, as long as the length of the heating hood 3 is within this range, the longer the length, the faster the spinning speed can generally be increased.

紡糸引取糸のウースター斑(U%)が小さくなるような
最適の長さとすることが望ましい。
It is desirable to set the optimum length so that the Worcester spot (U%) of the spun yarn is reduced.

なお9本発明の方法で得られるポリエステル中空繊維は
、全ての糸条が完全な中空繊維で、紡糸したままの状態
で十分高強度を示し、特に耐熱性と強度を要求される用
途に使用される素材9例えば、ガス・流体の分離膜及び
精製などの素材として極めて有用である。
Note that the polyester hollow fiber obtained by the method of the present invention is a hollow fiber in which all threads are completely formed, and exhibits sufficiently high strength in the as-spun state, and can be used in applications that require particularly heat resistance and strength. For example, it is extremely useful as a material for separation membranes and purification of gases and fluids.

(実施例) 次に、実施例を挙げて本発明をさらに詳しく説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

ポリマーの極限粘度〔η〕は、実施例4及び6〜9では
、ペンタフルオロフェノール溶媒中、60℃で測定し、
その他では、フェノールと四塩化エタンとの等重量混合
溶媒中、20℃で測定した溶液粘度から求めた。
In Examples 4 and 6 to 9, the intrinsic viscosity [η] of the polymer was measured at 60°C in a pentafluorophenol solvent,
In other cases, the viscosity was determined from the solution viscosity measured at 20° C. in a mixed solvent of equal weights of phenol and tetrachloroethane.

ザーモトロピソク液晶性はホットステージ付Leitz
偏光顕微鏡でtri認した。
Thermotropisoc liquid crystalline Leitz with hot stage
Tri-identification was performed using a polarizing microscope.

ポリエステルの軟化点(Ts)は、メトマー社製自動融
点測定装置を用い1顕微鏡下でホットステージ上に2木
の繊維を互いに交差させて置き、2°C/分の割合で昇
温し、繊維の交点が変形して融着する温度として求めた
The softening point (Ts) of polyester is determined by using an automatic melting point measuring device manufactured by Metmer Co., Ltd., placing two wood fibers in a crosswise manner on a hot stage under a microscope, raising the temperature at a rate of 2°C/min, and then melting the fibers. It was determined as the temperature at which the intersection of the two deforms and fuses.

マタ、ポリエステルのガラス転移点(Tg)は、パーキ
ンエルマー社製示差走査熱量計(DSC2型)を用いて
測定した。
The glass transition point (Tg) of the polyester was measured using a differential scanning calorimeter (Model DSC2) manufactured by PerkinElmer.

さらに、紡糸調子は、得られた未延伸中空マルチフィラ
メント糸の断面を観察して1次の基準で評価した。
Furthermore, the spinning condition was evaluated on a first-order basis by observing the cross section of the obtained undrawn hollow multifilament yarn.

○;マルチフィラメント中の切欠き開口部が溶着してい
ない非中空フィラメントの発生がない。
○; No non-hollow filament in which the notch opening in the multifilament is welded.

△;非中空フィラメントの発生率が5〜lO%。Δ; Occurrence rate of non-hollow filaments is 5 to 10%.

×;非中空フィラメントの発生率が50%以上。×: The incidence of non-hollow filaments is 50% or more.

実施例1及び比較例 反応装置にPHQ−Aと旧IBA−Aと無水酢酸をモル
比で2.5 : 7.5 : 2及びPIIQ−八と等
モルのTPAを仕込み。
Example 1 and Comparative Examples PHQ-A, old IBA-A, and acetic anhydride in a molar ratio of 2.5:7.5:2 and PIIQ-8 and equimolar TPA were charged into a reactor.

角虫媒としてジメチルスズマレエートをポリエステルの
構成単位1モルに対して、1X10−’モル加え。
Dimethyltin maleate was added as a hornworm medium in an amount of 1 x 10-' mol per mol of the polyester structural unit.

窒素雰囲気下で、常圧、145°Cの温度で、1時間エ
ステル化反応させた。その後1窒素雰囲気下、常圧、2
00°Cから昇温速度25℃/時間で275°Cまで昇
温し、この際、90分間で1トルに到達するような減圧
スケジュールで減圧を開始した。その後、順次界温し、
酢酸を溜出させながら、最終的に320’C,11−ル
の減圧下で1時間溶融重合した。
Esterification reaction was carried out under a nitrogen atmosphere at normal pressure and a temperature of 145°C for 1 hour. After that, 1 under nitrogen atmosphere, normal pressure, 2
The temperature was raised from 00°C to 275°C at a temperature increase rate of 25°C/hour, and at this time, pressure reduction was started on a pressure reduction schedule such that the pressure reached 1 Torr in 90 minutes. After that, the temperature is gradually increased,
While acetic acid was being distilled off, melt polymerization was finally carried out under reduced pressure of 320'C, 11-l for 1 hour.

得られたコポリエステルは、〔η) 4.95.TS 
265’C,Tg 186°Cで3色調の良い液晶性コ
ポリエステルであった。
The obtained copolyester has a [η) of 4.95. T.S.
It was a liquid crystalline copolyester with three good color tones at 265'C and Tg 186°C.

このコポリエステルを、第2図に示したような形状の紡
糸孔を72孔有する直径90mmの紡糸口金を用いて第
1表に示した条件で紡糸した。
This copolyester was spun under the conditions shown in Table 1 using a spinneret with a diameter of 90 mm and having 72 spinning holes shaped as shown in FIG.

なお、加熱フード3としては1次の条件で1円筒形のも
のを使用した。
As the heating hood 3, a cylindrical one was used under the primary conditions.

■加熱風吹き出し面の内径    100mm■加熱フ
ード3の長さ       30cm■加熱風量 各試
験毎に予備試験を行い、U%が最も小さくなる量とした
■Inner diameter of heated air blowing surface 100 mm ■Length of heating hood 3 30 cm ■Heating air volume A preliminary test was conducted for each test, and the amount was determined to minimize U%.

実施例2 反応WZにPIIQとレヅルシン(R3)と4HBAと
無水酢酸をモル比で3:1:6:15及びPIIQとR
5の和と等モルのTPA/IP八(モル比90/10)
を仕込み1触媒としてジメチルスズマレエートをポリエ
ステルの構成単位1モルに対し4X10−’モル加え、
窒素雰囲気下、常圧、130°Cで2時間エステル化反
応させた。その後、窒素雰囲気下、常圧、220℃で1
時間酸交換反応させた。その後、220°Cから昇温速
度20°C/時間で、280°Cまで昇温し、この際、
60分間で1トルに到達するような減圧スケジュールで
減圧を開始した。その後1順次児温し、酢酸を溜出させ
ながら反応を行い、最終的に310°C11トルの減圧
下で2時間溶融重合した。
Example 2 In reaction WZ, PIIQ, redulucin (R3), 4HBA and acetic anhydride were added in a molar ratio of 3:1:6:15, and PIIQ and R
Equimolar TPA/IP8 to the sum of 5 (molar ratio 90/10)
and 4×10 −' mol of dimethyltin maleate as a catalyst per mol of the polyester structural unit.
Esterification reaction was carried out at 130°C under nitrogen atmosphere at normal pressure for 2 hours. After that, under nitrogen atmosphere, normal pressure, 1 at 220℃.
The acid exchange reaction was carried out for an hour. Thereafter, the temperature was raised from 220°C to 280°C at a heating rate of 20°C/hour, and at this time,
Depressurization was started on a depressurization schedule to reach 1 Torr in 60 minutes. Thereafter, the mixture was incubated one after another, and the reaction was carried out while distilling acetic acid, and finally melt polymerization was carried out at 310° C. and under a reduced pressure of 11 torr for 2 hours.

得られたコポリエステルは、〔η) 3.06.Ts 
258’C,Tg177℃で2色調の良い液晶性ポリエ
ステルであった。
The obtained copolyester has [η) 3.06. Ts
It was a liquid crystalline polyester with good two-color tone at 258'C and Tg of 177°C.

このコポリエステルを実施例1と同様に紡糸してポリエ
ステル中空繊維を得た。
This copolyester was spun in the same manner as in Example 1 to obtain polyester hollow fibers.

実施例3 反応装置にPIQ とハイドロキノン(IIQ)と41
1 B Aと無水酢酸をモル比で4:1:5:18及び
I’lIQ とIIQの和と等モルのTPA/I?A(
モル比80/20)を仕込み。
Example 3 PIQ, hydroquinone (IIQ) and 41
1 B A and acetic anhydride in a molar ratio of 4:1:5:18 and TPA/I in a molar equivalent to the sum of I'lIQ and IIQ? A(
molar ratio 80/20).

触媒としてジメチルスズマレエートをポリエステルの構
成単位1モルに対し、1X10−’モル加え、窒素雰囲
気下で1常圧、150°Cで・15分間エステル化反応
させた。その後、窒素雰囲気下で1常圧、180°Cで
、3時間酸交換反応させた。その後、180°Cから昇
温速度50”C/時間で、280°Cまて昇温し、この
際。
Dimethyltin maleate was added as a catalyst in an amount of 1×10 −' mol per mol of the polyester structural unit, and an esterification reaction was carried out at 1 normal pressure and 150° C. for 15 minutes under a nitrogen atmosphere. Thereafter, an acid exchange reaction was carried out under a nitrogen atmosphere at 1 normal pressure and 180°C for 3 hours. Thereafter, the temperature was raised from 180°C to 280°C at a heating rate of 50"C/hour.

90分間で1トルに到達するような減圧スケジュールで
減圧を開始した。その後、順次昇温し、酢酸を漏出させ
ながら反応を行い、最終的に325℃。
Depressurization was started on a depressurization schedule to reach 1 Torr in 90 minutes. Thereafter, the temperature was raised sequentially, and the reaction was carried out while leaking acetic acid, finally reaching 325°C.

1トルの減圧下で2時間溶融重合した。Melt polymerization was carried out for 2 hours under a vacuum of 1 torr.

得られたコポリエステルは、〔η) 1.43.Ts 
273’C,7g190°Cで色調の良い液晶性ポリエ
ステルであった。
The obtained copolyester has [η) 1.43. Ts
It was a liquid crystalline polyester with good color tone at 273'C and 7g at 190°C.

このコポリエステルを実施例1と同様に紡糸してポリエ
ステル中空繊維を得た。
This copolyester was spun in the same manner as in Example 1 to obtain polyester hollow fibers.

上記各側における紡糸調子及び得られた中空繊維の特性
値等を第1表に示す。
The spinning conditions on each side and the characteristic values of the obtained hollow fibers are shown in Table 1.

なお、比較例41口では強度が低く、紡糸時に単糸切れ
が発生し、糸のU%が大きく、また、切欠き開口部が融
着していない非中空フィラメントが多く発生して1巻き
取りが困難であった。
In addition, in Comparative Example 41, the strength was low, single fiber breakage occurred during spinning, the U% of the yarn was large, and many non-hollow filaments whose notch openings were not fused were generated, making it difficult to take one winding. was difficult.

第1表 2)中空率はカル口・エルバ社製221型水銀圧入法ポ
ロシメーターを用いて、測定した。微細孔容積の中空部
を除いた中空糸実劉畠こ対する割合である。
Table 1 2) Hollowness ratio was measured using a mercury porosimeter model 221 manufactured by Kalkuchi Elba. This is the ratio of the micropore volume to that of the hollow fiber excluding the hollow part.

実施例4〜9 第2表に示した原料を使用して実施例1と同様にして第
2表に示したコポリエステルを得た。
Examples 4 to 9 Copolyesters shown in Table 2 were obtained in the same manner as in Example 1 using the raw materials shown in Table 2.

なお、第2表において(b) 、 (c) 、 (d)
は、それぞれ前記の構造式(b) 、 (c) 、 (
d)の有機リン化合物。
In Table 2, (b), (c), (d)
have the above structural formulas (b), (c), (
d) organophosphorus compound.

N口は、1,4−ナフトキノンを示し、フェノール性水
酸基をジアセテート体に変換したものを用いた。
The N port indicated 1,4-naphthoquinone, which had a phenolic hydroxyl group converted to a diacetate.

これらのコポリエステルを紡糸速度200m /分。These copolyesters were spun at a speed of 200 m/min.

紡糸温度Ts+70℃、加熱ゾーンの温度Ts + 1
0℃とし、その他は実施例1と同様にして紡糸してポリ
エステル中空繊維を得た。
Spinning temperature Ts + 70°C, heating zone temperature Ts + 1
The temperature was 0° C., and the other conditions were the same as in Example 1 to obtain polyester hollow fibers.

得られた繊維の特性値等を第2表に示す。Table 2 shows the characteristic values of the obtained fibers.

(発明の効果) 本発明によれば3次のような効果が奏される。(Effect of the invention) According to the present invention, the following effects are achieved.

(1)耐熱性と物理的3機械的強度に優れた高強度。(1) High strength with excellent heat resistance and physical 3 mechanical strength.

高弾性率のポリエステル中空繊維を得ることができる。Polyester hollow fibers with high elastic modulus can be obtained.

(2)溶融紡糸時の操業性が良く、かつ均斉度の良いポ
リエステル中空繊維を経済的に調造することができる。
(2) Polyester hollow fibers with good operability during melt spinning and good uniformity can be economically prepared.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に好適に用いられる紡糸引取装置
の一実施態様を示す概略図、第2図は本発明に、おける
紡糸口金の一例を示す概略説明図である。 1 紡糸口金、3−加熱フード、4−集束ガイド。 5−チムニ−16−オイリングローラ、7−第1ゴデツ
トローラ、8−最終ゴプツトローラ。 9− ワイングー、 1(1−パッケージ。
FIG. 1 is a schematic diagram showing an embodiment of a spinning take-off device suitably used in the method of the present invention, and FIG. 2 is a schematic explanatory diagram showing an example of a spinneret in the present invention. 1 - spinneret, 3 - heating hood, 4 - focusing guide. 5-chimney-16-oiling roller, 7-first godet roller, 8-last godet roller. 9- Wine goo, 1 (1- package.

Claims (1)

【特許請求の範囲】[Claims] (1)サーモトロピック液晶性完全芳香族ポリエステル
を溶融紡糸して中空繊維を製造するに際し、下記A、B
の条件を満足させることを特徴とするポリエステル中空
繊維の製造法。 A;紡出糸条を紡糸口金の下部に設けたポリエステルの
軟化点以上の加熱ゾーンを通過させること、 B;横断面形状が1個の切欠き開口部を有する環状スリ
ットである紡糸孔を備え、かつ切欠き開口部の各々が加
熱ゾーンの加熱面に相対するように配列された紡糸口金
を通して紡糸すること。
(1) When producing hollow fibers by melt spinning thermotropic liquid crystalline fully aromatic polyester, the following A and B
A method for producing polyester hollow fibers characterized by satisfying the following conditions. A: Passing the spun yarn through a heating zone above the softening point of polyester provided at the bottom of the spinneret; B: Providing a spinning hole whose cross-sectional shape is an annular slit with one notch opening. , and spinning through a spinneret arranged such that each of the notched openings faces a heating surface of the heating zone.
JP10444486A 1986-05-07 1986-05-07 Production of hollow polyester fiber Pending JPS62263318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10444486A JPS62263318A (en) 1986-05-07 1986-05-07 Production of hollow polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10444486A JPS62263318A (en) 1986-05-07 1986-05-07 Production of hollow polyester fiber

Publications (1)

Publication Number Publication Date
JPS62263318A true JPS62263318A (en) 1987-11-16

Family

ID=14380814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10444486A Pending JPS62263318A (en) 1986-05-07 1986-05-07 Production of hollow polyester fiber

Country Status (1)

Country Link
JP (1) JPS62263318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523029A (en) * 2015-08-08 2018-08-16 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG Method and apparatus for melt spinning synthetic yarn
KR20220164190A (en) * 2021-06-04 2022-12-13 서진우 Apparatus and method for manufacturing porous yarns with improved efficiency in cooling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754568A (en) * 1980-09-19 1982-04-01 Eiji Ichijima Production of natto of improved quality
JPS57171718A (en) * 1981-04-17 1982-10-22 Teijin Ltd Antistatic polyester fiber
JPS584085A (en) * 1981-06-27 1983-01-11 四国化成工業株式会社 Folding gate door
JPS5891812A (en) * 1981-11-26 1983-05-31 Asahi Chem Ind Co Ltd Preparation of polyester filament
JPS6112913A (en) * 1984-06-15 1986-01-21 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー Improved spinning method
JPS626211A (en) * 1985-02-06 1987-01-13 Sumitomo Electric Ind Ltd Reinforcing member made of resin with high orientation property and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754568A (en) * 1980-09-19 1982-04-01 Eiji Ichijima Production of natto of improved quality
JPS57171718A (en) * 1981-04-17 1982-10-22 Teijin Ltd Antistatic polyester fiber
JPS584085A (en) * 1981-06-27 1983-01-11 四国化成工業株式会社 Folding gate door
JPS5891812A (en) * 1981-11-26 1983-05-31 Asahi Chem Ind Co Ltd Preparation of polyester filament
JPS6112913A (en) * 1984-06-15 1986-01-21 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー Improved spinning method
JPS626211A (en) * 1985-02-06 1987-01-13 Sumitomo Electric Ind Ltd Reinforcing member made of resin with high orientation property and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523029A (en) * 2015-08-08 2018-08-16 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG Method and apparatus for melt spinning synthetic yarn
JP2021105241A (en) * 2015-08-08 2021-07-26 エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG Method and device for melt-spinning synthetic yarn
KR20220164190A (en) * 2021-06-04 2022-12-13 서진우 Apparatus and method for manufacturing porous yarns with improved efficiency in cooling

Similar Documents

Publication Publication Date Title
IE49655B1 (en) Aromatic polyester and filaments of improved heat strengthening response
US4447592A (en) Anisotropic melt polyesters of 6-hydroxy-2-naphthoic acid
US5955196A (en) Polyester fibers containing naphthalate units
CA2113639A1 (en) Copolyesters for high modulus fibers
WO1996038491A1 (en) Wholly aromatic thermotropic polyesters
JPS62263318A (en) Production of hollow polyester fiber
US4294955A (en) Polymers from phenylterephthalic acid
JPS62177211A (en) Production of polyester fiber
US5453321A (en) High molecular weight copolyesters for high modulus fibers
US4391966A (en) Polymers from phenylterephthalic acid
JPH0582250B2 (en)
JPS61225312A (en) Production of aromatic polyester yarn
US4399270A (en) Fiber-forming polyesters of ketodiols
JPH10212652A (en) Polyester filament based non woven fabric
US4398015A (en) Fiber-forming polyesters of aromatic ketohydroxy acids
KR100656686B1 (en) Polyester Fibers Containing Naphthalate Units
JPS6081314A (en) Preparation of polyester yarn
KR20040096190A (en) Thermal adhesive co-polyester, preparing method thereof and binder fiber including the same
JPH0314620A (en) Wholly aromatic polyester fiber
JP2008248401A (en) Method for producing elastic fiber
JPS60199028A (en) Novel polyester
KR800001711B1 (en) Improvements in or relating to synthetic polyester
JPH0216929B2 (en)
JP2004285499A (en) Polyester-based conjugated fiber
JPH01272812A (en) Melt spinning of liquid crystal polymer