JPS622821B2 - - Google Patents
Info
- Publication number
- JPS622821B2 JPS622821B2 JP13409580A JP13409580A JPS622821B2 JP S622821 B2 JPS622821 B2 JP S622821B2 JP 13409580 A JP13409580 A JP 13409580A JP 13409580 A JP13409580 A JP 13409580A JP S622821 B2 JPS622821 B2 JP S622821B2
- Authority
- JP
- Japan
- Prior art keywords
- envelope
- hollow
- oxygenator
- potten
- hollow fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012510 hollow fiber Substances 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 34
- 238000004382 potting Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 12
- 239000008280 blood Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 7
- 210000004072 lung Anatomy 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- -1 polypropylene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
Description
【発明の詳細な説明】
発明の背景
技術分野
この発明はホローフアイバー型人工肺およびそ
の製造方法に係わり、特にそのホローフアイバー
束両端の外囲器内への固着方法の改良に関する。
先行技術
ホローフアイバー型人工肺に内蔵されるホロー
フアイバーとして疎水性マイクロポーラス膜、た
とえば多孔質ポリプロピレンからなるフアイバー
を使用することが提案されている。しかし、この
ようなマイクロポーラス膜を用いる場合、血液入
口、出口間の圧力損失が大きいと人工肺に流入す
る側の血液回路内圧が上昇し、過度の場合ローラ
ーポンプのラテツクスゴムチユーブが大きく膨ら
み破裂の危険がある。更には、回路内圧が高い場
合赤血球破壊が多いことも知られているところで
ある。したがつて、この種のホローフアイバー型
人工肺の内部空間の全長はこの圧力損失を考慮し
て決定されなければならない。
圧力が700mmHgを越えるとラテツクスポンプチ
ユーブが膨らむことがある。動脈返血カテーテル
近くで300〜400mmHgの圧力を発生する症例もあ
るので、安全の為には人工肺の圧損は300mmHg以
下、望ましくは200mmHg以下でなければならな
い。この条件を平均孔径200〜2000Å、空孔率20
〜85%、内径200μのポリプロピレンフアイバー
の場合に当てはめてみると、3.3m2人工肺ではフ
アイバーの本数37500本のフアイバー束で有効長
(血液と酸素ガスとの接触する距離)は約14cmと
なる。なお、この場合、ホローフアイバーの本数
を増せば人工肺の長さをその分だけ短くすること
ができるが逆に人工肺の太さが増し人工肺全体の
小型軽量化につながらない。
そこで、本発明者はホローフアイバー型人工肺
の外囲器内に固定されるホローフアイバー束両端
の固着部を改良することによつて血液流の圧力損
失が上述の一定条件内に抑えることができ、かつ
人工肺全体の小型軽量化を図り得ることを見出し
た。
第1図は従来のホローフアイバー束の人工肺外
囲器内への固定方法を示すものである。すなわ
ち、遠心装置(図示しない)にホローフアイバー
束を収容した1個の人工肺外囲器1をその両端に
固定板2を配して固定するとともに、酸素含有ガ
ス入口3および出口3を介して高粘度のポリウレ
タン等の接着剤(いわゆるポツテング材)を人工
肺外囲器1内の両端近傍に収容し、ついで、該外
囲器1の中心“a”を回転中心として矢線“b”
の如く回転させ、そのときの遠心力を利用して上
記ポツテング材を上記外囲器1の両端に密に充填
し、各ホローフアイバーを上記外囲器1内に固定
するとともに、ホローフアイバー内側と外側の流
路を気密に仕切ることがおこなわれている。この
ようなポツテング材の充填方法によれば充填され
たポツテング材の内側面(上記外囲器1の中心に
対向する面)に可成りの彎曲が生ずる。しかし、
従来はこの彎曲面の形成は絶むを得ないものとみ
なされていた。
しかし、本発明者はこのような従来のポツテン
グ材充填方法によつて形成される彎曲面がホロー
フアイバーの有効膜面積を可成り損失させ、ポツ
テング材の充填量の増大を招き、人工肺の小型化
を妨げ、また商品としての外観を損ねるものであ
ることに着目し、本発明に至つたものである。
発明の目的
この発明は外囲器両端に充填されたポツテング
材の上記内側面をほぼ平坦に近いものとし、これ
によつてホローフアイバーの有効膜面積の増大を
図るとともに、ポツテング材の充填量をできるだ
け少なくし、人工肺の小型化および外観の向上を
図り得るホローフアイバー型人工肺およびその製
造方法を提供することを目的とする。
すなわち、この発明は多数のホローフアイバー
を軸方向に沿つて並列的に収容する筒状外囲器
と、この収容されたホローフアイバーの両端のみ
を開口させた状態で上記外囲器の両端部に固定保
持するポツテング部と、該ホローフアイバーの両
端開口部とそれぞれ連通させて上記筒体両端部に
設けられた血液出入ポートと、上記外囲器内のホ
ローフアイバーの外側空間と連通させて上記外囲
器に設けられた一対の酸素供給ガス出入ポートと
を具備してなるホローフアイバー型人工肺におい
て、上記ポツテング部双方の内側対向面が凹面を
なし、その曲率がポツテング部両外側面間の距離
をlとし、一方のポツテング部中心部の厚みをt
としたとき、少なくともl−t以上の曲率半径の
円弧によつて描かれるものであることを特徴とす
るホローフアイバー型人工肺を提供するものであ
る。
この発明はさらにホローフアイバーが平均孔径
200〜2000Å、空孔率20〜85%、内径100〜300μ
のポリプロピレンフアイバーである上記ホローフ
アイバー型人工肺を提供するものである。
この発明はさらに、筒状外囲器内にその軸方向
に沿つて多数のホローフアイバーを並設し、該外
囲器内の閉塞されたポツテングすべき一端近傍に
粘性ポツテング材を充填し、該外囲器を遠心装置
の回転中心から放射状に、かつ上記外囲器の上記
一端を外側とし、該外囲器の他端を上記回転中心
又はそれより遠く離間させた状態で上記遠心装置
に固定し、ついで上記遠心装置を回転操作させ、
そのときの遠心力によつて上記ポツテング材を上
記外囲器内の一端に密に充填させ、ついで、ポツ
テング材を硬化させたのち、該ホローフアイバー
の端部近傍をポツテング材を含めて切断して各ホ
ローフアイバーの端部を血液出入口方向に開口さ
せることを特徴とするホローフアイバー型人工肺
の製造方法を提供するものである。
ポツテング材およびホローフアイバーを収容し
た該外囲器を複数個遠心装置の回転軸を対称とし
て遠心装置に配設し、ポツテング操作を同時にお
こなうことを特徴とするホローフアイバー型人工
肺の上記製造方法を提供するものである。
発明の具体的説明
以下、この発明を第2図および第3図の実施例
を参照して説明する。第2図に示す実施例におい
ては、2個のホローフアイバー型人工肺の外囲器
11,12に対し、ホローフアイバーのポツテン
グを同時におこなう方法が示されている。すなわ
ち、外囲器11,12を遠心装置(図示しない)
にその回転中心“a”を中心として対称的に配置
し、固定板13,14,15を外囲器11,12
のの間およびこれらの外側に配して外囲器11,
12を固定する。これら外囲器11,12内には
それぞれ適数本、たとえば数万本のホローフアイ
バー(たとえば平均孔径200〜2000Å、空孔率20
〜85%、内径100〜300μのポリプロピレンフアイ
バー)が外囲器11,12の軸方向に沿つて並列
的に内蔵され、さらに外囲器11,12の外側端
部16,17(たとえばキヤツプ等により閉塞さ
れている。)にはポツテング材、たとえばポリウ
レタン樹脂系接着剤が近傍の酸素含有ガス導入孔
(又は導出孔)18,19を介して充填されてい
る。
この状態で外囲器11,12を回転中心“a”
を中心として矢線“b”の如く回転させると、先
に充填されたポツテング材を遠心力によつて外側
端部16,17方向に押し付けられた状態とな
り、ポツテング材の内側面(回転中心“a”に対
向する面)には回転中心“a”からポツテング材
までの距離に相当する半径“c”で描かれる円弧
と同一の彎曲面が形成される。この場合、第3図
に示す如く長さ“C”はl(ポツテング部両外側
面間距離)−t(ポツテング部中心部の厚み)の
値より大となる(ただし、固定板13の厚みを極
端に薄くし、零に近い値とした場合はほぼl−t
となる)。そして、ポツテイング材が流動性を失
う程度まで硬化した後、遠心操作を止め、さらに
ポツテイング剤をほぼ完全に硬化させ、ついで従
来同様にして、この固着されたホローフアイバー
端部をポツテング材の一部とともに切断し、各ホ
ローフアイバー端部を血液出入口側に開口させ
る。同時に、該外囲器11,12内部はホローフ
アイバー膜およびポツテング材を介して血液流路
と酸素含有ガス流路とに区分される。
なお、上記ポツテング操作は当然外囲器11,
12の反対側端部についても同様におこなわれ
る。
第3図は上述の如く2個の人工肺外囲器11,
12を直線的に遠心装置に配設し片側づつポツテ
ング操作をおこなつた場合で、ポツテイング部の
径が10cm遠心装置の回転中心からポツテング材2
1までの距離を26.5cmとした場合と、前述の従来
法により人工肺外囲器1の中間点を回転中心とし
て両端部に同時にポツテングした場合で遠心装置
の回転中心からポツテング材21までの距離を
7.0cmとした場合に形成されるポツテング材21
の内側面の彎曲の程度を比較して示している。本
図中、実線“x”は本発明により片側づつポツテ
ング操作した場合(これを片側遠心と称呼す
る。)であり、点線“y”は従来法により両側を
同時にポツテング操作した場合(これを両側遠心
と称呼する。)を示す。なお、本図中22はホロ
ーフアイバー束の区域を示す。
また、この場合のポツテング材21の彎曲によ
つて生ずるホローフアイバー膜の有効膜面積の損
失量およびポツテング材の量の損失を、ポツテン
グ材21の内側面が全く平坦な場合とそれぞれ比
較した場合の数値を下記表に示す。BACKGROUND OF THE INVENTION TECHNICAL FIELD The present invention relates to a hollow fiber oxygenator and a method for manufacturing the same, and more particularly to an improvement in a method for fixing both ends of a bundle of hollow fibers into an envelope. Prior Art It has been proposed to use a hydrophobic microporous membrane, such as a fiber made of porous polypropylene, as a hollow fiber built into a hollow fiber oxygenator. However, when using such a microporous membrane, if the pressure loss between the blood inlet and outlet is large, the internal pressure of the blood circuit on the side flowing into the oxygenator will increase, and if it is excessive, the latex rubber tube of the roller pump will swell greatly. Risk of rupture. Furthermore, it is also known that when the internal pressure of the circuit is high, red blood cells are often destroyed. Therefore, the total length of the internal space of this type of hollow-eye bar oxygenator must be determined by taking this pressure loss into account. The latex pump tube may bulge if the pressure exceeds 700 mmHg. In some cases, a pressure of 300 to 400 mmHg is generated near the arterial blood return catheter, so for safety, the pressure drop in the oxygenator must be less than 300 mmHg, preferably less than 200 mmHg. These conditions are: average pore diameter 200-2000Å, porosity 20
~85%, and applying it to the case of polypropylene fibers with an inner diameter of 200 μ, in a 3.3 m 2 oxygenator, the effective length (distance of contact between blood and oxygen gas) is approximately 14 cm with a bundle of 37,500 fibers. . In this case, if the number of hollow eye bars is increased, the length of the oxygenator can be shortened by that amount, but the thickness of the oxygenator increases, which does not lead to a reduction in the size and weight of the entire oxygenator. Therefore, the inventor of the present invention has determined that the pressure loss of blood flow can be suppressed within the above-mentioned constant conditions by improving the fixing parts at both ends of the hollow-eye fiber bundle fixed in the envelope of the hollow-eye oxygenator. We have found that it is possible to reduce the size and weight of the entire oxygenator. FIG. 1 shows a conventional method for fixing a bundle of hollow fibers into an oxygenator envelope. That is, a single oxygenator envelope 1 containing a hollow fiber bundle is fixed in a centrifugal device (not shown) with fixing plates 2 arranged at both ends thereof, and an oxygen-containing gas is passed through an inlet 3 and an outlet 3. A high-viscosity adhesive such as polyurethane (so-called potting material) is housed near both ends of the oxygenator envelope 1, and then the arrow line "b" rotates around the center "a" of the envelope 1.
The potting material is densely packed into both ends of the envelope 1 by using the centrifugal force at that time, and each hollow eye bar is fixed inside the envelope 1, and the inside of the hollow eye bar is The outer flow path is airtightly partitioned. According to such a method of filling potting material, a considerable curvature occurs on the inner surface (the surface facing the center of the envelope 1) of the filled potting material. but,
In the past, the formation of this curved surface was considered to be unavoidable. However, the present inventor believes that the curved surface formed by such a conventional potting material filling method causes a considerable loss of the effective membrane area of the hollow eye bar, leading to an increase in the amount of potting material filled, and reducing the size of the oxygenator. The present invention was developed by paying attention to the fact that it hinders the product's appearance and impairs the appearance of the product. Purpose of the Invention This invention makes the inner surfaces of the potten material filled at both ends of the envelope nearly flat, thereby increasing the effective membrane area of the hollow fiber and reducing the amount of potten material filled. It is an object of the present invention to provide a hollow fiber oxygenator and a method for manufacturing the same, which can reduce the number of artificial lungs as much as possible, reduce the size of the oxygenator, and improve the appearance. That is, the present invention includes a cylindrical envelope that accommodates a large number of hollow fibers in parallel along the axial direction, and a cylindrical envelope that accommodates a large number of hollow fibers in parallel in the axial direction, and a cylindrical envelope that is provided at both ends of the envelope with only both ends of the accommodated hollow fibers being opened. A blood inlet/outlet port provided at both ends of the cylindrical body is communicated with a potten portion to be fixedly held, a blood inlet/outlet port provided at both ends of the cylindrical body by communicating with openings at both ends of the hollow fiber, and a blood inlet/outlet port provided at both ends of the hollow fiber in communication with an outer space of the hollow fiber in the envelope. In a hollow fiber oxygenator comprising a pair of oxygen supply gas inlet/output ports provided in the enclosure, the inner facing surfaces of both of the potten portions are concave, and the curvature is equal to the distance between the two outer surfaces of the potten portions. is l, and the thickness of the center of one potten is t
In this case, the present invention provides a hollow fiber artificial lung characterized by being drawn by a circular arc having a radius of curvature of at least lt or more. This invention further shows that the hollow eye bars have an average pore diameter.
200~2000Å, porosity 20~85%, inner diameter 100~300μ
The present invention provides the above-mentioned hollow fiber oxygenator which is made of polypropylene fiber. The present invention further provides a method in which a large number of hollow fibers are arranged in parallel along the axial direction in a cylindrical envelope, a viscous potting material is filled in the vicinity of one closed end of the envelope to be potted; Fixing the envelope to the centrifugal device in a state in which the envelope is radially spaced from the rotation center of the centrifugal device, with the one end of the envelope being outside, and the other end of the envelope being spaced at or further away from the rotation center. Then, rotate the centrifugal device,
The centrifugal force at that time causes the potten material to be densely packed into one end of the envelope, and then, after the potten material is cured, the vicinity of the end of the hollow eye bar including the potten material is cut. The present invention provides a method for manufacturing a hollow eye bar type oxygenator, characterized in that the end of each hollow eye bar is opened in the direction of the blood inlet/outlet. The above-mentioned method for producing a hollow-eye oxygenator is characterized in that a plurality of the envelopes containing the potting material and the hollow eye bars are arranged in a centrifugal device symmetrically with respect to the rotation axis of the centrifugal device, and the potting operation is performed simultaneously. This is what we provide. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described with reference to the embodiments shown in FIGS. 2 and 3. In the embodiment shown in FIG. 2, a method is shown in which hollow fibers are simultaneously potted into envelopes 11 and 12 of two hollow fiber oxygenator lungs. That is, the envelopes 11 and 12 are connected to a centrifugal device (not shown).
The fixed plates 13, 14, 15 are arranged symmetrically around the rotation center "a", and the
an envelope 11 disposed between and outside these;
Fix 12. Each of these envelopes 11 and 12 contains an appropriate number of hollow fibers, for example, tens of thousands of hollow fibers (for example, an average pore diameter of 200 to 2000 Å, a porosity of 20
~85%, polypropylene fiber with an inner diameter of 100~300μ) are built in parallel along the axial direction of the envelopes 11, 12, and the outer ends 16, 17 of the envelopes 11, 12 (for example, by caps, etc. ) is filled with a potting material such as a polyurethane resin adhesive via nearby oxygen-containing gas introduction holes (or outlet holes) 18 and 19. In this state, rotate the envelopes 11 and 12 at the center of rotation "a".
When the potten material is rotated as shown by the arrow "b" around A curved surface that is the same as a circular arc drawn with a radius "c" corresponding to the distance from the center of rotation "a" to the potting material is formed on the surface opposite to "a". In this case, as shown in FIG. If it is made extremely thin and the value is close to zero, it will be almost l-t.
). After the potting material has hardened to the extent that it loses its fluidity, the centrifugal operation is stopped, and the potting agent is almost completely cured. The ends of each hollow eye bar are opened on the blood inlet/outlet side. At the same time, the inside of the envelopes 11 and 12 is divided into a blood flow path and an oxygen-containing gas flow path via the hollow fiber membrane and the potting material. Incidentally, the above-mentioned potting operation naturally involves the envelope 11,
The same process is performed for the opposite end of 12. FIG. 3 shows two oxygenator envelopes 11, as described above.
12 is placed in a centrifugal device in a straight line and the potting operation is performed on one side at a time.The diameter of the potting part is 10 cm from the center of rotation of the centrifugal device to the potting material 2.
The distance from the center of rotation of the centrifugal device to the potting material 21 when the distance from the center of rotation of the centrifugal device to the potting material 21 is 26.5 cm, and when the potting material 21 is potted simultaneously at both ends with the middle point of the oxygenator envelope 1 as the center of rotation using the conventional method described above. of
Potteng material 21 formed when 7.0 cm
It shows a comparison of the degree of curvature of the inner surface. In this figure, the solid line "x" indicates the case where the potting operation is performed on one side at a time according to the present invention (this is called unilateral centrifugation), and the dotted line "y" indicates the case where the potting operation is performed on both sides simultaneously using the conventional method (this is called the case where both sides are potted simultaneously). (referred to as centrifugation). Note that 22 in this figure indicates the area of the hollow fiber bundle. In addition, the amount of loss in the effective membrane area of the hollow fiber membrane and the loss in the amount of potten material caused by the curvature of the potten material 21 in this case are compared with those in the case where the inner surface of the potten material 21 is completely flat. The numerical values are shown in the table below.
【表】
発明の具体的作用効果
以上、詳述したように本発明によれば人工肺外
囲器内のホローフアイバーのポツテング操作を人
口肺外囲器の全長より長い回転半径によりおこな
うことにしたから充填されたポツテング材の内側
面の彎曲が平坦に近くなるから、ホローフアイバ
ーの有効膜面積の損失が小さくなり、ポツテング
材の量も少なくて済み、人工肺装全体の小型軽量
化が図られ、外観的にも好ましく商品としての価
値感の向上を図ることができる。さらにホローフ
アイバーの有効面積の損失が少ないからプライミ
ングボリユームも小さくなり、プライミング操作
上も好ましい。
なお、上記実施例では、2個の人工肺外囲器に
対し片側づつ同様にポツテング操作をおこなう場
合について説明したが、これに限らず、3個以上
の人工肺外囲器を同様にして片側づつ同時におこ
なうこともできる。[Table] Specific effects of the invention As detailed above, according to the present invention, the potting operation of the hollow fiber in the artificial lung envelope is performed using a rotation radius longer than the entire length of the artificial lung envelope. Since the curvature of the inner surface of the potten material filled with hollow fibers becomes nearly flat, the loss of effective membrane area of the hollow fiber is reduced, the amount of potten material is also reduced, and the entire oxygenator is made smaller and lighter. , the appearance is also favorable and the sense of value as a product can be improved. Furthermore, since there is little loss in the effective area of the hollow eye bar, the priming volume is also small, which is favorable in terms of priming operation. In the above embodiment, the case where the potting operation is performed in the same way on one side of two oxygenator envelopes is explained, but the invention is not limited to this, and three or more oxygenator lung envelopes are similarly potted on one side. You can also do both at the same time.
第1図は従来のホローフアイバー型人工肺のポ
ツテング法を説明する平面図、第2図は本発明に
よるポツテング法を説明する平面図、第3図は従
来法および本発明によつて得られるポツテング材
の内側彎曲面の彎曲状態を説明するホローフアイ
バー型人工肺の平面図である。
図中、1……人工肺外囲器、2……固定、3…
…酸素ガス出入口、11,12……外囲器、1
3,14,15……固定板、16,17……外側
端部、18,19……酸素含有ガス導入孔、21
……ポツテング材、22……ホローフアイバー
束。
FIG. 1 is a plan view illustrating a conventional potting method for a hollow-fiber oxygenator, FIG. 2 is a plan view illustrating a potting method according to the present invention, and FIG. 3 is a plan view illustrating a potting method according to the present invention. FIG. 3 is a plan view of a hollow fiber oxygenator illustrating the curved state of the inner curved surface of the material. In the figure, 1... oxygenator envelope, 2... fixed, 3...
...Oxygen gas inlet/outlet, 11, 12...Envelope, 1
3, 14, 15... Fixed plate, 16, 17... Outer end, 18, 19... Oxygen-containing gas introduction hole, 21
...Potten wood, 22...Hollow eye bar bundle.
Claims (1)
列的に収容する筒状外囲器と、この収容されたホ
ローフアイバーの両端のみを開口させた状態で上
記外囲器の両端部に固定保持するポツテング部
と、該ホローフアイバーの両端開口部とそれぞれ
連通させて上記筒体両端部に設けられた血液出入
ポートと、上記外囲器内のホローフアイバーの外
側空間と連通させて上記外囲器に設けられた一対
の酸素供給ガス出入ポートとを具備してなるホロ
ーフアイバー型人工肺において、上記ポツテング
部双方の内側対向面が二方向にのみ弯曲する凹面
をなし、その凹面はポツテング部両外側面間の距
離をlとし、一方ポツテング部中心部の厚みをt
としたとき、少なくともl−t以上の曲率半径の
円弧が常に前記凹面上にあるような面であること
を特徴とするホローフアイバー型人工肺。 2 ホローフアイバーが平均細孔径200〜2000Å
空孔率20〜85%、内径100〜300μのポリプロピレ
ンフアイバーである特許請求の範囲第1項記載の
人工肺。 3 筒状外囲器内にその軸方向に沿つて多数のホ
ローフアイバーを並設し、該外囲器内の閉塞され
たポツテングすべき一端近傍に粘性ポツテング材
を充填し、該外囲器を遠心装置の回転中心から放
射状に、かつ上記外囲器の上記一端を外側とし、
該外囲器の他端又はその外側を上記回転中心とし
た状態で上記遠心装置に固定し、ついで上記遠心
装置を回転操作させ、そのときの遠心力によつて
上記ポツテング材を上記外囲器内の一端に密に充
填させ、ついで、ポツテイング材を硬化させたの
ち、該ホローフアイバーの端部近傍をポツテイン
グ材を含めて切断して各ホローフアイバーの端部
を血液出入口方向に開口させることを特徴とする
ホローフアイバー型人工肺の製造方法。 4 ポツテング材およびホローフアイバーを収容
したが外囲器を複数個遠心装置の回転軸を対称と
して遠心装置に配設し、ポツテング操作を同時に
おこなう特許請求の範囲第3項記載の製造方法。[Scope of Claims] 1. A cylindrical envelope that accommodates a large number of hollow eye bars in parallel along the axial direction, and both ends of the envelope with only both ends of the accommodated hollow eye bars open. A blood inlet/outlet port provided at both ends of the cylindrical body is communicated with a potten fixedly held in the body, and a blood inlet/outlet port provided at both ends of the cylindrical body is communicated with the openings at both ends of the hollow fiber, respectively, and a space outside the hollow fiber in the envelope is communicated. In the hollow-eye bar oxygenator comprising a pair of oxygen supply gas inlet/output ports provided in the envelope, the inner facing surfaces of both of the potten portions form a concave surface curved in only two directions, and the concave surface is curved in only two directions. The distance between both outer surfaces of the potten is l, and the thickness of the center of the potten is t.
A hollow fiber oxygenator characterized in that the surface is such that an arc having a radius of curvature of at least lt or more always lies on the concave surface. 2 Hollow fiber has an average pore diameter of 200 to 2000Å
The oxygenator according to claim 1, which is a polypropylene fiber with a porosity of 20 to 85% and an inner diameter of 100 to 300μ. 3 A large number of hollow fibers are arranged in parallel along the axial direction in a cylindrical envelope, a viscous potting material is filled near one end of the envelope to be closed, and the envelope is closed. radially from the center of rotation of the centrifugal device, with the one end of the envelope being the outer side,
The envelope is fixed to the centrifugal device with the other end or the outside thereof as the center of rotation, and then the centrifugal device is rotated, and the centrifugal force at that time causes the potting material to be rotated into the envelope. After the potting material is hardened, the hollow fibers are cut near the ends thereof including the potting material to open the ends of each hollow fiber in the direction of the blood inlet and outlet. A method for manufacturing a hollow eye bar type artificial lung. 4. The manufacturing method according to claim 3, wherein a plurality of envelopes containing potting materials and hollow fibers are arranged in a centrifugal device symmetrically with respect to the rotation axis of the centrifugal device, and potting operations are performed simultaneously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13409580A JPS5759546A (en) | 1980-09-26 | 1980-09-26 | Hollow fiber type artificial lung and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13409580A JPS5759546A (en) | 1980-09-26 | 1980-09-26 | Hollow fiber type artificial lung and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5759546A JPS5759546A (en) | 1982-04-09 |
JPS622821B2 true JPS622821B2 (en) | 1987-01-21 |
Family
ID=15120310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13409580A Granted JPS5759546A (en) | 1980-09-26 | 1980-09-26 | Hollow fiber type artificial lung and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5759546A (en) |
-
1980
- 1980-09-26 JP JP13409580A patent/JPS5759546A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5759546A (en) | 1982-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4659549A (en) | Blood oxygenator using a hollow fiber membrane | |
US4231877A (en) | Blood dialyzer | |
US4187180A (en) | Hollow-fiber permeability apparatus | |
US4125468A (en) | Hollow-fiber permeability apparatus | |
GB1600997A (en) | Dialysis device | |
JP3803421B2 (en) | Gas exchange device | |
JPH04669B2 (en) | ||
US4237013A (en) | Hollow fiber permeability apparatus | |
JPS622821B2 (en) | ||
JPH0439862B2 (en) | ||
JP4186113B2 (en) | Hollow fiber membrane oxygenator | |
EP0157941B1 (en) | Blood oxygenator using a hollow fiber membrane | |
JPS609820B2 (en) | Hollow fiber membrane mass transfer device | |
JPS61268304A (en) | Fluid separator | |
JPS61247465A (en) | Hollow yarn membrane type artificial lung | |
JPH04109956A (en) | Hollow yarn type mechanical lung | |
JPS5814803B2 (en) | Hollow fiber membrane mass transfer device | |
JPH0127794Y2 (en) | ||
JPH0345735Y2 (en) | ||
JPS6311972Y2 (en) | ||
JPS59108563A (en) | Hollow yarn type artifical long | |
JPS61119273A (en) | Hollow yarn membrane type artificial lung | |
JPS59108564A (en) | Hollow yarn type artifical long | |
JPS60225572A (en) | Hollow yarn membrane type artificial lung | |
JPS6244948B2 (en) |