JPS62281338A - Vapor phase epitaxy method - Google Patents

Vapor phase epitaxy method

Info

Publication number
JPS62281338A
JPS62281338A JP12525186A JP12525186A JPS62281338A JP S62281338 A JPS62281338 A JP S62281338A JP 12525186 A JP12525186 A JP 12525186A JP 12525186 A JP12525186 A JP 12525186A JP S62281338 A JPS62281338 A JP S62281338A
Authority
JP
Japan
Prior art keywords
gas
raw material
specific gravity
carrier gas
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12525186A
Other languages
Japanese (ja)
Other versions
JPH0732130B2 (en
Inventor
Kenji Maruyama
研二 丸山
Mitsuo Yoshikawa
吉河 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61125251A priority Critical patent/JPH0732130B2/en
Publication of JPS62281338A publication Critical patent/JPS62281338A/en
Publication of JPH0732130B2 publication Critical patent/JPH0732130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To mix raw material gases uniformly, by using an inactive gas having a large specific gravity as a carrier gas, by increasing the apparent specific gravity of the raw material gas having the small specific gravity among the raw material gases and decreasing the difference in specific gravities among the raw material gases. CONSTITUTION:A substrate 3 comprising, e.g., CdTe, which is mounted on a substrate mounting stage 2, is provided in a reacting pipe 1. A valve 4 is opened and a carrier gas is introduced in the reacting pipe 1. Then valves 5, 6 and 7 are opened. The carrier gas is introduced into a container of, e.g., dimethylcadmium, a container 9 of diethyltellurium and a container 10 of mercury. The gases are introduced into the reacting pipe 1. In comparison with a conventional method, in which hydrogen gas is used as a carrier gas, the ratio among the specific gravities of the raw material gases is decreased to about 1/10. The raw material gases are mixed sufficiently uniformly in the reacting system. As a carrier gas having the large specific gravity of inactive gas, Ne, Kr, Xe and Rn are used in addition to Ar. Thus the epitaxial crystal layer of a compound semiconductor, whose composition is uniform, can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 Metal−Organic−Chemical−Va
por−Deposition(以下、MOCVD法と
称する。)による気相エピタキシャル成長方法であって
、複数の有機金属化合物よりなる原料ガスとキャリアガ
ス、或いは複数の有機金属化合物と単体金属元素より成
る原料ガスとキャリアガスとを反応管内に導入し、該反
応管を加熱して複数の有機金属化合物よりなる原料ガス
が分解した金属原子、或いは複数の有機金属化合物と単
体金属元素よりなる原料ガスが分解した金属原子を基板
上に付着させて基板上に化合物半導体結晶を形成する場
合、キャリアガスに比重の大きい不活性ガスを用いて、
反応管に導入される原料ガス間どうしの比重差を少なく
し、反応管内で原料ガスがどうしが均一に混合するよう
にして均一な組成の化合物半導体結晶が形成されるよう
にしたもの。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] Metal-Organic-Chemical-Va
A vapor phase epitaxial growth method using por-deposition (hereinafter referred to as MOCVD method), which uses a raw material gas and a carrier gas consisting of a plurality of organometallic compounds, or a raw material gas and a carrier consisting of a plurality of organometallic compounds and a single metal element. A gas is introduced into a reaction tube and the reaction tube is heated to produce metal atoms decomposed from a raw material gas consisting of a plurality of organometallic compounds, or metal atoms decomposed from a raw material gas consisting of a plurality of organometallic compounds and a single metal element. When depositing on a substrate to form a compound semiconductor crystal on the substrate, an inert gas with a high specific gravity is used as the carrier gas.
A compound semiconductor crystal with a uniform composition is formed by reducing the difference in specific gravity between the raw material gases introduced into the reaction tube and uniformly mixing the raw material gases within the reaction tube.

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体結晶を構成する金属原子を含む有
機化合物を分解して基板上にエピタキシャル層を形成す
るMOCVD法に係り、特に化合物半導体結晶を構成す
る金泥原子の組成比が安定して得られるような気相エピ
タキシャル成長方法に関する。
The present invention relates to a MOCVD method for forming an epitaxial layer on a substrate by decomposing an organic compound containing metal atoms constituting a compound semiconductor crystal, and in particular, it is possible to obtain a stable composition ratio of gold mud atoms constituting the compound semiconductor crystal. This invention relates to a vapor phase epitaxial growth method.

反応容器内に例えばテルル化カドミウム(CdTe)よ
りなる基板と、化合物半導体結晶の構成原子であるカド
ミウム(Cd)原子を含むアルキル化合物のジメチルカ
ドミウム、((CI+ 3) 2 Cd)と、テルル(
Te)原子を含むアルキル化合物のジエチルテルル((
C2Hs ) 2 Te) と、水銀(Hg)と、キャ
リアガスとしての水素ガスを導入し、この反応容器内を
加熱することで、前記ジメチルカドミウムとジエチルテ
ルルを分解し、これ等のアルキル化合物より分解された
Cd原子とTe原子と、更にHg原子より構成されるH
 g +−x Cd y T eの化合物半導体を基板
上に気相成長するMOCVD法は周知である。
In a reaction vessel, a substrate made of, for example, cadmium telluride (CdTe), dimethyl cadmium ((CI+ 3) 2 Cd), an alkyl compound containing cadmium (Cd) atoms, which are constituent atoms of a compound semiconductor crystal, and tellurium (
diethyl tellurium ((
By introducing C2Hs) 2Te), mercury (Hg), and hydrogen gas as a carrier gas and heating the inside of this reaction vessel, the dimethylcadmium and diethyltellurium are decomposed, and their alkyl compounds are decomposed. H composed of Cd atoms, Te atoms, and Hg atoms
The MOCVD method in which a compound semiconductor of g + -x Cd y T e is grown in a vapor phase on a substrate is well known.

このようなアルキル化合物を分解して基板上にCd原子
と、Te原子と、更にHg原子をHg +−x Cd 
xTeの結晶層として形成する際、Cd原子とTe原子
とHg原子の組成比を安定してHg、−xCd、 T 
eの結晶層を形成することが望まれている。
Such an alkyl compound is decomposed to form Cd atoms, Te atoms, and Hg atoms on the substrate.
When forming an xTe crystal layer, the composition ratio of Cd atoms, Te atoms, and Hg atoms is stabilized to Hg, -xCd, T.
It is desired to form a crystalline layer of e.

〔従来の技術〕[Conventional technology]

第1図はHg +−x Cd X T eの気相成長方
法の説明図で、図示するように石英ガラスよりなる反応
管1内にグラファイトよりなる基板設置台2に設置され
たCdTeよりなる基板3を設置し、この反応管1内に
バルブ4を開いてキャリアガスとしての水素ガスを導入
する。
FIG. 1 is an explanatory diagram of the vapor phase growth method of Hg +-x Cd 3 is installed in the reaction tube 1, and a valve 4 is opened to introduce hydrogen gas as a carrier gas into the reaction tube 1.

次いでバルブ5,6.7を開いてジメチルカドミウムの
収容容器8とジエチルテルルの収容容器9と水銀の収容
容器10に水素ガスを導入し、前記ジメチルカドミウム
、ジエチルテルル、水銀をそれぞれ担持した水素ガスを
反応管1内に導入する。
Next, valves 5 and 6.7 are opened to introduce hydrogen gas into the dimethyl cadmium storage container 8, the diethyl tellurium storage container 9, and the mercury storage container 10, and the hydrogen gas supporting the dimethyl cadmium, diethyl tellurium, and mercury, respectively. is introduced into the reaction tube 1.

その後、反応管1の周囲に設けた高周波コイル11に通
電することで、設置台2を加熱し、水素ガスによって担
持され、反応管1内に導入された有機金属化合物を分解
してCdTeの結晶層を基板3上に形成している。
Thereafter, by energizing the high-frequency coil 11 provided around the reaction tube 1, the installation table 2 is heated, and the organometallic compound supported by the hydrogen gas and introduced into the reaction tube 1 is decomposed into CdTe crystals. A layer is formed on the substrate 3.

C発明が解決しようとする問題点〕 ところで、従来、このような気相成長方法に於けるキャ
リアガスとしては、還元性の強い水素ガスや、高純度の
状態でガスが得られ、かつ有機化合物を分解する際、付
加反応のような複雑な反応を生じないヘリウム(He)
ガス等をキャリアガスとして用いており、これ等水素ガ
スの比重は0.069で、ヘリウムガスの比重は0.1
4でいずれも比重の小さいキャリアガスを用いている。
[Problems to be Solved by the Invention] Conventionally, as a carrier gas in such a vapor phase growth method, hydrogen gas with strong reducing properties, gas obtained in a highly pure state, and organic compounds Helium (He) does not cause complex reactions such as addition reactions when decomposing
These hydrogen gases have a specific gravity of 0.069 and helium gases have a specific gravity of 0.1.
4, a carrier gas with a small specific gravity is used in all cases.

このような比重の小さいガスをキャリアガスとして用い
ると、原料ガスの内、比重の大きい水銀を担持した水素
ガスは反応管の底部に滞留し、比重の軽いジメチルカド
ミウム、或いはジエチルテルルを担持した水素ガスは反
応管1の上部に位置するようになってこれらの原料ガス
間の混合が充分行われず、従って基板上に均一な組成の
化合物半導体結晶が得られない問題点を生じる。
When such a gas with a low specific gravity is used as a carrier gas, the hydrogen gas supporting mercury, which has a high specific gravity, stays at the bottom of the reaction tube, and the hydrogen gas supporting dimethyl cadmium or diethyl tellurium, which has a low specific gravity, stays at the bottom of the reaction tube. Since the gases are located in the upper part of the reaction tube 1, these source gases are not sufficiently mixed, resulting in a problem that a compound semiconductor crystal having a uniform composition cannot be obtained on the substrate.

本発明は上記した問題点を解決し、キャリアガスに比重
の大きい不活性ガスを用いることで、原料ガスのうちで
比重の小さい原料ガスの比重を見掛は上大きくして原料
ガス相互間で比重の差を小さくして原料ガスどうしが均
一に混合するようにした化合物半導体結晶の製造方法の
提供を目的とする。
The present invention solves the above-mentioned problems, and by using an inert gas with a high specific gravity as a carrier gas, the specific gravity of the raw material gas with a low specific gravity among the raw material gases is increased, and the specific gravity of the raw material gases is increased. The object of the present invention is to provide a method for manufacturing a compound semiconductor crystal in which raw material gases are uniformly mixed by reducing the difference in specific gravity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の気相エピタキシャル成長方法は、反応管内にキ
ャリアガスと有機金属化合物、或いはキャリアガスと有
機金属化合物と単体金属元素を担持した原料ガスを導入
し、該原料ガスを基板上で分解して化合物半導体結晶を
基板上に形成する方法に於いて、キャリアガスに比重の
大きい不活性ガスを用いるようにする。
In the vapor phase epitaxial growth method of the present invention, a carrier gas and an organometallic compound, or a carrier gas and an organometallic compound, and a raw material gas carrying a single metal element are introduced into a reaction tube, and the raw material gas is decomposed on a substrate to form a compound. In a method for forming semiconductor crystals on a substrate, an inert gas with a high specific gravity is used as a carrier gas.

〔作用〕[Effect]

本発明の気相エピタキシャル成長方法は、キャリアガス
に比重の大きい不活性ガスを用いることで、キャリアガ
スに混合されている場合の原料ガスのそれぞれの見掛け
の比重を大きくし、もって原料ガス相互間の比重の差が
小さくなるようにして原料ガスどうしが均一に混合し、
組成の安定した化合物半導体結晶が得られるようにする
In the vapor phase epitaxial growth method of the present invention, by using an inert gas with a high specific gravity as a carrier gas, the apparent specific gravity of each of the raw material gases when mixed with the carrier gas is increased, thereby increasing the gap between the raw material gases. The raw material gases are mixed uniformly so that the difference in specific gravity is small,
To obtain a compound semiconductor crystal with a stable composition.

(実施例) 本発明の実施例として、原料ガスにジメチルカドミウム
、ジエチルテルル、水銀を用いた場合について例を用い
て述べる。
(Example) As an example of the present invention, a case will be described in which dimethyl cadmium, diethyl tellurium, and mercury are used as source gases.

第1表、及び第2表ににジメチルカドミウム、ジエチル
テルル、水銀の各々に付いての物理的特性に付いて述べ
る。
Tables 1 and 2 describe the physical properties of dimethyl cadmium, diethyl tellurium, and mercury.

ここでDMcdはジメチルカドミウムを示し、DETe
はジエチルテルルを示す。
Here, DMcd indicates dimethyl cadmium, DETe
indicates diethyl tellurium.

更に本発明の方法で用いるキャリアガスとしての不活性
ガスの物理的性質について第3表に示す。
Further, Table 3 shows the physical properties of the inert gas used as a carrier gas in the method of the present invention.

この表で各種キャリアガスの比重は空気を1と第   
1   表 第   2   表 して算出した。
In this table, the specific gravity of various carrier gases is 1st and 2nd.
Calculations were made using Table 1.

尚、従来の方法で用いていた水素ガスの分子量は2.0
2で、空気を1とした場合の水素ガスの比重は0.06
9となる。
Furthermore, the molecular weight of hydrogen gas used in the conventional method is 2.0.
2, and when air is 1, the specific gravity of hydrogen gas is 0.06
It becomes 9.

ここで本発明の実施例として前記した第1図に示す気相
成長装置を用いて、例えばキャリアガスにArガスを用
い、前記したジメチルカドミウム、ジエチルテルルより
なる有機金属化合物と水銀よりなる単体金属元素を用い
てMOCVD法を用いてCdTeの基板上にHg l−
x Cd x T eの結晶層を形第   3   表 成する場合に付いて述べる。
Here, as an embodiment of the present invention, the above-mentioned vapor phase growth apparatus shown in FIG. Hg l− on a CdTe substrate using the MOCVD method using
A case will be described in which a crystal layer of x Cd x Te is formed as a third surface.

この場合、気相成長に用いる反応管は一端が開放されて
おり、大気中で行われているので反応系の全圧=1at
mで表される。
In this case, one end of the reaction tube used for vapor phase growth is open, and the reaction is carried out in the atmosphere, so the total pressure of the reaction system = 1at
Represented by m.

ここで原料ガスの比重を9gとし、原料ガスの分圧をP
gとし、キャリアガスの比重をρCとすると、キャリア
ガスの分圧は(1−Pg)で与えられ、反応系内に於け
る原料ガスとキャリアガスとの混合ガスとの比重ρには
第(1)式に示されるようになる。
Here, the specific gravity of the raw material gas is 9g, and the partial pressure of the raw material gas is P
g and the specific gravity of the carrier gas is ρC, the partial pressure of the carrier gas is given by (1-Pg), and the specific gravity ρ of the mixed gas of the raw material gas and carrier gas in the reaction system is given by the (1-Pg). 1) It becomes as shown in the formula.

ρk −ρgXPg+ρCX(1−Pg)  ・・・・
・・・・・(11ここで第1表、第2表、第3表、第(
1)式を用いてArガスをキャリアガスとした時のジメ
チルカドミウムより成る原料ガスとの混合ガスの比重は
、0.01576 x(1xlO−’)  +1.38
x(1−I Xl0−’)≠1.3799・・・・・・
(2) またArガスをキャリアガスとした時のジエチルテルル
より成る原料ガスとの混合ガスの比重は、0.0170
4 x(1xlO−’)  +1.38x(1−1xl
O−’)= 1.3799・・・・・・(3) またArガスをキャリアガスとした時の水銀蒸気よりな
る原料ガスとの混合ガスの比重は、第(4)式%式% 従って最も比重の大きい水銀の蒸気よりなる原料ガスと
、キャリアガスの計ガスとの混合ガスに於ける比重と、
比重の小さいジメチルカドミウムや、ジエチルテルルよ
りなる原料ガスと、キャリアガスの計ガスの混合ガスに
於ける比重の比は、第(5)式のようになる。
ρk −ρgXPg+ρCX(1-Pg) ・・・・
......(11Here, Table 1, Table 2, Table 3, Table (
Using the formula 1), when Ar gas is used as a carrier gas, the specific gravity of the mixed gas with the raw material gas consisting of dimethyl cadmium is 0.01576 x (1xlO-') + 1.38
x(1-I Xl0-')≠1.3799...
(2) When Ar gas is used as a carrier gas, the specific gravity of the mixed gas with diethyl tellurium raw material gas is 0.0170.
4 x(1xlO-') +1.38x(1-1xl
O-') = 1.3799 (3) Furthermore, when Ar gas is used as a carrier gas, the specific gravity of the mixed gas with the raw material gas consisting of mercury vapor is expressed by formula (4) % Formula % Therefore, The specific gravity in a mixed gas of a raw material gas consisting of mercury vapor, which has the highest specific gravity, and a total carrier gas,
The ratio of the specific gravity in a mixed gas of a raw material gas consisting of dimethyl cadmium or diethyl tellurium, which has a small specific gravity, and a total carrier gas is expressed by equation (5).

1.581 /1.3799=1.145・・・・・・
・(5)ちなみに、従来の方法に於けるキャリアガスと
して水素ガスを用い、原料ガスにジメチルカドミウムを
用いた時の混合ガスの比重は第(6)式のようになる。
1.581 /1.3799=1.145...
- (5) Incidentally, when hydrogen gas is used as the carrier gas in the conventional method and dimethyl cadmium is used as the raw material gas, the specific gravity of the mixed gas is as shown in equation (6).

0.01576 X(IXIO−’)  +0.069
(1−I Xl0−’)=0.06899・・・・・・
(6) 更に従来の方法に於けるキャリアガスとして水素ガスを
用い、原料ガスに水銀の蒸気を用いた時の混合ガスの比
重は第(7)式のようになる。
0.01576 X(IXIO-') +0.069
(1-I Xl0-')=0.06899...
(6) Furthermore, when hydrogen gas is used as the carrier gas in the conventional method and mercury vapor is used as the raw material gas, the specific gravity of the mixed gas is as shown in equation (7).

12.14 xo、0605+0.069(1−0,0
605)  =0.7993・・・・・・・・・(7) 従って最も比重の大きい水銀の蒸気よりなる原料ガスと
、キャリアガスとしての水素ガスを用いた場合の混合ガ
スに於ける比重と、比重の小さいジメチルカドミウムよ
りなる原料ガスと水素ガスとの混合ガスに於ける比重の
比は第(8)式のようになる。
12.14 xo, 0605+0.069(1-0,0
605) = 0.7993 (7) Therefore, the specific gravity of the mixed gas when using the raw material gas consisting of mercury vapor, which has the highest specific gravity, and hydrogen gas as the carrier gas. The ratio of specific gravity in a mixed gas of hydrogen gas and a raw material gas made of dimethyl cadmium, which has a small specific gravity, is expressed by equation (8).

0.799310.06899 = 11.6・・・・
・・(8)即ち、キャリアガスを水素ガスとした従来の
方法に比して、キャリアガスをArガスとした本発明の
実施例に於ける場合は、原料ガスどうしの比重の比が約
1710に減少し、原料ガスどうしが反応系内で充分均
一に混合されることが判る。
0.799310.06899 = 11.6...
(8) That is, compared to the conventional method using hydrogen gas as the carrier gas, in the embodiment of the present invention using Ar gas as the carrier gas, the ratio of the specific gravity of the raw material gases is about 1710. It can be seen that the raw material gases are mixed sufficiently uniformly within the reaction system.

このような上記した本発明の事項をまとめて第4表に示
す。ここで、ラドン(Rn)ガスをキャリアガスとして
用いた場合についても述べる。
The above-mentioned matters of the present invention are summarized in Table 4. Here, a case where radon (Rn) gas is used as a carrier gas will also be described.

第4表 また比較のために、従来の方法に於ける水素ガスをキャ
リアガスとして用いた場合も示し、前記した原料ガスが
最も比重の大きい水銀とキャリアガスとの混合ガスとの
比重と、原料ガスのうちで比重の小さいジメチルカドミ
ウム、ジエチルテルルとキャリアガスとの混合ガスの比
を併せて示した。
For comparison, Table 4 also shows the case where hydrogen gas is used as a carrier gas in the conventional method, and shows the specific gravity of the mixed gas of mercury and carrier gas, in which the raw material gas has the highest specific gravity, and the raw material gas. The ratio of the mixed gas of dimethyl cadmium and diethyl tellurium, which have lower specific gravity among the gases, and the carrier gas is also shown.

第4表より判るように、不活性ガスの比重が大きいRn
のようなキャリアガスを用いるにつれて、原料ガスどう
しの比重の比が少なくなり、原料ガスどうしが尚一層均
一に混合されることが判る。
As can be seen from Table 4, Rn has a high specific gravity of inert gas.
It can be seen that as a carrier gas such as .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の方法によれば、原料ガスど
うしが均一に混合されるので、組成が均一な化合物半導
体のエピタキシャル結晶層が得られ、このような方法で
形成した化合物半導体結晶を用いて赤外線検知素子のよ
うな半導体装置を形成すれば、高性能な装置が得られる
効果がある。
As described above, according to the method of the present invention, since the raw material gases are mixed uniformly, an epitaxial crystal layer of a compound semiconductor with a uniform composition can be obtained, and the compound semiconductor crystal formed by such a method can be If a semiconductor device such as an infrared detecting element is formed using this material, a high-performance device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図である。 図に於いて、 1は反応管、2は基板設置台、3は基板、4,5゜6.
7はバルブ、8はジメチルカドミウム収容容器、9はジ
エチルテルル収容容器、10は水銀収容容器、11はコ
イルを示す。
FIG. 1 is a detailed explanatory diagram of the present invention. In the figure, 1 is a reaction tube, 2 is a substrate installation stand, 3 is a substrate, 4,5°6.
7 is a valve, 8 is a dimethyl cadmium container, 9 is a diethyl tellurium container, 10 is a mercury container, and 11 is a coil.

Claims (2)

【特許請求の範囲】[Claims] (1)反応管(1)内に基板(3)を設置し、該反応管
(1)内に有機金属化合物よりなる原料ガスとキャリア
ガス、或いは有機金属化合物よりなる原料ガスと単体の
金属原子とキャリアガスとを導入し、前記反応管(1)
内を加熱し、前記有機金属化合物を分解して、前記基板
(3)上に前記有機金属化合物の金属原子、或いは単体
の金属原子と有機金属化合物の金属原子より成る化合物
半導体結晶を成長させる場合に於いて、 前記キャリアガスに比重の大きい不活性ガスを用いるこ
とを特徴とする気相エピタキシャル成長方法。
(1) A substrate (3) is installed in a reaction tube (1), and a raw material gas made of an organometallic compound and a carrier gas, or a raw material gas made of an organometallic compound and a single metal atom are placed in the reaction tube (1). and carrier gas are introduced into the reaction tube (1).
In the case where a compound semiconductor crystal consisting of metal atoms of the organometallic compound, or single metal atoms and metal atoms of the organometallic compound is grown on the substrate (3) by heating the inside and decomposing the organometallic compound. A vapor phase epitaxial growth method, characterized in that an inert gas with a high specific gravity is used as the carrier gas.
(2)前記キャリアガスとしてネオン(Ne)、アルゴ
ン(Ar)、クリプトン(Kr)、キセノン(Xe)、
ラドン(Rn)のうちの少なくとも一種類のガスを用い
ることを特徴とする特許請求の範囲第1項に記載の気相
エピタキシャル成長方法。
(2) Neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) as the carrier gas,
The vapor phase epitaxial growth method according to claim 1, characterized in that at least one type of gas selected from radon (Rn) is used.
JP61125251A 1986-05-29 1986-05-29 Vapor phase epitaxial growth method Expired - Lifetime JPH0732130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125251A JPH0732130B2 (en) 1986-05-29 1986-05-29 Vapor phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125251A JPH0732130B2 (en) 1986-05-29 1986-05-29 Vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS62281338A true JPS62281338A (en) 1987-12-07
JPH0732130B2 JPH0732130B2 (en) 1995-04-10

Family

ID=14905494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125251A Expired - Lifetime JPH0732130B2 (en) 1986-05-29 1986-05-29 Vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0732130B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121478A (en) * 1973-03-19 1974-11-20
JPS5799725A (en) * 1980-12-12 1982-06-21 Seiko Epson Corp Manufacture of amorphous semiconductor film
JPS5887818A (en) * 1981-11-19 1983-05-25 Mitsubishi Electric Corp Thin film forming method
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPS58128142A (en) * 1982-01-25 1983-07-30 Hitachi Ltd Sealing method of driving section of reaction furnace
JPS60213021A (en) * 1984-04-07 1985-10-25 Konishiroku Photo Ind Co Ltd Formation of amorphous film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121478A (en) * 1973-03-19 1974-11-20
JPS5799725A (en) * 1980-12-12 1982-06-21 Seiko Epson Corp Manufacture of amorphous semiconductor film
JPS5887818A (en) * 1981-11-19 1983-05-25 Mitsubishi Electric Corp Thin film forming method
JPS58128142A (en) * 1982-01-25 1983-07-30 Hitachi Ltd Sealing method of driving section of reaction furnace
JPS5895550A (en) * 1982-11-01 1983-06-07 Shunpei Yamazaki Device for forming non-single crystal semiconductor layer
JPS60213021A (en) * 1984-04-07 1985-10-25 Konishiroku Photo Ind Co Ltd Formation of amorphous film

Also Published As

Publication number Publication date
JPH0732130B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US4368098A (en) Epitaxial composite and method of making
US4404265A (en) Epitaxial composite and method of making
US8524582B2 (en) Silicon-germanium hydrides and methods for making and using same
Cowley et al. The single-source precursor concept. A case study of gallium arsenide
US20130032857A1 (en) Silicon-Germanium Hydrides and Methods for Making and Using Same
US5593497A (en) Method for forming a deposited film
US3941647A (en) Method of producing epitaxially semiconductor layers
JPS63224225A (en) Substrate of thin film single crystal diamond
JPS62281338A (en) Vapor phase epitaxy method
JPH01252776A (en) Formation of aluminum film by vapor growth
JPH01144617A (en) Method of continuous growth of super-lattice structure of distortion layer
JPH02185026A (en) Selective forming method of al thin-film
Olivares et al. Effect of Deposition Parameters on the Characteristics of Low-Pressure Chemical Vapor Deposited SiGe Films Grown from Si2 H 6 and GeH4
EP0240314B1 (en) Method for forming deposited film
JPH03215390A (en) Method for epitaxial growth and doping of compound crystal
EP0240305B1 (en) Method for forming a deposited film
US4238252A (en) Process for growing indium phosphide of controlled purity
EP0285834B1 (en) Allyltellurides and their use in the mocvd growth of group ii-vi epitaxial films
Fan et al. Growth of atomically flat homoepitaxial magnesium oxide thin films by metal-organic chemical vapor deposition
WO2001020687A1 (en) New methods of fabricating devices and semiconductor layers comprising cadmium mercury telluride, mercury telluride, and cadmium telluride
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH0547668A (en) Crystal growth method for compound semiconductor
Bloem Gas phase diffusion and surface reactions in the chemical vapour deposition of silicon
Chizmeshya et al. Nano-synthesis approach to the fabrication of monocrystalline silicon-like (III-V) yIV5-2y semiconductors