JPH0314620A - Wholly aromatic polyester fiber - Google Patents

Wholly aromatic polyester fiber

Info

Publication number
JPH0314620A
JPH0314620A JP14716089A JP14716089A JPH0314620A JP H0314620 A JPH0314620 A JP H0314620A JP 14716089 A JP14716089 A JP 14716089A JP 14716089 A JP14716089 A JP 14716089A JP H0314620 A JPH0314620 A JP H0314620A
Authority
JP
Japan
Prior art keywords
group
wholly aromatic
aromatic polyester
melt
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14716089A
Other languages
Japanese (ja)
Inventor
Atsushi Hara
厚 原
Kunio Kimura
邦生 木村
Tokuaki Koseki
徳昭 小関
Yasuo Kato
康夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14716089A priority Critical patent/JPH0314620A/en
Publication of JPH0314620A publication Critical patent/JPH0314620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject fiber suitable for industrial filter, etc., having excellent heat resistance, chemical resistance and fiber properties comprising wholly aromatic polyester having respectively specific four types of repeating units and transferring from crystalline state to optically isotropic melt with melting. CONSTITUTION:Isophthalic acid (derivative) is subjected to melt polymerization with p-hydroxybenzoic acid (derivative), hydroquinone (derivative) and aromatic bifunctional phenol (derivative) to obtain a wholly aromatic polyester having repeating units expressed by formula I-formula IV (Ar is 1,3-phenylene, etc.), <=335 deg.C melting point and from 50 poise to 10X10<4> poise melt viscosity and transferring from crystalline state to optically isotropic melt with melting. Then, said wholly aromatic polyester is subjected to melt spinning and preferably drawn at >=1.05 times to afford the objective fiber having >=1.5g/d strength, >=5% elongation and <=7% shrinkage at 160 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性、耐薬品性及び繊維性能に優れた全芳香
族ポリエステル繊維に関するものである.更に詳しくは
本発明はガラス転移点が高い結晶性ボリマーの等方融体
から紡糸された繊維で高温における収縮率が低く、フィ
ブリル化等のトラブルもない、工業用フィルター等に有
用な全芳香族ポリエステルSaWに関するものである.
更に該繊維は、炭素SaW等との複合材料のマトリック
ス用繊維としても有用である. (従来の技術) 近年、省エネルギーのための工業用フィルターや高性能
な複合材料のマトリックス用繊維等、耐熱性で耐薬品性
に優れた繊維の要求が高まっている.この樺な要求に対
して幾つかの耐熱性繊維が開発されている.例えば、ポ
リ(P−フェニレンスルフィド)(PPS)m維、芳香
族ポリアξド繊維、ポリ(エーテルエーテルケトン) 
 ( PEEII )繊維及び全芳香族ポリエステル繊
維等が知られている. しかし、pps織維はガラス転移点が100℃以下と低
く耐熱性に若干問題がある.又ppsは架橋しやすく、
複合材料のマトリックスとしては強靭性に劣るという欠
点もある.・芳香族ボリアξド繊維は溶液紡糸法で製造
されているため安価に多種類の繊維を製造することが困
難であったり、また溶融しないため複合材料のマトリッ
クス用繊維としては利用できない等の欠点を有している
, Pl!EK繊維は耐熱性も良く、溶融紡糸法で製造
することができるが、原料ボリマーが非常に高価である
と言う問題がある.結晶性の全芳香族ポリエステルは現
在溶融液晶性全芳香族ポリエステルしか知られておらず
、それから得られた繊維は使用中にフィプリル化すると
言う問題がある.また複合材料のマトリックスとして用
いた場合、物性的に異方性が発言し、実用的に問題があ
る.すなわち、現在のところ耐熱性、耐薬品性、価格に
バランスのとれた繊維はまだ開発に戒功されていない.
(発明が解決しようとする課B) 本発明者らは比較的安価で、耐熱性と耐薬品性に優れて
いることが知られている全芳香族ポリエステルに注目し
て研究を行った. 現在のところ全芳香族ポリエステルは溶融液晶性かまた
は非品性のものしか知られておらず、溶融液晶性全芳香
族ポリエステ1Cは上述したようにフィプリル化が起こ
り、又複合材料のマトリックスとして用いた場合、戒形
品の物性異方性が問題となる.一方非品性全芳香族ポリ
エステルは熱変形温度がガラス転移温度となり耐熱性(
特に複合材料の場合)に問題があり、更に該ポリマーは
延伸ができず、繊維物性に問題があった.(課題を解決
するための手段) そこで本発明者らは液晶性を示さない結晶性の全芳香族
ポリエステルを得るため鋭意研究を続けた結果、該全芳
香族ポリエステルを見いだし先に提案した.さらに本発
明者等は前述の問題点を解決するため、このようなポリ
マーの繊維化について検討した結果、遂に本発明を完威
するに到った.すなわち本発明は、(1)下記一般式(
1)〜(IV)を繰り返し単位とし、融点が約335℃
以下、溶融粘度が50ポイズ〜10万ポイズであり、か
つ融解により結晶状態から光学的等方性融体となる全芳
香族ポリエステルからなる、強度が1.5g/d以上、
伸度が5%以上で、160゜Cにおける収縮率が7%以
下である全芳香族ポリエステル繊維である.(但し、^
rは1.3−フェ′ニレン基、1.2−フェニレン基、
2−メチル−1.3−フェニレン基、5−メチル=■,
3−フェニレン基、4l4゜−ビフェニレン基、イソプ
ロビリデンー4,4゜−ジフェニレン基、メチレン4,
4゜−ジフェニレン基、1,1−プチリデン−4,4゛
−ジフエニレン基、チオー4.4′−ジフェニレン基、
カルボニルー4,4゛−ジフェニレン基、2.6−ナフ
チレン基、2,7−ナフチレン基を示す.) 以下本発明について更に詳しく説明する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a wholly aromatic polyester fiber having excellent heat resistance, chemical resistance, and fiber performance. More specifically, the present invention is a wholly aromatic fiber spun from an isotropic melt of a crystalline polymer with a high glass transition point, which has a low shrinkage rate at high temperatures, does not cause problems such as fibrillation, and is useful for industrial filters. This relates to polyester SaW.
Furthermore, the fibers are useful as matrix fibers for composite materials with carbon, SaW, etc. (Conventional technology) In recent years, there has been an increasing demand for fibers with excellent heat and chemical resistance, such as fibers for industrial filters to save energy and fibers for matrices of high-performance composite materials. Several heat-resistant fibers have been developed to meet this requirement. For example, poly(P-phenylene sulfide) (PPS) fiber, aromatic polyamide fiber, poly(ether ether ketone)
(PEE II) fibers and wholly aromatic polyester fibers are known. However, pps woven fibers have a low glass transition point of 100°C or less, and have some problems with heat resistance. Also, pps is easy to crosslink,
It also has the disadvantage of being inferior in toughness as a matrix for composite materials.・Aromatic boria ξ-do fibers are produced by solution spinning, so it is difficult to produce a wide variety of fibers at low cost, and because they do not melt, they cannot be used as matrix fibers for composite materials. has, Pl! EK fibers have good heat resistance and can be manufactured by melt spinning, but the problem is that the raw material polymer is very expensive. Currently, the only known crystalline wholly aromatic polyester is molten liquid crystalline wholly aromatic polyester, and there is a problem in that the fibers obtained from it undergo fibrillation during use. Furthermore, when used as a matrix for composite materials, the physical properties exhibit anisotropy, which poses a practical problem. In other words, currently no fibers with a good balance of heat resistance, chemical resistance, and price have been developed.
(Problem B to be Solved by the Invention) The present inventors conducted research focusing on wholly aromatic polyester, which is known to be relatively inexpensive and to have excellent heat resistance and chemical resistance. At present, only molten liquid crystalline or non-quality wholly aromatic polyesters are known, and molten liquid crystalline wholly aromatic polyester 1C undergoes fibrillation as described above, and is also used as a matrix for composite materials. In this case, the anisotropy of the physical properties of the Kai-shaped product becomes a problem. On the other hand, non-grade wholly aromatic polyester has a heat deformation temperature of glass transition temperature and a heat resistance (
Especially in the case of composite materials), the polymer could not be stretched, and there were problems with fiber properties. (Means for Solving the Problems) The present inventors continued intensive research to obtain a crystalline wholly aromatic polyester that does not exhibit liquid crystallinity, and as a result, they discovered and proposed this wholly aromatic polyester. Furthermore, in order to solve the above-mentioned problems, the present inventors investigated the fiberization of such polymers, and as a result, they finally completed the present invention. That is, the present invention provides (1) the following general formula (
1) to (IV) are repeating units, and the melting point is approximately 335°C
Hereinafter, a wholly aromatic polyester having a melt viscosity of 50 poise to 100,000 poise and changing from a crystalline state to an optically isotropic melt upon melting, and a strength of 1.5 g/d or more;
A wholly aromatic polyester fiber with an elongation of 5% or more and a shrinkage rate at 160°C of 7% or less. (However, ^
r is a 1.3-phenylene group, a 1.2-phenylene group,
2-methyl-1,3-phenylene group, 5-methyl=■,
3-phenylene group, 4l4゜-biphenylene group, isopropylidene-4,4゜-diphenylene group, methylene 4,
4゜-diphenylene group, 1,1-butylidene-4,4゛-diphenylene group, thio 4,4'-diphenylene group,
Carbonyl represents a 4,4'-diphenylene group, a 2,6-naphthylene group, and a 2,7-naphthylene group. ) The present invention will be explained in more detail below.

本発明における全芳香族ポリエステルは下記一般式で示
されるp−ヒドロキシ安患香酸の誘導体(V)、ヒドロ
キノン及び/又はその誘導体(Vl)、芳香族二価フェ
ノール及び/又はその誘導体(■)とイソフタル酸及び
/又はその誘導体(■)とを重合体の溶融粘度が50ポ
イズ〜10万ポイズに達するまで反応させて製造される
. RsO   Ar   ORi      (■)上記
式中^『は1.3−フェニレン基、1.2−フエニレン
基、2−メチル−1,3−フェニレン基、5−メチル−
1.3−フェニレン基、4.4’−ビフェニレン基、イ
ソブロピリデンー4.4”−ジフェニレン基、メチレン
−4.4゛−ジフェニレン基、1.1−プチリデン−4
.4゜ージフェニレン基、チオー4.4゜−ジフェニレ
ン基、カルボニルー4.4′−ジフェニレン基、2.6
−ナフチレン基、2,7−ナフチレン基を示す.またh
は水素原子、炭素原子数7以下の低級アルカノイル基、
ベンゾイル基よりなる群から選ばれ、Rよは水素原子又
は炭素原子数6〜12のアリール基であり、R,〜R.
はそれぞれ水素原子、炭素原子数7以下の低級アルカノ
イル基、ベンゾイル基であり、R,及びR,はそれぞれ
水素原子、炭素原子数6〜l2のアリール基より選ばれ
る. 前記一般式(V)〜(■)で表される化合物の具体例と
してはp−ホルミルオキシ安息香酸、pーアセトキシ安
息香酸、p−プロピオノイロキシ安息香酸、P−ペンゾ
イルオキシ安息香酸、p −ヒドロキシ安息香酸フェニ
ル、p−ヒドロキシ安息香酸トリル、p−ヒドロキシ安
息香酸p−ブチルフヱニル、P−ヒドロキシ安息香酸2
−ナフチル、ヒドロキノン、1.4−ジアセトキシベン
ゼン、1,4−ジプロピオノイロキシベンゼン、1.4
−ジベンゾイルオキシベンゼン、レゾルシン、1.3−
ジアセトキシベンゼン、1.3−ジプロピオノイロキシ
ベンゼン、1.3−シベンゾイルオキシベンゼン、ピロ
カテコール、1.2−ジアセトキシベンゼン、1.2−
ジプロビオノイロキシベンゼン、1.2−ジベンゾイル
オキシベンゼン、2−メチル−1,3−ベンゼンジオー
ル、1,3−ジアセトキシ−2−メチルベンゼン、1.
3−ジプロピオノイロキシ−2−メチルベンゼン、1.
3−ジベンゾイルオキシ−2−メチルベンゼン、5−メ
チル−1.3−ベンゼンジオール、1.3−ジアセトキ
シ−5−メチルベンゼン、1.3−ジブロピオノイロキ
シ−5−メチルベンゼン、l,3−ジベンゾイルオキシ
−5−メチルベンゼン、4.4”−ジヒドロキシビフエ
ニル、4,4゜−ジアセトキシビフエニル、4,4゜−
ジブロビオノイロキシビフェニル、4.4’−ジベンゾ
イルオキシビフェニル、2.2−ビス(4−ヒドロキシ
フェニル)プロパン、2.2−ビス(4ーアセトキシフ
エニル)プロパン、2.2−ビス(4一プロピオノイロ
キシフエニル)プロパン、2.2−ビス(4−ペンゾイ
ルオキシフェニル)プロパン、ビス(4−ヒドロキシフ
ェニル)メタン、ビス(4−アセトキシフェニル)メタ
ン、ビス(4−プロイオノイロキシフェニル)メタン、
1.1−ビス(4−ヒドロキシフェニル)ブタン、1.
1−ビス(4−アセトキシフエニル)ブタン、ビス(4
−ヒドロキシフェニル)スルフィド、ビス(4−アセト
キシフエニル)スルフィド、ビス(4−プロイオノイロ
キシフェニル)スルフィド、ビス(4−ヒドロキシフエ
ニル)ケトン、ビス(4−アセトキシフエニル)ケトン
、ビス(4−プロイオノイロキシフェニル)ケトン、2
.6−ジヒドロキシナフタレン、2.6−ジアセトキシ
ナフタレン、2.7−ジヒドロキシナフタレン、2.7
−ジアセトキシナフタレンイソフタル酸、イソフタル酸
ジフエニル、イソフタル酸、イソフタル酸ジフェニル、
イソフタル酸ジトリル、イソフタル酸ジp−クロロフエ
ニル等を挙げることができる. 本発明の全芳香族ポリエステルの特徴である融点と融解
による結晶状態からの光学的等方性融体の形威は前記の
構戒単位(I)〜(■)の適当な組み合わせにより得ら
れる.しかし特殊な重合方法の採用により製造された、
例えば構戒単位(1)がブロック状でポリマーの主鎖中
に組み込まれるような方法により、溶融液晶性を示すよ
うなボリマーは本発明から省かれる. 本発明の全芳香族ポリエステルは前記(V)〜(■)の
モノマーを用いて溶融重合法により合威される.この際
、重合触媒や各種添加剤、例えば酸化防止剤等の安定剤
や酸化チタン等の易威形剤等、を添加してもよい.十分
な粘度を必要とする場合は、溶融重合の後、固相重合法
により高粘度化することも可能である. 本発明における未延伸糸は通常の溶融紡糸法によって得
ることができる.すなわち、溶融押し出し機により溶融
させたボリマーを目的に合ったノズルを通して繊維状に
押し出し、冷却しながら巻きとる方法である.ノズルの
形状等には特に制限はなく、目的に応じたものを用いれ
ばよい.複合材料のマトリックスとして用いる場合は得
られた未延伸糸をそのまま使用することもできるが、フ
ィルターなどの用途に用いる場合は延伸するのが望まし
い. 本発明の全芳香族ポ、リエステル繊維の特徴の一つは、
溶融紡糸後に少なくとも1.05倍以上に延伸すること
が可能であり、この特徴は現在知られている全芳香族ポ
リエステル繊維には見られないものである. 延伸する場合、延伸温度はボリマーのくガラス転移点−
30’C)以上が好ましい。この温度以下で延伸すると
、延伸が十分に出来なかったりまたは繊維の白化等のト
ラブルが発生し、好ましくない.延伸倍率は1.05倍
以上が好ましい.好ましい延伸倍率は1.1倍〜10倍
である.但し紡糸時の張力が大きく、巻取り時に事実上
延伸されている場合はその倍率を考慮する必要がある.
更に得られた未延伸糸または延伸系は定長下または緊張
下、延伸温度またはそれ以上の温度で熱処理されると高
温下での収縮率が更に小さくなり工業的に有用な繊維が
得られる.この樺な紡糸、延伸および熱処理は連続的に
行ってもよいし、それぞれ工程を分離して行ってもよい
. 本発明のような溶融紡糸後に延伸可能であり、耐熱性、
耐薬品性および繊維物性に優れ、その上使用中にフィプ
リル化しない全芳香族ポリエステルからなる繊維は、従
来から知られておらず、全く新規な繊維である. (実施例) 以下に実施例でもって本発明の効果を具体的に説明する
が、本発明がこれらによって限定されるものではない. なお実施例に先だって本発明において使用した測定方法
を説明する. 溶融粘度:島津製作所製のフローテスターCFT形によ
り、径lm、長さ10mのノズルを用い、50lCg/
dの圧力下で350℃で測定したときの溶融流体の粘度
を溶融粘度とした. 融点:柳本製作所製ごクロ融点測定器を用い、2枚のガ
ラス板にはさんだ試料を7゛c/分で加熱昇温し、軽く
圧力を加えてボリマーが流動し始める温度を融点とした
. ガラス転移点:パーキンエルマー社製DSC− 7型(
Perk  in  El−er  7  Serie
s  Thermal  AnalysisSiste
s+)を用いて、昇温速度20゜C/分およびアルゴン
雰囲気下で測定した. 光学的性質:融点測定と同じ機器を用い、直交ニコル下
、2枚のガラス板にはさんだ試料に圧力を加えた流動状
態での視野の明暗により測定した.賭視野となった場合
は光学的等方性融体、明視野となった場合は液晶状融体
である。
The wholly aromatic polyester in the present invention is a derivative of p-hydroxybenzoic acid (V), hydroquinone and/or its derivative (Vl), and an aromatic dihydric phenol and/or its derivative (■) represented by the following general formula. and isophthalic acid and/or its derivative (■) until the melt viscosity of the polymer reaches 50 to 100,000 poise. RsO Ar ORi (■) In the above formula ^' is 1,3-phenylene group, 1,2-phenylene group, 2-methyl-1,3-phenylene group, 5-methyl-
1.3-phenylene group, 4.4'-biphenylene group, isobropylidene-4.4''-diphenylene group, methylene-4.4''-diphenylene group, 1.1-butylidene-4
.. 4゜-diphenylene group, thio-4.4゜-diphenylene group, carbonyl-4.4'-diphenylene group, 2.6
- Naphthylene group, 2,7-naphthylene group. Also h
is a hydrogen atom, a lower alkanoyl group having 7 or less carbon atoms,
selected from the group consisting of benzoyl groups, R is a hydrogen atom or an aryl group having 6 to 12 carbon atoms, and R, to R.
are each a hydrogen atom, a lower alkanoyl group having 7 or less carbon atoms, or a benzoyl group, and R and R are each selected from a hydrogen atom or an aryl group having 6 to 12 carbon atoms. Specific examples of the compounds represented by the general formulas (V) to (■) are p-formyloxybenzoic acid, p-acetoxybenzoic acid, p-propionyloxybenzoic acid, P-penzoyloxybenzoic acid, p- Phenyl hydroxybenzoate, tolyl p-hydroxybenzoate, p-butylphenyl p-hydroxybenzoate, p-hydroxybenzoic acid 2
-Naphthyl, hydroquinone, 1,4-diacetoxybenzene, 1,4-dipropionoyloxybenzene, 1.4
-dibenzoyloxybenzene, resorcinol, 1.3-
Diacetoxybenzene, 1.3-dipropionoyloxybenzene, 1.3-cybenzoyloxybenzene, pyrocatechol, 1.2-diacetoxybenzene, 1.2-
Diprobionoyloxybenzene, 1,2-dibenzoyloxybenzene, 2-methyl-1,3-benzenediol, 1,3-diacetoxy-2-methylbenzene, 1.
3-dipropionoyloxy-2-methylbenzene, 1.
3-dibenzoyloxy-2-methylbenzene, 5-methyl-1,3-benzenediol, 1,3-diacetoxy-5-methylbenzene, 1,3-dibropionoyloxy-5-methylbenzene, l, 3-dibenzoyloxy-5-methylbenzene, 4.4''-dihydroxybiphenyl, 4,4゜-diacetoxybiphenyl, 4,4゜-
Dibrobionoyloxybiphenyl, 4.4'-dibenzoyloxybiphenyl, 2.2-bis(4-hydroxyphenyl)propane, 2.2-bis(4-acetoxyphenyl)propane, 2.2-bis(4 monopropionoyloxyphenyl)propane, 2,2-bis(4-penzoyloxyphenyl)propane, bis(4-hydroxyphenyl)methane, bis(4-acetoxyphenyl)methane, bis(4-proionoyloxy phenyl)methane,
1.1-bis(4-hydroxyphenyl)butane, 1.
1-bis(4-acetoxyphenyl)butane, bis(4
-hydroxyphenyl) sulfide, bis(4-acetoxyphenyl) sulfide, bis(4-proionoyloxyphenyl) sulfide, bis(4-hydroxyphenyl) ketone, bis(4-acetoxyphenyl) ketone, bis( 4-proionoyloxyphenyl)ketone, 2
.. 6-dihydroxynaphthalene, 2.6-diacetoxynaphthalene, 2.7-dihydroxynaphthalene, 2.7
- diacetoxynaphthalene isophthalic acid, diphenyl isophthalate, isophthalic acid, diphenyl isophthalate,
Examples include ditolyl isophthalate and dip-p-chlorophenyl isophthalate. The characteristic melting point of the wholly aromatic polyester of the present invention and the optically isotropic melt form from the crystalline state due to melting can be obtained by appropriate combinations of the above-mentioned structural units (I) to (■). However, it was manufactured using a special polymerization method,
For example, polymers that exhibit melt liquid crystallinity by incorporating the structural unit (1) in block form into the main chain of the polymer are omitted from the present invention. The wholly aromatic polyester of the present invention is synthesized by a melt polymerization method using the monomers (V) to (■) above. At this time, a polymerization catalyst and various additives, such as stabilizers such as antioxidants and enhancers such as titanium oxide, may be added. If sufficient viscosity is required, it is also possible to increase the viscosity by solid phase polymerization after melt polymerization. The undrawn yarn in the present invention can be obtained by a conventional melt spinning method. In other words, it is a method in which a polymer melted using a melt extruder is extruded into fibers through a nozzle suitable for the purpose, and then rolled up while being cooled. There are no particular restrictions on the shape of the nozzle, and it is sufficient to use one that suits the purpose. When used as a matrix for composite materials, the obtained undrawn yarn can be used as is, but when used in applications such as filters, it is preferable to stretch it. One of the characteristics of the wholly aromatic polyester fiber of the present invention is that
It is possible to stretch the fiber by at least 1.05 times after melt spinning, and this feature is not found in currently known wholly aromatic polyester fibers. When stretching, the stretching temperature is below the glass transition point of the polymer.
30'C) or higher is preferable. Stretching at a temperature below this temperature is not preferable, as it may not be possible to draw the film sufficiently or problems such as whitening of the fibers may occur. The stretching ratio is preferably 1.05 times or more. The preferred stretching ratio is 1.1 times to 10 times. However, if the tension during spinning is large and the fiber is actually stretched during winding, the magnification must be considered.
Furthermore, when the obtained undrawn yarn or drawn yarn is heat-treated under constant length or tension at a temperature at or above the drawing temperature, the shrinkage rate at high temperatures is further reduced, and an industrially useful fiber can be obtained. The birch spinning, stretching, and heat treatment may be performed continuously or may be performed separately. It can be stretched after melt spinning as in the present invention, has heat resistance,
Fibers made of wholly aromatic polyester, which have excellent chemical resistance and fiber properties, and which do not undergo fibrillation during use, have not been previously known, and are completely new fibers. (Examples) The effects of the present invention will be specifically explained below using Examples, but the present invention is not limited by these. Prior to the examples, the measurement method used in the present invention will be explained. Melt viscosity: 50 lCg/by using a flow tester CFT type manufactured by Shimadzu Corporation using a nozzle with a diameter of 1 m and a length of 10 m.
The viscosity of the melt fluid when measured at 350°C under a pressure of d was defined as the melt viscosity. Melting point: Using a glass melting point measuring device manufactured by Yanagimoto Seisakusho, a sample sandwiched between two glass plates was heated at a rate of 7°C/min, and the melting point was defined as the temperature at which the polymer began to flow when light pressure was applied. Glass transition point: PerkinElmer DSC-7 type (
Perk in El-er 7 Serie
s Thermal Analysis System
s+) at a heating rate of 20°C/min under an argon atmosphere. Optical properties: Using the same equipment as used for melting point measurement, measurements were made by observing the brightness and darkness of the field of view under crossed Nicol conditions, with pressure applied to the sample sandwiched between two glass plates, and in a fluid state. If it becomes a dark field, it is an optically isotropic melt, and if it becomes a bright field, it is a liquid crystalline melt.

結晶性:理学ガイガーフレックスを用い、ターゲットを
Cuka、フィルターをNiとし、粉末X41回折を行
って評価した. 繊維の強伸度:東洋測器製万能引張試験機テンシロンt
lTM−3型を用い、試料長5C11、引っ張り速度5
 Cll /分で測定した. 乾熱収縮率:試料長3,OcI1をとり、160℃の熱
風中で1時間処理して、元の寸法に対する変化率で示す
Crystallinity: Evaluated by powder X41 diffraction using a Rigaku Geigerflex with Cuka as the target and Ni as the filter. Fiber strength and elongation: Toyo Sokki universal tensile tester Tensilon t
Using lTM-3 type, sample length 5C11, pulling speed 5
Measured in Cll/min. Dry heat shrinkage rate: Sample length 3, OcI1 was taken and treated in hot air at 160°C for 1 hour, and is shown as the rate of change with respect to the original dimension.

参考例l 攪拌器、冷却管および窒素導入管を取り付けた反応器に
P−アセトキシ安息香酸54.04g (0.300モ
ル) 、1.4−ジアセトキシベンゼン118.14 
g (0.608モル) 、1.3−ジアセトキシベン
ゼン5.90 g(0.030モル)、イソフタル酸1
01.18 g (0.609モル)、酢酸マグネシウ
ム100■、及び酢酸400一を入れ、窒素雰囲気下に
昇温速度l″C/分で250゜Cまで加熱し、反応で生
威した酢酸を除去した.250゜Cで■0分間反応させ
た後、リン酸トリフェニル260■を添加し、更に15
分間反応を続けた.得られた反応混合物を取り出し、粉
砕したものを次の重縮合反応に用いた. 攪拌器と窒素導入管を取り付け、300″Cに保持した
反応器に粉体の反応混合物を取り入れ、徐々に昇温して
330’Cとした.この時点から減圧を開始して40分
で圧力を0.5mHgとした.温度を更に350゜Cま
で上げ、そのまま10分間反応させた.得られたボリマ
ーの融点は310゜C、ガラス転移点は165゜Cで、
溶融粘度は940ポイズであった。またこのボリマーは
粉末X線回折から結晶性であることがわかり、融解によ
り結晶状態から光学的等方性融体となった.得られたボ
リマーをポリマーAとする. 参考例2 参考例1において、1.3−ジアセトキシベンゼンの代
わりに2.2−ビス(4−アセトキシフェニル)プロパ
ン9.37 g ( 0.030モル)を用いる以外は
全て参考例1と同様にして融点が312゜Cガラス転移
点157゜Cで、光学的に等方性の融体を示す結晶性の
ポリマーを得た.このポリマーをボリマーBとする. 参考例3 参考例lにおいて、1.3−ジアセトキシベンゼンの代
わりに4.4′−ジアセトキシビフェニル8.11g(
0.030モル)を用いた以外は実施例1と全く同様に
して融点が330″C、ガラス転移点172゜Cで、光
学的に等方性の融体を示す結晶性のポリマーを得た.こ
のボリマーをボリマーCとする.比較参考例1 参考例1において、p−アセトキシ安患香酸89.72
 g ( 0.498モル) 、1.4−ジアセトキシ
ベンゼン106.42 g ( 0.548モル)と4
.4“−ジアセトキシビフェニル24.60 g (0
.099モル)を用いた以外は実施例1と全く同様にし
て融点が328℃、ガラス転移点174゜Cのボリマー
を得た.該ポリマーは溶融液晶性を示した.このボリマ
ーをポリマーDとする. 実施例1 参考例l〜3で得られた各ボリマーをプランジャー型卓
上紡糸器により、370゜Cのシリンダー温度下、吐出
量0.5 g /分の条件でフィラメント状に押し出し
た。ノズルは孔径0.5am,孔長1.Ommのものを
用いた.フィラメントを100m+/分の速度で巻取り
未延伸糸を得た.得られた未延伸糸の糸質を第1表に示
す. ポリマーDから得た未延伸糸の伸度は2%程度で、手で
屈曲させると表面にフィブリルが発生した. 実施例2 実施例1で得られた各未延伸糸を、ホットローラー、ス
リットヒーター、巻取り用ローラーを配した装置を用い
てスリットヒーター温度150゜Cで延伸した.得られ
た延伸糸の糸質を第2表に示す.なおボリマーDから得
られた延伸糸は延伸することができなかった. 実施例3 実施例2で得られた各延伸糸を、スリットヒーターを用
いて、定長下、200’Cで熱処理を行った.得られた
熱処理延伸糸の糸質を第3表に示す.第1表 未延伸糸
の糸質 第2表 延伸糸の糸質 産業界に寄与すること大である.
Reference Example 1 54.04 g (0.300 mol) of P-acetoxybenzoic acid and 118.14 g of 1.4-diacetoxybenzene were placed in a reactor equipped with a stirrer, a cooling tube, and a nitrogen introduction tube.
g (0.608 mol), 1,3-diacetoxybenzene 5.90 g (0.030 mol), isophthalic acid 1
01.18 g (0.609 mol), 100 μg of magnesium acetate, and 400 μg of acetic acid were heated in a nitrogen atmosphere at a temperature increase rate of 1″C/min to 250°C to remove the acetic acid produced by the reaction. After reacting at 250°C for 0 minutes, 260 μ of triphenyl phosphate was added, and then 15
The reaction continued for several minutes. The resulting reaction mixture was taken out and ground and used in the next polycondensation reaction. A stirrer and a nitrogen inlet tube were installed, and the powder reaction mixture was introduced into the reactor maintained at 300'C, and the temperature was gradually increased to 330'C. From this point, depressurization was started and the pressure was reduced in 40 minutes. was set to 0.5 mHg.The temperature was further raised to 350°C and the reaction was continued for 10 minutes.The melting point of the obtained polymer was 310°C, the glass transition point was 165°C,
The melt viscosity was 940 poise. Powder X-ray diffraction showed that this polymer was crystalline, and upon melting, it changed from a crystalline state to an optically isotropic melt. The obtained polymer is referred to as Polymer A. Reference Example 2 Same as Reference Example 1 except that 9.37 g (0.030 mol) of 2.2-bis(4-acetoxyphenyl)propane was used instead of 1.3-diacetoxybenzene. A crystalline polymer having a melting point of 312°C and a glass transition point of 157°C and exhibiting an optically isotropic melt was obtained. This polymer is called Polymer B. Reference Example 3 In Reference Example 1, 8.11 g of 4,4'-diacetoxybiphenyl (
A crystalline polymer exhibiting an optically isotropic melt with a melting point of 330°C and a glass transition point of 172°C was obtained in exactly the same manner as in Example 1, except that 0.030 mol) was used. This polymer is referred to as Polymer C. Comparative Reference Example 1 In Reference Example 1, p-acetoxybenzoic acid 89.72
g (0.498 mol), 106.42 g (0.548 mol) of 1,4-diacetoxybenzene and 4
.. 4”-diacetoxybiphenyl 24.60 g (0
.. A polymer having a melting point of 328°C and a glass transition point of 174°C was obtained in exactly the same manner as in Example 1, except that 099 mol) was used. The polymer exhibited molten liquid crystallinity. This polymer is called Polymer D. Example 1 Each of the polymers obtained in Reference Examples 1 to 3 was extruded into filaments using a plunger-type tabletop spinner at a cylinder temperature of 370°C and a discharge rate of 0.5 g/min. The nozzle has a hole diameter of 0.5am and a hole length of 1. I used one from Omm. The filament was wound at a speed of 100 m+/min to obtain an undrawn yarn. Table 1 shows the quality of the undrawn yarn obtained. The elongation of the undrawn yarn obtained from Polymer D was approximately 2%, and fibrils were generated on the surface when it was bent by hand. Example 2 Each undrawn yarn obtained in Example 1 was drawn at a slit heater temperature of 150°C using a device equipped with a hot roller, a slit heater, and a winding roller. The quality of the drawn yarn obtained is shown in Table 2. Note that the drawn yarn obtained from Polymer D could not be drawn. Example 3 Each of the drawn yarns obtained in Example 2 was heat-treated at 200'C using a slit heater under a constant length. Table 3 shows the yarn quality of the heat-treated drawn yarn. Table 1: Quality of undrawn yarn Table 2: Quality of drawn yarn This will greatly contribute to the industry.

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式( I )〜(IV)を繰り返し単位とし
、融点が約335℃以下、溶融粘度が50ポイズ〜10
万ポイズであり、かつ融解により結晶状態から光学的等
方性融体となる全芳香族ポリエステルからなる、強度が
1.5g/d以上、伸度が5%以上で、160℃におけ
る収縮率が7%以下である全芳香族ポリエステル繊維。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(IV) (但し、Arは1,3−フェニレン基、1,2−フェニ
レン基、2−メチル−1,3−フェニレン基、5−メチ
ル−1,3−フェニレン基、4,4′−ピフェニレン基
、イソプロピリデン−4,4′−ジフェニレン基、メチ
レン−4,4′−ジフェニレン基、1,1−ブチリデン
−4,4′−ジフェニレン基、チオ−4,4′−ジフェ
ニレン基、カルボニル−4,4′−ジフェニレン基、2
,6、ナフチレン基、2,7−ナフチレン基を示す。)
(1) The following general formulas (I) to (IV) are used as repeating units, the melting point is approximately 335°C or less, and the melt viscosity is 50 poise to 10
made of a wholly aromatic polyester that has a strength of 1.5 g/d or more, an elongation of 5% or more, and a shrinkage rate of 7% at 160°C. A wholly aromatic polyester fiber that is: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼( IV) (However, Ar is a 1,3-phenylene group, 1,2-phenylene group, 2-methyl-1,3-phenylene group, 5-methyl-1,3-phenylene group, 4,4'-piphenylene group) , isopropylidene-4,4'-diphenylene group, methylene-4,4'-diphenylene group, 1,1-butylidene-4,4'-diphenylene group, thio-4,4'-diphenylene group, carbonyl-4, 4'-diphenylene group, 2
, 6, a naphthylene group, and a 2,7-naphthylene group. )
JP14716089A 1989-06-09 1989-06-09 Wholly aromatic polyester fiber Pending JPH0314620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14716089A JPH0314620A (en) 1989-06-09 1989-06-09 Wholly aromatic polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14716089A JPH0314620A (en) 1989-06-09 1989-06-09 Wholly aromatic polyester fiber

Publications (1)

Publication Number Publication Date
JPH0314620A true JPH0314620A (en) 1991-01-23

Family

ID=15423947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14716089A Pending JPH0314620A (en) 1989-06-09 1989-06-09 Wholly aromatic polyester fiber

Country Status (1)

Country Link
JP (1) JPH0314620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216109A (en) * 1990-08-22 1993-06-01 Teijin Limited Crystalline wholly aromatic polyester, process for its production, resin composition containing it, and articles from the resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216109A (en) * 1990-08-22 1993-06-01 Teijin Limited Crystalline wholly aromatic polyester, process for its production, resin composition containing it, and articles from the resin composition

Similar Documents

Publication Publication Date Title
US4183895A (en) Process for treating anisotropic melt-forming polymeric products
US4664972A (en) Optically anisotropic melt forming aromatic copolyesters based on t-butylhydroquinone
US4370466A (en) Optically anisotropic melt forming polyesters
US4188476A (en) Aromatic polyester consisting essentially of p-oxybenzoyl units, terephthaloyl units, 2,6-dioxynaphthalene or 2,6-dioxyanthraquinone units and m-oxybenzoyl or 1,3-dioxyphenylene units
JPH0192409A (en) Filament of fiber forming polyester copolymer
JPH0192410A (en) Filament of fiber forming polyester copolymer
IE50267B1 (en) Aromatic polyester and filaments
JPH0314619A (en) Copolyester filament forming optically anisotropic melt
JPS5947726B2 (en) Polyester fiber manufacturing method
JPS62292832A (en) Heat-resistant aromatic polyester
Prasadarao et al. Rheological properties of liquid crystalline copolyesters
JPS60147434A (en) Polyester copolymer producing optically anisotropic melt
JPS5884821A (en) Copolyester fiber or film and preparation thereof
JPH01162820A (en) Direct spinning and drawing for polyester fiber
US4026973A (en) Process for preparing heat-resistant aromatic polyester filaments
JPH0314620A (en) Wholly aromatic polyester fiber
US4487916A (en) Melt-spinnable copolyesters
JPH0319926A (en) Combined filament yarn
JPS5891817A (en) Liquid-crystal polyester fiber or film and their production
JPH04100916A (en) Polyphenylene sulfide fiber and its production
JPH03260114A (en) Production of high-modulus fiber composed of melt-anisotropic polymer
JPS61239013A (en) Production of high-performance fiber
JPS62231018A (en) Polyester yarn
JPS5891816A (en) Production of polyester fiber
JPS63101416A (en) Wholly aromatic polyester polymer