JPS62281378A - Inspection of solar battery module - Google Patents

Inspection of solar battery module

Info

Publication number
JPS62281378A
JPS62281378A JP61123939A JP12393986A JPS62281378A JP S62281378 A JPS62281378 A JP S62281378A JP 61123939 A JP61123939 A JP 61123939A JP 12393986 A JP12393986 A JP 12393986A JP S62281378 A JPS62281378 A JP S62281378A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
liquid
solar battery
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61123939A
Other languages
Japanese (ja)
Inventor
Akihiko Nakano
明彦 中野
Hajime Takada
肇 高田
Manabu Yoshida
学 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61123939A priority Critical patent/JPS62281378A/en
Publication of JPS62281378A publication Critical patent/JPS62281378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable the sealed up state of a solar battery module to be detected by a method wherein the module is submerged in a sealed vessel while the pressure in the vessel is reduced to check if the solar battery module bubbles or not. CONSTITUTION:In order to inspect a solar battery module, a solar module 9 is submesrged in deionized water selected as a solution 11 while the fitting parts of a vacuum vessel 10 are firmly bonded to one another and then a three way cock 13 is opened to make three ways communicate with one another. Then, the pressure in vacuum vessel 10 is gradually reduced by a pressure reducing device communicating one way. At this time, the degree of vacuum can be checked by a vacuum gauge communicated with one way. In such a constitution, the solar battery module 9 imperfectly sealed up may be subjected to bubbling 14 before the degree of vacuum reaches 76 mmHg when the pressure of deionized water selected as the solution 11 is gradually reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、太陽電池モジーー/ぺ特にガラス基板、金属
箔およびこの両者を接着する樹脂層にかこまれた空間内
に、太陽電池素子と気体が封入されている太陽電池モジ
ュールの密封を検査する検査方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention provides a solar cell module/particularly a space surrounded by a glass substrate, a metal foil, and a resin layer bonding the two. The present invention relates to an inspection method for inspecting the sealing of a solar cell module in which a solar cell element and a gas are sealed.

従来の技術 太陽電池、特にアモルファス・シリコン(以下a−3t
と略称する)太陽電池やCdS / CdTe 系太陽
電池などの薄膜型太陽電池のモジー−ルは、従来の単結
晶シリコン太陽電池のモジュールから次第に改善されて
、最近では、例えば第2図に示されるような構造のもの
になっている。
Conventional technology solar cells, especially amorphous silicon (hereinafter referred to as A-3T)
Thin film solar cell modules such as (abbreviated as ) solar cells and CdS/CdTe solar cells have been gradually improved from conventional monocrystalline silicon solar cell modules, and recently, for example, as shown in FIG. It has a structure like this.

第2図において、1は2で示すガラス基板上に形成され
た太陽電池素子、3は金属箔で、樹脂層4により上記基
板2の周辺の余白5に接着されている。そして基板2.
金属箔3およびこの両者を接着する樹脂層4にかこまれ
る空間内に、太陽電池素子1とともに空気6とポリエチ
レン袋7の中に収められた酸素放出物8とが封入てれて
いる。
In FIG. 2, 1 is a solar cell element formed on a glass substrate 2, and 3 is a metal foil, which is adhered to a margin 5 around the substrate 2 through a resin layer 4. And board 2.
Air 6 and an oxygen emitting substance 8 contained in a polyethylene bag 7 are enclosed together with the solar cell element 1 in a space surrounded by the metal foil 3 and the resin layer 4 that adheres the two.

この構造の太陽電池モジュール9は作り易い上に、金属
箔3もしくはその上にはり合わされている樹脂層4が太
陽電池素子1に接着していないため、ヒートサイクルに
強く、信頼性も高い。またCdS/ CdTe系の太陽
電池素子の場合は、空気6とか酸素放出物8からの酸素
が作用して、太陽電池の高温における信頼性が高いとい
う特長を持っている。
The solar cell module 9 having this structure is easy to manufacture, and since the metal foil 3 or the resin layer 4 laminated thereon is not adhered to the solar cell element 1, it is resistant to heat cycles and has high reliability. Further, in the case of a CdS/CdTe solar cell element, oxygen from the air 6 or the oxygen emitted 8 acts on the solar cell, and the solar cell has a feature of high reliability at high temperatures.

発明が解決しようとする問題点 上記のような構造の太陽電池モジー−ル、すなわち、ガ
ラス基板、金属箔、およびこの両者を接着する樹脂層に
かこまれた空間内に、太陽電池素子と空気もしくは気体
が封入された太陽電池モジュールの場合、もし樹脂層に
よる接着に欠陥があり、内部の空気もしくは気体が外部
にもれる状態であると、当然、外部の空気は勿論のこと
水蒸気、水も侵入可能となり、太陽電池モジュールの信
頼性がそこなわれるっ 本発明は、上記のような構造の太陽電池モジュールの欠
陥を容易に発見することのできる簡便な検査方法を提供
するものである。
Problems to be Solved by the Invention In a solar cell module having the above structure, a solar cell element and air or In the case of a gas-filled solar cell module, if there is a defect in the adhesion of the resin layer and the internal air or gas leaks to the outside, not only the external air but also steam and water will infiltrate. The present invention provides a simple inspection method that can easily detect defects in a solar cell module having the above structure.

問題点を解決するための手段 本発明は太陽電池モジュールを密閉容器内の液体中に浸
漬し、容器内を減圧して夜中の太陽電池モジュールから
気泡が発生するか否か調べることによってモジュールと
しての密封状態を検査する方法である。
Means for Solving the Problems The present invention immerses a solar cell module in a liquid in a sealed container, reduces the pressure inside the container, and examines whether bubbles are generated from the solar cell module during the night. This is a method of inspecting the sealing state.

作   用 太陽電池モジュールを密閉容器内の液体中に浸漬し、容
器内を減圧させると、太陽電池モジーール内に封入され
ている空気もしくは気体の圧力が相対的に高くなり、外
部に出ようとする。もし樹脂層による接着に欠陥がある
か、金属箔にあながちいていれば、当然その部分から空
気もしくは気体が気泡となって出、液体中に上昇する。
Function: When a solar cell module is immersed in a liquid in a sealed container and the pressure inside the container is reduced, the pressure of the air or gas sealed inside the solar cell module becomes relatively high and tries to escape to the outside. . If there is a defect in the adhesion provided by the resin layer or if the metal foil is perforated, air or gas will naturally form bubbles from that area and rise into the liquid.

この気泡の発生の有無は肉眼で容易に観察することがで
き、モジュールにおける密封の良否を判定することが可
能となる。
The presence or absence of bubbles can be easily observed with the naked eye, making it possible to determine whether the module is properly sealed.

実施例 次に本発明を実施例により説明する。Example Next, the present invention will be explained by examples.

実施例1 第1図は本発明の一実施例を説明するだめの断面略図で
あるう 図中10は真空密閉容器で、液体11を入れる容器部分
と、その上端ですり合わせ部分をもつふた部分とより成
っている。太陽電池モジー−ル9は、真空容器10のふ
たをあけ、液体11の中に沈められている。真空容器1
0のふたの中央部にはあながちけられており、そこにゴ
ム栓12がはめられ、ゴム栓12の中央には三方コック
13の一部が貫通している。
Embodiment 1 FIG. 1 is a schematic cross-sectional view of a container for explaining an embodiment of the present invention. In the figure, 10 is a vacuum-tight container, which has a container portion containing a liquid 11, a lid portion having a mating portion at its upper end, It consists of The solar cell module 9 is submerged in a liquid 11 with the lid of a vacuum container 10 opened. Vacuum container 1
A hole is cut in the center of the lid of 0, into which a rubber stopper 12 is fitted, and a part of a three-way cock 13 passes through the center of the rubber stopper 12.

三方コック13は文字通り三方に通路を通じることも、
特定の三方だけ通じることが可能である。
The three-way cock 13 can literally lead to passages on three sides.
It is possible that only three specific directions can be communicated.

三方コックの一方は真空容器10の内部空間と、他の一
方は図示していない減圧装置と、最後の一方は図示して
いない真空度計に通じている。
One of the three-way cocks communicates with the internal space of the vacuum container 10, the other with a pressure reducing device (not shown), and the last one with a vacuum gauge (not shown).

本発明によ)太陽電池モジュールを検査するには、液体
11として選んだ脱イオン水の中に太陽電池モジー−ル
9を浸漬し、真空容器10のすり合わせ部分を密着させ
て後三方コック13を開き、三方をすべて通じきせる。
In order to inspect the solar cell module (according to the present invention), the solar cell module 9 is immersed in deionized water selected as the liquid 11, the ground portion of the vacuum container 10 is brought into close contact, and the rear three-way cock 13 is closed. Open it and let it pass through on all three sides.

そして、一方に通じている減圧装置により真空容器io
の内部は次第に減圧されてくる。この際、一方に通じて
いる真空度計でその真空度を見ることが可能である。液
体11が次第に減圧されてくると液体11が脱イオン水
である場合には真空度760ゴqに達する以前に、太陽
電池モジュール11の封止が不完全なものからは気泡1
4の発生が認められた。
Then, the vacuum vessel io is
The pressure inside is gradually reduced. At this time, it is possible to check the degree of vacuum with a vacuum gauge connected to one side. When the pressure of the liquid 11 is gradually reduced, if the liquid 11 is deionized water, air bubbles 1 are generated from incompletely sealed solar cell modules 11 before the degree of vacuum reaches 760 gq.
4 occurrences were observed.

それをさらに継続するとその気泡14は次第に大きくな
り、液体11の中を上昇するのが認められた。しかし封
止の完全な太陽電池モジー−ル9からは気泡14の発生
は認められなかったっ以上のように、気泡14の発生の
有無を観察することにより、太陽電池モジー−ルの密封
良否の検査を容易に行うことができたつなお液体11が
脱イオン水の場合、液体11の価格が非常に安く、不燃
物であり、使用後の廃棄が簡単であるという利点がある
As this process continued, the bubbles 14 gradually became larger and were observed to rise in the liquid 11. However, the generation of air bubbles 14 was not observed in the completely sealed solar cell module 9.As described above, the sealing quality of the solar cell module can be inspected by observing the presence or absence of air bubbles 14. However, when the liquid 11 is deionized water, it has the advantage that the liquid 11 is very cheap, is nonflammable, and can be easily disposed of after use.

実施例2 実施例1における脱イオン水の代りに、液体として四塩
化炭素クロロホルムもしくは両者の1対1の混合液を使
用したっこの場合も実施例1と同様にして太陽電池モジ
ュールの検査を行うことができた。これらの液体は不燃
性であり、有機溶剤としては比較的安価である。
Example 2 In this case, the solar cell module was inspected in the same manner as in Example 1, using carbon tetrachloride chloroform or a 1:1 mixture of both as the liquid instead of deionized water in Example 1. was completed. These liquids are nonflammable and relatively inexpensive for organic solvents.

実施例3 i体としてトリクロルエチレン、パークロルエチレンも
しくはトリクロルエタンを使用した。これらを用いても
実施例1と同様にして太陽電池モジー−ルの検査を行う
ことができた。これらの液体は不燃性であり、比較的工
業的に取り扱い易い液体であるっこれらの液体の混合物
でも同様の検査を行うことが可能であると考えられる。
Example 3 Trichlorethylene, perchlorethylene or trichloroethane was used as the i-isomer. Even using these, the solar cell module could be inspected in the same manner as in Example 1. These liquids are nonflammable and relatively easy to handle on an industrial scale, so it is thought that similar tests can be performed on mixtures of these liquids.

実施例4 液体としてテトラクロロジフルオロエタン、ダイキン工
業株製(商品名ダイフロン32)、トリクロロトリフル
オロエタン(同商品名グイフロンS3)もしくはその混
合物(同商品名ダイフロンS2−T)を使用したつこれ
らの場合も実施例1と同様にして太陽電池モジュールの
検査を行うことができた。これらの液体は不燃性であり
、比較的工業的に取り扱い易い液体であるっまた安全性
も高い。さらにまた、これらの液体は太陽電池モジュー
ルの表面についた千指傘#の汚れなどだけを除去するの
に有効で他のモジュール構成材料をいためないという特
徴がある。
Example 4 In these cases, tetrachlorodifluoroethane, manufactured by Daikin Industries, Ltd. (trade name: Daiflon 32), trichlorotrifluoroethane (trade name: Guiflon S3), or a mixture thereof (product name: Daiflon S2-T) was used as the liquid. Also, the solar cell module could be inspected in the same manner as in Example 1. These liquids are nonflammable, relatively easy to handle industrially, and are highly safe. Furthermore, these liquids are effective in removing only the dirt and grime attached to the surface of the solar cell module, and are characterized in that they do not damage other module constituent materials.

実施例5 実施例1〜4に使用された液体では沸点が低く、かつ高
価なものがあるっそこでn−ブチルアルコールとかトル
エンなど比較的沸点が高く、安価な有機溶媒を、可燃性
とならない範囲でそれらの液体に混合することができる
っ之こで液体としてグイフロンS3に少量のn−ブチル
アルコールを加えたもの、もしくはダイスロンS3に少
量のトルエンを加えたものを使用して、実施例1と同様
の検査を行ったところ、容易に検査を行うことができた
つ 発明の効果 以上実施例の中で詳述したように、本発明によれば、太
陽電池モジュールの密封良否の検査を容易に、しかも簡
便な装置で行うことが可能である。
Example 5 Some of the liquids used in Examples 1 to 4 have low boiling points and are expensive, so we used inexpensive organic solvents with relatively high boiling points such as n-butyl alcohol and toluene in a range that does not become flammable. Example 1 was carried out by using Guiflon S3 with a small amount of n-butyl alcohol added or Dicelon S3 with a small amount of toluene added as the liquid. When a similar test was conducted, it was found that the test could be easily carried out.Effects of the InventionAs described in detail in the embodiments, according to the present invention, the sealing quality of the solar cell module can be easily tested. Moreover, it can be carried out using a simple device.

とくに太陽電池モジー一層形成時、ガラス基板に金属箔
を樹脂層で接着する工程を経るが、この工程で生ずる接
着不良を確実に検査できるため、不良モジー−ルを市場
に出す恐れがなくなるっまた液体に有機溶媒を使用すれ
ば太陽電池モジュール形成時、金属箔(多くの場合AI
 箔で、しかも樹脂薄膜が外表面にはシ合わされている
が)の表面についている汚れ、はこり等を検査工程の中
で除去できるという清浄化効果も得られるものでちる。
In particular, when forming a single layer of solar cell modules, there is a process of bonding the metal foil to the glass substrate with a resin layer, but since it is possible to reliably inspect for adhesion failures that occur during this process, there is no risk of defective modules being released on the market. If an organic solvent is used in the liquid, metal foil (in many cases AI) can be used when forming solar cell modules.
It also has a cleaning effect in that dirt, flakes, etc. attached to the surface of the foil can be removed during the inspection process (although a thin resin film is attached to the outer surface).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための断面略図、第2
図は本発明を実施することが可能な太陽電池モジュール
の構成の一例を示す断面図である。 9・・・・太陽電池モジュール、10・ ・・真空容器
、11・・・・・液体、12・・・・ゴム栓、13・・
・・・三方コック、14・・・・・気泡っ
Fig. 1 is a schematic cross-sectional view for explaining the present invention in detail;
The figure is a sectional view showing an example of the configuration of a solar cell module in which the present invention can be implemented. 9...Solar cell module, 10...Vacuum container, 11...Liquid, 12...Rubber stopper, 13...
...three-way cock, 14...bubbles

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス基板、金属箔およびこの両者を接着する樹
脂層にかこまれた空間内に、太陽電池素子と、空気もし
くは気体を封入した太陽電池モジユールを、密閉容器内
の液体中に浸漬し、容器内を減圧して太陽電池モジュー
ルからの気泡の発生の有無を調べることを特徴とする太
陽電池モジュールの検査方法。
(1) A solar cell element and a solar cell module filled with air or gas are immersed in a liquid in a sealed container in a space surrounded by a glass substrate, metal foil, and a resin layer that adheres the two, 1. A method for inspecting a solar cell module, which comprises reducing the pressure inside a container and examining whether bubbles are generated from the solar cell module.
(2)容器内の液体が、四塩化炭素かクロロホルム、も
しくはその混合物のいずれかである特許請求の範囲第1
項記載の太陽電池モジュールの検査方法。
(2) Claim 1 in which the liquid in the container is either carbon tetrachloride, chloroform, or a mixture thereof.
Inspection method for solar cell modules as described in section.
(3)液体がトリクロルエチレン、パークロルエチレン
、1,1,1−トリクロルエタンなどのエタンもしくは
エチレンの水素を塩素で置換した誘導体もしくはその誘
導体の混合物である特許請求の範囲第1項記載の太陽電
池モジュールの検査方法。
(3) The solar cell according to claim 1, wherein the liquid is a derivative of ethane or ethylene in which hydrogen is replaced with chlorine, such as trichlorethylene, perchlorethylene, or 1,1,1-trichloroethane, or a mixture of such derivatives. How to inspect battery modules.
(4)液体がテトラクロロジフルオロエタン、トリクロ
ロトリフルオロエタンなどエタンの水素を塩素及びふっ
素で置換した誘導体もしくはその誘導体の混合物である
特許請求の範囲第1項記載の太陽電池モジュールの検査
方法。
(4) The method for inspecting a solar cell module according to claim 1, wherein the liquid is a derivative of ethane in which hydrogen is replaced with chlorine and fluorine, such as tetrachlorodifluoroethane or trichlorotrifluoroethane, or a mixture of derivatives thereof.
(5)液体がn−ブチルアルコール、トルエンなどの有
機溶媒との混合物である特許請求の範囲第2項、第3項
、第4項のいずれかに記載の太陽電池モジュールの検査
方法。
(5) The method for inspecting a solar cell module according to any one of claims 2, 3, and 4, wherein the liquid is a mixture with an organic solvent such as n-butyl alcohol or toluene.
JP61123939A 1986-05-29 1986-05-29 Inspection of solar battery module Pending JPS62281378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123939A JPS62281378A (en) 1986-05-29 1986-05-29 Inspection of solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123939A JPS62281378A (en) 1986-05-29 1986-05-29 Inspection of solar battery module

Publications (1)

Publication Number Publication Date
JPS62281378A true JPS62281378A (en) 1987-12-07

Family

ID=14873090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123939A Pending JPS62281378A (en) 1986-05-29 1986-05-29 Inspection of solar battery module

Country Status (1)

Country Link
JP (1) JPS62281378A (en)

Similar Documents

Publication Publication Date Title
JP4843947B2 (en) Sealed battery manufacturing method and airtightness inspection apparatus
JP5894254B2 (en) Plating method and plating apparatus
US8151816B2 (en) Method and device for removing pollution from a confined environment
KR102381108B1 (en) Leak inspection apparatus and method of secondary battery
TW565963B (en) Sealed battery and its manufacturing method
JPH05157654A (en) Leakage inspection method of film-separation device
CN210863065U (en) Battery leak detector
KR20040065522A (en) Method for leak testing of electrochemical elements
JP2013512418A (en) Method for inspecting the water tightness of a water conducting component of a housing
JP2007271558A (en) Leakage testing apparatus
JPH10172618A (en) Method for inspecting lithium ion
JPS62281378A (en) Inspection of solar battery module
CN114216618A (en) Method and device for detecting air tightness of module box of water meter
CN112781785A (en) Method for testing internal vacuum degree of soft package battery and quality control method of soft package battery
JP2017110303A (en) Leakage inspection method of substrate holder used in plating device
JP2016135923A (en) Plating device
JPH0481631A (en) Method and apparatus for waterproof test
JP3860312B2 (en) Odor detection device
JP2002184658A (en) Device and method for inspecting electrolytic capacitor for airtightness
JP2003083837A (en) Leak test method
JPH0674857A (en) Method for inspecting airtightness of battery
JPH04151849A (en) Inspection method of glove
JP4662002B2 (en) Airtight inspection method for electrolytic capacitors
JP3548699B2 (en) Inspection method for porous gas diffusion electrode of fuel cell
JPS63148139A (en) Detecting method for defect in airtightness