JPS6228120B2 - - Google Patents

Info

Publication number
JPS6228120B2
JPS6228120B2 JP54068794A JP6879479A JPS6228120B2 JP S6228120 B2 JPS6228120 B2 JP S6228120B2 JP 54068794 A JP54068794 A JP 54068794A JP 6879479 A JP6879479 A JP 6879479A JP S6228120 B2 JPS6228120 B2 JP S6228120B2
Authority
JP
Japan
Prior art keywords
gas
whiskers
catalyst
carbon dioxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54068794A
Other languages
Japanese (ja)
Other versions
JPS55162412A (en
Inventor
Takeshiro Saito
Kazuya Negi
Kunio Sakai
Atsushi Aoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6879479A priority Critical patent/JPS55162412A/en
Publication of JPS55162412A publication Critical patent/JPS55162412A/en
Publication of JPS6228120B2 publication Critical patent/JPS6228120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭化水素ガスを熱分解し、気相から
直接高品位なウイスカーを高効率で得る方法に関
する。更に詳しくは、酸化性雰囲気下で、実質的
に微分散状態にある触媒と飽和炭化水素ガスを
900℃乃至1400℃で接触させることを特徴とする
炭素質ウイスカーの製造方法に関する。 従来、炭化水素ガスを触媒の存在下で熱分解
し、気相法より、短繊維状炭素繊維や、ウイスカ
ーを生成させようとする試みは、いろいろな研究
者により為されている。例えば、特開昭52−
103528、特公昭53−7538、特開昭54−6891には、
その方法が提示されて居る。 これら従来技術によれば、ウイスカーの生成反
応は、熱分解副生物である水素ガス又はキヤリヤ
ーガスとして用いられる不活性ガスや水素ガスの
存在下で行われ、その雰囲気は、非酸化性乃至還
元性である。この様な条件下では、ウイスカーの
成長過程に於て、成長点であるウイスカー先端領
域に存在する触媒の活性が失われ易いため、単位
基板上に発生するウイスカーの本数が少く、また
アスペクト比(ウイスカーの直径に対する長さの
比)の大きなウイスカーを効率的に得難い問題点
があつた。 気相法によるウイスカーの生成は、高温に保つ
た反応管の一端に、原料炭化水素ガスの導入口
を、他端に廃ガス導出口を有する反応系を用い反
応管の温度中心部に設けた触媒を含む基材上に炭
化水素ガスを接触させウイスカーを生成させる方
法が用いられる。ウイスカーの生成効率又は、収
量の向上は、生成ウイスカーの径を一定として考
えると、単位基板上に発生するウイスカーの本数
を増大させるか、発生したウイスカーの長さを長
くするかによつて計る事が可能である。後者の方
法は、反応時間の延長や、反応炉の増大が必要で
あり、本質的な効率の向上に繁がり難い側面を有
している。 本発明者らは、新規な触媒系を開発することに
より、発生本数を向上させウイスカーを効率的に
生成させる方法に関して、鋭意研究の結果、酸化
性雰囲気下で、触媒を介して、ウイスカーの生成
を行うことにより、極めて高効率にウイスカーを
生成させ得ることを見出した。驚くべきことに
は、本発明の方法によれば、ウイスカーの核形成
が有効に行われるのみならず成長時に於ても、そ
の活性が持続されるために、単位基材上に生成す
る実質的発生本数が飛躍的に増大し、しかも得ら
れたウイスカーは、アスペクト比100以上の実用
的にして高品位のものである。ここで云う、実質
的発生本数とは、生成ウイスカーを基材上から剥
離した後、その発生基材面積、総重量、平均長
さ、平均直径比重とから、単位基材面積当りの発
生本数を換算した値を云う。 以下、本発明を更に詳細に説明する。 本発明の実施に際して使用可能な酸化性雰囲気
を作るためのガスは、炭酸ガス又は、反応系中で
実質的に炭酸ガスを生成する、一酸化炭素、水蒸
気等の酸素含有ガスを用いることが出来る。特に
操作性の容易さから炭酸ガスが好ましい。 一般的に、炭酸ガスは、低温度では、非酸化性
ガスであるが、ウイスカー生成反応の様な高温反
応においては、酸化性ガスとして作用することが
確認されて居り、この結果、これら酸化性雰囲気
と触媒よりなる新規な触媒系において極めて効率
的にウイスカーが生成し、実質的発生本数は、従
来法に比して10倍乃至100倍向上する。 酸化性雰囲気の程度は、酸化性ガスと原料炭化
水素ガスの混合比率により定められる。好ましく
用いられる組成比は、原料ガス1容に対して炭酸
ガス換算で0.05乃至5容であり更に好ましくは
0.1乃至3容である。 本発明の実施に際して、触媒組成として、鉄、
コバルト、ニツケル等、遷移金属等の単体、又は
その化合物等の公知の触媒を用いることが出来
る。触媒として、特に好ましいものの一群は、鉄
等の族金属単体又はこれらの化合物であり更に
好ましくはロダン鉄等チオシアン酸化合物、赤血
塩、黄血塩等シアン化物より調整された触媒組成
物が挙げられる。他の好ましい触媒組成群は、
族及びB族金属並びにその化合物より成る触媒
組成物であり、特に族金属及びその化合物に対
してB族金属及びその化合物が、金属単体換算
で、族金属、原子当量に対して、B族金属が
0.05乃至0.2の比率である触媒組成物が好まし
い。 これら、金属又は金属化合物より成る触媒組成
物は、基材上に、ウイスカー生成に際して、実質
的に粒子状で存在する状態で置かれればよく、例
えば基材上に、粉末を散布するか、溶液状で塗布
するか、蒸着等の方法で薄膜状に付着等の方法で
基材に形成すればよい。 原料炭化水素ガスとしては、メタン、エタン、
プロパン、ブタンなどの飽和炭化水素ガスが用い
られる。これらの原料炭化水素ガスは、単独でも
しくは、必要に応じてアルゴン、窒素、水素など
のキヤリヤーガスを用いて触媒層へ導入する。 供給する炭化水素ガスの送入速度は、特に限定
はないが、ウイスカー生成部における反応容器の
断面積(cm2)に対する原料炭化水素ガスの標準状
態換算送入量(cm3/min)の比(cm/min)で表
示した流速(以下、単に流速と云う)が、約0.1
乃至20cm/minの範囲内であるのが望ましく、更
に高品質のウイスカーを得るためには0.5乃至5
cm/min程度が特に望ましい。 本発明に従つて、飽和炭化水素ガスを気相熱分
解させ、炭素質ウイスカーを生成するに際して、
炉芯管としてはアルミナ質、ムライト質、石英質
などの通気性の低い耐熱性材料より成るものが使
用出来、また炉芯管内に置かれるウイスカー生成
基材としては、アルミナ質、ムライト質等の磁製
材料や、石英、黒鉛などから成る板、円管、ボー
ト状の形態のものを用いることが出来る。反応系
は固定床、移動床などの任意の形成が使用出来
る。加熱温度は900℃乃至1400℃の範囲で任意に
選択出来るが、就中、1000℃乃至1200℃の温度範
囲が望ましく、圧力は加圧、常圧、減圧のいずれ
の状態でも良く、例えば、10mmHg程度の減圧か
ら2乃至3Kg/cm2程度の加圧状態でも好結果が得
られる。工業的には常圧が最も好ましい。反応時
間としては、通常0.5乃至8時間程度、好ましく
は1乃至3時間程度である。 本発明に従えば均一で可撓性に富み、光沢の勝
れた、アスペクト比の大きなウイスカーが効率良
く製造出来、このウイスカーは複合材料用素材と
して極めて利用価値の高いものである。 以下、実施例を用いて、本発明を更に詳細に説
明するが、本発明はこれらの実施例に限定するも
のでないことはいうまでもない。 実施例 1 長さ30cmの抵抗加熱炉内に、一端に原料炭化水
素ガス導入口を、他端にガス排出口を有する内径
30mmのムライト質炉芯管を挿入し、1100℃に保持
したこの内に内径26mm、長さ10cmのムライト管を
炉中心部に設置し、その内壁をウイスカー生成基
材面として用いた。基材面には、前以つて酸化第
二鉄粉末と、クエン酸ナトリウムタングステンを
鉄およびタングステン換算で1対0.1原子当量比
を混合し、少量の水でペースト状にしたものを基
材面に対して、鉄金属換算で3×10-5mol/cm2
け均一に塗布し付着させた。これを空気気流中で
600℃、30分間焼成し、触媒とした。 この装置および触媒を用いて、プロパンガスを
1cm/minの流速で反応管に送入し、これに対し
て、炭酸ガスを0.05乃至5容添加し、酸化性雰囲
気下で、90分間反応を行つた。 反応後、残留ガスをアルゴンで置換した後、炉
温を下げ、ウイスカーを基材共取出した。ウイス
カー生成面積を求めた後、生成物を掻き取り、そ
の総重量、平均長さ、平均直径、比重2.1g/cm3
とから実質的発生本数を算出した。尚、比較例と
して、炭酸ガスを加えない系や、水素ガスを添加
した非酸化性雰気下での結果を併わせて表―1に
示す。
The present invention relates to a method of thermally decomposing hydrocarbon gas to obtain high-quality whiskers directly from the gas phase with high efficiency. More specifically, in an oxidizing atmosphere, a catalyst in a substantially finely dispersed state and a saturated hydrocarbon gas are
The present invention relates to a method for producing carbonaceous whiskers, which comprises contacting at 900°C to 1400°C. Conventionally, various researchers have attempted to thermally decompose hydrocarbon gas in the presence of a catalyst to generate short carbon fibers and whiskers using a gas phase method. For example, JP-A-52-
103528, JP 53-7538, JP 54-6891,
The method is presented. According to these conventional techniques, the whisker production reaction is carried out in the presence of hydrogen gas, which is a byproduct of thermal decomposition, or an inert gas or hydrogen gas used as a carrier gas, and the atmosphere is non-oxidizing or reducing. be. Under such conditions, the activity of the catalyst present in the tip region of the whisker, which is the growth point, is likely to be lost during the whisker growth process, so the number of whiskers generated on a unit substrate is small, and the aspect ratio ( There was a problem in that it was difficult to efficiently obtain whiskers with a large ratio (length to diameter). Whisker generation by the gas phase method uses a reaction system that has an inlet for feedstock hydrocarbon gas at one end of a reaction tube kept at high temperature and an exhaust gas outlet at the other end, and is placed at the temperature center of the reaction tube. A method is used in which a hydrocarbon gas is brought into contact with a substrate containing a catalyst to generate whiskers. Improvement in whisker generation efficiency or yield can be measured by increasing the number of whiskers generated on a unit substrate or increasing the length of generated whiskers, assuming the diameter of generated whiskers is constant. is possible. The latter method requires an extension of the reaction time and an increase in the number of reactors, and has the aspect that it is difficult to improve essential efficiency. The present inventors have conducted intensive research into a method for efficiently generating whiskers by increasing the number of whiskers generated by developing a new catalyst system. We have found that whiskers can be generated with extremely high efficiency by performing the following steps. Surprisingly, according to the method of the present invention, not only is whisker nucleation effectively carried out, but also the activity is sustained during growth, so that the substantial The number of whiskers generated has increased dramatically, and the whiskers obtained are of high quality and have an aspect ratio of over 100 for practical use. The actual number of generated whiskers here refers to the number of generated whiskers per unit base material area after peeling the generated whiskers from the base material, based on the generated base material area, total weight, average length, and average diameter specific gravity. Refers to the converted value. The present invention will be explained in more detail below. As the gas for creating an oxidizing atmosphere that can be used in carrying out the present invention, carbon dioxide gas or an oxygen-containing gas such as carbon monoxide or water vapor that substantially generates carbon dioxide gas in the reaction system can be used. . In particular, carbon dioxide gas is preferred because of its ease of operation. In general, carbon dioxide gas is a non-oxidizing gas at low temperatures, but it has been confirmed that it acts as an oxidizing gas in high-temperature reactions such as whisker-forming reactions. Whiskers are generated extremely efficiently in a new catalyst system consisting of an atmosphere and a catalyst, and the actual number of whiskers generated is 10 to 100 times higher than in conventional methods. The degree of the oxidizing atmosphere is determined by the mixing ratio of the oxidizing gas and the raw material hydrocarbon gas. The composition ratio preferably used is 0.05 to 5 volumes of carbon dioxide per volume of raw material gas, and more preferably
It has a volume of 0.1 to 3. In carrying out the present invention, the catalyst composition includes iron,
Known catalysts such as simple substances such as cobalt, nickel, transition metals, etc., or compounds thereof can be used. Particularly preferable catalysts are single group metals such as iron or compounds thereof, and more preferably catalyst compositions prepared from thiocyanic acid compounds such as iron rhodan, cyanides such as red blood salts and yellow blood salts. It will be done. Other preferred catalyst compositions include:
A catalyst composition consisting of a group metal and a group B metal and a compound thereof, in particular a group metal and a compound thereof, in terms of a single metal, a group metal or an atomic equivalent of a group B metal. but
Catalyst compositions with a ratio of 0.05 to 0.2 are preferred. These catalyst compositions made of metals or metal compounds may be placed on the substrate in a state in which they exist in substantially particulate form during whisker generation; It may be formed on the base material by coating it in the form of a thin film, or by adhering it to the base material in the form of a thin film using a method such as vapor deposition. Raw material hydrocarbon gases include methane, ethane,
A saturated hydrocarbon gas such as propane or butane is used. These raw material hydrocarbon gases are introduced into the catalyst layer alone or using a carrier gas such as argon, nitrogen, or hydrogen as necessary. The feeding speed of the hydrocarbon gas to be supplied is not particularly limited, but it is determined by the ratio of the feed rate (cm 3 /min) of the raw material hydrocarbon gas converted to standard conditions to the cross-sectional area (cm 2 ) of the reaction vessel in the whisker generation section. The flow velocity expressed in (cm/min) (hereinafter simply referred to as flow velocity) is approximately 0.1
It is desirable that the rate is within the range of 20 cm/min, and in order to obtain higher quality whiskers, the rate is 0.5 to 5 cm/min.
A speed of about cm/min is particularly desirable. According to the present invention, when saturated hydrocarbon gas is subjected to gas phase pyrolysis to produce carbonaceous whiskers,
The furnace core tube can be made of heat-resistant materials with low air permeability such as alumina, mullite, and quartz, and the whisker-generating base material placed inside the furnace core tube can be made of alumina, mullite, etc. A plate, circular tube, or boat-shaped material made of porcelain material, quartz, graphite, etc. can be used. Any reaction system can be used, such as a fixed bed or a moving bed. The heating temperature can be arbitrarily selected within the range of 900°C to 1400°C, but a temperature range of 1000°C to 1200°C is particularly desirable, and the pressure may be increased, normal pressure, or reduced pressure; for example, 10 mmHg. Good results can be obtained even when the pressure is reduced to about 2 to 3 kg/cm 2 . Industrially, normal pressure is most preferred. The reaction time is usually about 0.5 to 8 hours, preferably about 1 to 3 hours. According to the present invention, whiskers that are uniform, highly flexible, have excellent gloss, and have a large aspect ratio can be efficiently produced, and these whiskers are extremely useful as materials for composite materials. EXAMPLES Hereinafter, the present invention will be explained in more detail using Examples, but it goes without saying that the present invention is not limited to these Examples. Example 1 A resistance heating furnace with a length of 30 cm has an inner diameter with a raw material hydrocarbon gas inlet at one end and a gas outlet at the other end.
A 30 mm mullite furnace core tube was inserted and maintained at 1100°C. A mullite tube with an inner diameter of 26 mm and a length of 10 cm was installed in the center of the furnace, and its inner wall was used as the whisker generation base material surface. On the base material surface, ferric oxide powder and sodium tungsten citrate were mixed in an atomic equivalent ratio of 1:0.1 in terms of iron and tungsten, and the mixture was made into a paste with a small amount of water. On the other hand, 3×10 −5 mol/cm 2 of iron metal was uniformly applied and adhered. Do this in an air stream
It was calcined at 600°C for 30 minutes and used as a catalyst. Using this device and catalyst, propane gas is fed into the reaction tube at a flow rate of 1 cm/min, 0.05 to 5 volumes of carbon dioxide gas is added, and the reaction is carried out for 90 minutes in an oxidizing atmosphere. Ivy. After the reaction, the residual gas was replaced with argon, the furnace temperature was lowered, and the whiskers were taken out together with the base material. After determining the whisker production area, scrape off the product and measure its total weight, average length, average diameter, and specific gravity: 2.1 g/cm 3
The actual number of occurrences was calculated from this. As comparative examples, Table 1 also shows the results in a system without carbon dioxide gas and in a non-oxidizing atmosphere with hydrogen gas added.

【表】 実施例 2 実施例1と同様の装置を用い、炭酸ガスをプロ
パン1容に対して、0.2容添加し、触媒を加え実
験を行つた。 蒸着膜は、内挿管を半分し、夫々の内面に約
300Å厚に蒸着した。ロダン鉄等水に可溶な塩は
内挿管内壁に、鉄換算で3×10-5mol/cm2だけ塗
布した後、空気中600℃、2時間仮焼したものを
反応に用いた。比較例として炭酸ガスに代え水素
ガスを加えた場合の例及び触媒として2cmの巾、
10cmの長さの金属鉄片又はニツケル板を用いた例
を併わせて表―2に示す。
[Table] Example 2 Using the same apparatus as in Example 1, 0.2 volume of carbon dioxide gas was added to 1 volume of propane, a catalyst was added, and an experiment was conducted. Divide the inner cannula in half and apply the deposited film to the inner surface of each half.
It was deposited to a thickness of 300 Å. A water-soluble salt such as Rodan's iron was applied to the inner wall of the internal tube in an amount of 3×10 -5 mol/cm 2 in terms of iron, and then calcined in air at 600° C. for 2 hours before being used in the reaction. As a comparative example, an example in which hydrogen gas was added instead of carbon dioxide gas, and a 2 cm width as a catalyst,
Table 2 also shows examples using 10 cm long metal iron pieces or nickel plates.

【表】 実施例 3 実施例2と同様に種々の触媒組成物よりなる触
媒系で実験を行つた。触媒組成物は、酸化第2鉄
に対して、タングステン、モリブデン、クロム化
合物を種々の比で混合した後、少量の水で、基材
内壁に、鉄換算で3×10-5mol/cm2だけ均一に付
着させた後、600℃、2時間化焼したものを用い
た。プロパンガス1に対してCO20.2容加えた酸
化性触媒系で反応を行つた。比較例として炭酸ガ
スに代え水素ガスを用いた非酸化性触媒系の場合
の例と伴わせて表―3に示す。
[Table] Example 3 Similar to Example 2, experiments were conducted using catalyst systems made of various catalyst compositions. The catalyst composition is made by mixing tungsten, molybdenum, and chromium compounds in various ratios to ferric oxide, and then applying the mixture to the inner wall of the base material with a small amount of water at a concentration of 3×10 -5 mol/cm 2 in terms of iron. After being uniformly deposited, the material was calcined at 600°C for 2 hours. The reaction was carried out using an oxidizing catalyst system in which 0.2 volume of CO 2 was added to 1 volume of propane gas. As a comparative example, Table 3 shows an example of a non-oxidizing catalyst system using hydrogen gas instead of carbon dioxide gas.

【表】【table】

【表】 実施例 4 原料炭化水素ガスとしてブタンを用いた。触媒
反応温度、ガス流速は実施例1と同様にした。炭
酸ガスを、原料炭化水素ガス1に対して0.1容加
え、酸化系で実験を行つた。比較例として、炭酸
ガスの代りに水素を用いた非酸化系の実験を行つ
た。2時間反応した後、生成ウイスカーの解析よ
り、前者の発生本数は、6.5×104であり、後者の
約200倍であり、ウイスカーの径は8μ、長さ5
mm、アスペツト比625の光択に富む均一性に優れ
たものであつた。 比較実験例 基材面に触媒が塗布されていない以外は、実施
例1と同じ装置に、プロパンガスを1cm/min、
炭酸ガスを0.1cm/minの流速で反応管に送入
し、90分間反応を行つた。ウイスカーの発生本数
は10本/cm2であつた。
[Table] Example 4 Butane was used as the raw material hydrocarbon gas. The catalyst reaction temperature and gas flow rate were the same as in Example 1. An experiment was conducted in an oxidation system by adding 0.1 volume of carbon dioxide gas to 1 volume of raw material hydrocarbon gas. As a comparative example, a non-oxidizing experiment was conducted using hydrogen instead of carbon dioxide gas. After reacting for 2 hours, the number of generated whiskers was 6.5×10 4 , about 200 times that of the latter, and the diameter of the whiskers was 8μ and the length was 5.
mm, aspect ratio of 625, and had excellent uniformity with rich photo-selectivity. Comparative Experimental Example Propane gas was applied at 1 cm/min to the same equipment as in Example 1, except that no catalyst was applied to the substrate surface.
Carbon dioxide gas was introduced into the reaction tube at a flow rate of 0.1 cm/min, and the reaction was carried out for 90 minutes. The number of whiskers generated was 10/cm 2 .

Claims (1)

【特許請求の範囲】 1 実質的に微分散状態にある触媒と、飽和炭化
水素ガスを、飽和炭化水素ガス1容に対し炭酸ガ
ス換算で0.05〜5容の炭酸ガス、一酸化炭素また
は水蒸気の存在下、900℃〜1400℃で接触させる
ことを特徴とする炭素質ウイスカーの製造方法。 2 触媒が、族金属単体又はその化合物である
特許請求の範囲第1項記載の方法。 3 触媒が、族金属単体又はその化合物とB
族金属単体又はその化合物より成る組成物である
特許請求の範囲第1項に記載の方法。
[Scope of Claims] 1 A catalyst in a substantially finely dispersed state and a saturated hydrocarbon gas are mixed with 0.05 to 5 volumes of carbon dioxide, carbon monoxide, or water vapor in terms of carbon dioxide gas per volume of saturated hydrocarbon gas. A method for producing carbonaceous whiskers, comprising contacting at 900°C to 1400°C in the presence of carbonaceous whiskers. 2. The method according to claim 1, wherein the catalyst is an elemental group metal or a compound thereof. 3 The catalyst is a group metal or its compound and B
2. The method according to claim 1, which is a composition comprising an elemental group metal or a compound thereof.
JP6879479A 1979-06-04 1979-06-04 Manufacture of carbonaceous whisker Granted JPS55162412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6879479A JPS55162412A (en) 1979-06-04 1979-06-04 Manufacture of carbonaceous whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6879479A JPS55162412A (en) 1979-06-04 1979-06-04 Manufacture of carbonaceous whisker

Publications (2)

Publication Number Publication Date
JPS55162412A JPS55162412A (en) 1980-12-17
JPS6228120B2 true JPS6228120B2 (en) 1987-06-18

Family

ID=13383972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6879479A Granted JPS55162412A (en) 1979-06-04 1979-06-04 Manufacture of carbonaceous whisker

Country Status (1)

Country Link
JP (1) JPS55162412A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959921A (en) * 1982-09-29 1984-04-05 Kureha Chem Ind Co Ltd Manufacture of carbon fiber in vapor phase
JPS6027700A (en) * 1983-07-25 1985-02-12 Showa Denko Kk Preparation of carbon fiber by vapor-phase method
JPS60224816A (en) * 1984-04-20 1985-11-09 Nikkiso Co Ltd Gas-phase production of carbon fiber
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments

Also Published As

Publication number Publication date
JPS55162412A (en) 1980-12-17

Similar Documents

Publication Publication Date Title
US6423288B2 (en) Fibrils
JPH0424320B2 (en)
US4851206A (en) Methods and compostions involving high specific surface area carbides and nitrides
EP0969127A2 (en) Process for producing carbon fibrils and reaction apparatus
JP3007983B1 (en) Manufacturing method of ultra fine carbon tube
US2083824A (en) Manufacture of hydrocyanic acid
JPS6228120B2 (en)
JPH10182122A (en) Synthesis of stabilized vanadium carbide and chromium carbide phase
JP2838192B2 (en) Hydrocarbon cracking catalyst and method for producing hydrogen using the same
JP2000203825A (en) Gas carburization for production of pure tungsten carbide powder
JP3798300B2 (en) Method for producing hydrogen
JP4038205B2 (en) Method for producing composite metal oxynitride GaN-ZnO photocatalyst
JPS58110493A (en) Production of graphite whisker
JP3628290B2 (en) Method for producing catalytic carbon nanofibers by decomposition of hydrocarbon and catalyst thereof
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
JP2005015423A (en) Method for preparing benzene, ethylene and gas for synthesis
JPH01119340A (en) Catalyst using superfine carbon fiber
JPS644999B2 (en)
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JPS62162699A (en) Production of carbonaceous whisker
JPS5831977B2 (en) Catalyst for methane production and its manufacturing method
JP2017177053A (en) Catalyst for carbon nanotube synthesis and method for producing the same
CA2005642C (en) Fibrils
JPS5869718A (en) Manufacture of hnco by catalytic oxidation of hcn with palladium dope silver catalyst
JP4623247B2 (en) Method for producing a catalyst for synthesis of cyanide