JPS62281001A - Pump operation control device - Google Patents

Pump operation control device

Info

Publication number
JPS62281001A
JPS62281001A JP12488386A JP12488386A JPS62281001A JP S62281001 A JPS62281001 A JP S62281001A JP 12488386 A JP12488386 A JP 12488386A JP 12488386 A JP12488386 A JP 12488386A JP S62281001 A JPS62281001 A JP S62281001A
Authority
JP
Japan
Prior art keywords
liquid level
pump
flow rate
control
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12488386A
Other languages
Japanese (ja)
Inventor
Kyo Mitsuyoshi
京 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12488386A priority Critical patent/JPS62281001A/en
Publication of JPS62281001A publication Critical patent/JPS62281001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To attain suppression, and a stable control for the fluctuating quantity of the liquid level of a pump well, by forecasting the change quantity of an inflow discharge to the pump well based on a measured data for an outflow discharge from a pump, and the measured data for the liquid level of the pump well, and adjusting the control parameter of a liquid level control means based on the change quantity of the inflow discharge to the pump well. CONSTITUTION:First of all, the size of the forecasting value DELTAqi of the change quantity of the inflow discharge forecasted by an inflow discharge change quantity forecasting means 5 is limited by a DELTAqi limiter 21. Next, at a omegac calculating block 22, a crossed axes angle frequency omegac is calculated by using an inflow discharge change quantity forecasting value DELTAq'i after a processing by the limiter, a constant hc, a control cycle tau, and a stationary speed deviation specified value ex. Next, a crossed axes angle frequency omega'c in which the upper and lower limit of the crossed axes angle frequency omegac is limited by a omegac limiter 23, is obtained. Following that, a a Kp and Ti calculating block 24, control parameters Kp, and Ti are calculated by substituting the crossed axes angle frequency omegac after the processing by the limiter, the constant hc, and a pump well cross section A.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的] (産業上の利用分野) 本発明は、上下水道、T9用水、かんがい等のポンプ場
におりるポンプよすの液位制御を行うポンプ運転制御装
置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention is intended to improve the liquid level of pumps in pumping stations for water supply and sewerage, T9 water, irrigation, etc. The present invention relates to a pump operation control device that performs control.

(従来の技術) 下水処理にお(プるポンプ場のポンプまずに貯留中の液
体を揚水するどき、ポンプにりの溢水や涸渇を避(プる
ために、ポンプ吐出流量をポンプます液位に応じて制御
することが多い。この場合、ポンプますへの流入流量変
化量が問題となる。すなわち、流入流化変化量はポンプ
まづ−の液位制御から見れば外乱であり、これは天候等
の制御できない要因により大きく変動し、しかし、直接
測定できないためである。
(Conventional technology) In sewage treatment, when pumping the stored liquid, the pump discharge flow rate must be adjusted to avoid overflowing or drying up the pump. In this case, the problem is the amount of change in the flow rate of the inflow to the pump.In other words, the amount of change in flow rate of the inflow is a disturbance from the viewpoint of liquid level control in the pump. This is because it fluctuates greatly due to uncontrollable factors such as the weather, but cannot be directly measured.

これに対処する一つの方法としては、例えば、電気学会
・産業ミノ〕応用研究会資料IA−81−6(1981
−1−29)に示されているように、ポンプますの過去
および現在の液位変動から前記流入流量を予測して液位
制御するものがあった。
One way to deal with this is, for example, the Institute of Electrical Engineers of Japan/Sangyo Mino] Applied Research Group Material IA-81-6 (1981
As shown in 1-29), there is a system that controls the liquid level by predicting the inflow flow rate from past and current liquid level fluctuations in the pump.

(発明が解決しJ:うとする問題点) しかしながら、上記の制御方法は液位制御系統のパラメ
ータが固定されているために流入流量は急激な変化に対
処できないことがある。
(Problems to be Solved by the Invention) However, the above control method may not be able to cope with sudden changes in the inflow flow rate because the parameters of the liquid level control system are fixed.

すなわち、下水処理場のポンプ場ではポンプによる下水
の揚水量が処理工程での供給mともなっているが、この
供給量の変動を少なくしたいという要求に応えたときポ
ンプますが下水バッファの役割を果すことになる。そこ
で、晴天口には液位制御系の応答を下げている場合も多
い。
In other words, at the pumping station of a sewage treatment plant, the amount of sewage pumped by the pump is also the supply m for the treatment process, but in response to the request to reduce fluctuations in this supply amount, the pump plays the role of a sewage buffer. It turns out. Therefore, the response of the liquid level control system is often lowered for clear weather openings.

このとき、液位制御系の応答をあまり下げて運転してい
ると、大雨の降り始めなどにポンプ流入流ωが急激に増
加し、液位制御が不安定になったり、ひいてはポンプよ
すが横溢する場合があった。
At this time, if the response of the liquid level control system is lowered too much, the pump inflow flow ω will increase rapidly at the beginning of heavy rain, and the liquid level control will become unstable, and the pump may become unstable. There were times when it overflowed.

本発明は上記の問題点を解決するためになされたもので
、ポンプますの液位を安定に、変動量を抑制することが
でき、ざらに、下流工程への外乱となるポンプ吐出流量
の変動を抑制することのできるポンプ運転制御装置の提
供を目的とする。
The present invention was made in order to solve the above problems, and it is possible to stabilize the liquid level in the pump chamber and suppress the amount of fluctuation, and moreover, fluctuations in the pump discharge flow rate that cause disturbance to downstream processes. The purpose of the present invention is to provide a pump operation control device that can suppress the

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、ポンプますの液位を測定する液位測定手段と
、この液位測定手段の液位測定値と前記ポンプますの液
位設定値との偏差が零になるようにポンプを制御する液
位制御手段と、前記ポンプの吐出流量を測定する吐出流
量測定手段と、この吐出流量測定手段の吐出流量測定値
および前記液位測定手段の液位測定値に基い゛C前記ポ
ンプまずの流入流量変化量を予測する流入流量変化量予
測手段と、この流入流量変化は予測手段の流入流量変化
量予測値に基づき前記液位制御手段の制御パラメータを
調整する制御パラメータ調整手段とを備えたものである
(Means for Solving the Problems) The present invention provides a liquid level measuring means for measuring the liquid level of a pump cell, and a deviation between the liquid level measurement value of the liquid level measuring means and the liquid level set value of the pump cell. a liquid level control means for controlling the pump such that the liquid level becomes zero, a discharge flow rate measuring means for measuring the discharge flow rate of the pump, and a discharge flow rate measurement value of the discharge flow rate measuring means and a liquid level measurement of the liquid level measuring means. an inflow flow rate change amount prediction means for predicting the inflow flow rate change amount of the pump based on the value; and control parameter adjusting means for adjusting.

(作 用) この発明においては、ポンプの吐出流量測定値およびポ
ンプますの液位測定値に基いて流入流量変化量予測手段
がポンプまずの流入流量変化量を予測すると、この流入
流量変化量に基いて制御パラメータ調整手段が液位制御
手段の制御パラメータを調整することにより、ポンプま
すの液位変動量の抑制および安定した制御を可能にし−
Cいる。
(Function) In the present invention, when the inflow flow rate change amount predicting means predicts the inflow flow rate change amount of the pump based on the measured value of the discharge flow rate of the pump and the measured value of the liquid level in the pump chamber, the amount of change in the inflow flow rate is Based on this, the control parameter adjustment means adjusts the control parameters of the liquid level control means, thereby making it possible to suppress liquid level fluctuations in the pump basin and achieve stable control.
There is C.

(実施例) 以下、本発明の一実施例を、第2図に示す下水処理場の
ポンプ場に適用した場合について説明する。
(Example) Hereinafter, a case where an example of the present invention is applied to a pumping station of a sewage treatment plant shown in FIG. 2 will be described.

第2図において、ポンプます3に雨水や汚水が流入する
。この雨水や汚水を揚水するべくポンプ2が備え付けら
れている。ポンプ場においては通常、ポンプは異種容量
、異種形式のものがとりまぜて複数台設置されているが
、本例では、これらを1台と仮定して説明する。特に、
同種のポンプが複数台ある場合には、すべてのポンプの
制御手段は同じものを使えばよくまた異種ポンプが複数
−4一 台ある場合については本発明の原理力\ら類推できるも
のを使えばよい。
In FIG. 2, rainwater and sewage flow into the pump chamber 3. A pump 2 is provided to pump up this rainwater and sewage. In a pumping station, a plurality of pumps of different capacities and types are usually installed, but in this example, the description will be made assuming that there is only one pump. especially,
If there are multiple pumps of the same type, the same control means for all pumps may be used.If there are multiple pumps of different types, the principles of the present invention may be used. good.

一方、ポンプ2の吐出側には、吐出流量を測定する吐出
流量測定手段7が設けられ、ポンプます3にはその液位
を測定する液位測定手段8が取りつけられており、これ
ら両手段の測定値がそれぞれ電子計算機16に送り込ま
れ、さらに、電子計算機16がポンプの電動機である電
動機13を制御するようになっている。
On the other hand, the discharge side of the pump 2 is provided with a discharge flow rate measuring means 7 for measuring the discharge flow rate, and the pump chamber 3 is equipped with a liquid level measuring means 8 for measuring the liquid level. Each measured value is sent to an electronic computer 16, and the electronic computer 16 further controls an electric motor 13, which is the electric motor of the pump.

なお、吐出流量測定手段7としては例えば吐出流量計を
、液位測定手段8としては水位測定器をそれぞれ使用す
ることができる。
Note that, for example, a discharge flowmeter can be used as the discharge flow rate measuring means 7, and a water level measuring device can be used as the liquid level measuring means 8.

第1図は、電子計算機16の主要な機能をブロックで示
すと共に、ポンプ運転制御装置の全体的構成を示すブロ
ック図である。同図において、ポンプ2とポンプます3
とが制御対象プロセス4となっており、ポンプ2の吐出
流量が吐出流量測定手段7で測定され、ポンプます3の
液位が液位測定手段8で測定される点は上述した通りで
ある。
FIG. 1 is a block diagram showing the main functions of the electronic computer 16 in blocks and showing the overall configuration of the pump operation control device. In the same figure, pump 2 and pump 3
is the controlled process 4, the discharge flow rate of the pump 2 is measured by the discharge flow rate measuring means 7, and the liquid level of the pump cell 3 is measured by the liquid level measuring means 8, as described above.

そして、液位測定手段8の液位測定値h′と、ポンブま
13の液位設定値hrcfとを入力し、両者の偏差を零
にするようにポンプ2を制御する液位制御手段1を備え
ている。また、吐出流量測定手段7の吐出流量測定値q
′と液位測定手段8の液位測定値h′とを入力し、これ
らの値からポンプまづ−3の流入流量変化量ΔQiを演
算する流入流量変化量予測手段5を備えている。さらに
また、流入流は変化量へ會・に基いて液位制御手段1の
制御パラメータに、、Tiを調整する制御パラメータ調
整手段6を備えたものである。
Then, the liquid level measurement value h' of the liquid level measuring means 8 and the liquid level set value hrcf of the pump 13 are input, and the liquid level control means 1 controls the pump 2 so as to make the deviation between the two zero. We are prepared. Further, the discharge flow rate measurement value q of the discharge flow rate measuring means 7
' and a liquid level measurement value h' of the liquid level measuring means 8 are inputted, and an inflow flow rate change amount predicting means 5 is provided for calculating the inflow flow rate change amount ΔQi of the pump MAZU-3 from these values. Furthermore, a control parameter adjusting means 6 is provided for adjusting Ti as a control parameter of the liquid level control means 1 based on the amount of change in the inflow flow.

なお、ここに言う液位制御手段1、流入流量変化量予測
手段5および制御パラメータ調整手段6の機能を電子計
算機16に持たけ−ている。
The electronic computer 16 has the functions of the liquid level control means 1, the inflow flow rate variation prediction means 5, and the control parameter adjustment means 6 referred to herein.

以下、本実施例の、;Tしい1)を作を第3図乃至第5
図をも参照して説明する3゜ 先ず、液位制御手段1がPI制御を行っているものとす
れば、この制御系は第3図に示づように、液位制御手段
伝達関数ブロック11、ポンプ吐出流量伝達関数ブ[1
ツク12A3よびポンプます液位伝達関数ブロック13
で考えることができる。しかして、この制御系は目標値
に対し−C2型の系【こなっているが、外乱q、に起因
して生ずる定常偏差は次の(1)、(2)に示でとおり
であり、ランプ状の外乱qj に対しては定常偏差を持
つことが判る。
Hereinafter, the steps in this example (1) are shown in Figures 3 to 5.
3. Firstly, assuming that the liquid level control means 1 is performing PI control, this control system will be explained with reference to the drawings. As shown in FIG. , pump discharge flow rate transfer function b [1
Tsuku 12A3 and pump liquid level transfer function block 13
You can think about it. However, this control system is a -C2 type system with respect to the target value, but the steady-state deviation caused by the disturbance q is as shown in the following (1) and (2). It can be seen that there is a steady deviation for the ramp-shaped disturbance qj.

定常位置偏差e   :e   =0    ・・・(
1)Sdp   Sdp ただし、■はランプの傾きを表わづ。
Steady position deviation e: e = 0...(
1) Sdp Sdp However, ■ represents the slope of the lamp.

ところで、この実施例の液位制御は、定常速度偏差e 
 に着目し、この定常速度偏差e、dvのdv 値が一定となるように流入流桁変化は予測値に応じ″c
液位制御系の交差角周波数ω。を変更すべく、液位制御
手段1の制御パラメータに、、T、を自動的に調整しよ
うとするものである。そこで、制御パラメータに、、T
、の決め方を以下に説明する。
By the way, the liquid level control in this embodiment is based on the steady speed deviation e
Focusing on this, the inflow flow rate change is adjusted according to the predicted value so that the dv value of the steady speed deviation e, dv is constant.
Crossing angular frequency ω of the liquid level control system. , T, are automatically adjusted in the control parameters of the liquid level control means 1 in order to change . Therefore, in the control parameter, T
The method for determining , will be explained below.

今、ポンプ吐出流量の応答が十分に早く、第3図のポン
プ吐出流量伝達関数ブロック12の伝達関数が1とd3
けるものとする。また、液位制御系のゲイン−位相図が
第4図に示すようになっていjことする。
Now, the response of the pump discharge flow rate is sufficiently fast, and the transfer function of the pump discharge flow rate transfer function block 12 in FIG. 3 is 1 and d3.
shall be carried out. It is also assumed that the gain-phase diagram of the liquid level control system is as shown in FIG.

ここで、制御パラメータに、、1−、と間ループ系の交
差角周波数ω。どは下式の関係にある。
Here, the control parameters include the crossing angular frequency ω of the loop system between ,1−, and. is related to the following formula.

ただし、Aはポンプますの断面積である。このうち、交
差角周波数ω と時定数T、とが常時、次式の関係にあ
るものとすると、 fill 御パラメータに、、Tiは次のように決定で
きる。
However, A is the cross-sectional area of the pump cell. Among these, assuming that the crossing angular frequency ω and the time constant T are always in the following relationship, the fill control parameter , Ti can be determined as follows.

次に、交差角周波数ω。は以下のJzうにして決定づる
Next, the crossing angular frequency ω. is determined by the following Jz.

今、流入流量が一定の割合で増加しているものとし、制
御周期をτ、制御周期にお【Jる流入流量変化量予測値
をΔ行、とすると、(2)式で示す定常速度偏差e、d
Vは次式のようになる。
Now, assuming that the inflow flow rate is increasing at a constant rate, the control period is τ, and the predicted value of the inflow flow rate change in the control period is Δ row, the steady speed deviation shown by equation (2) e, d
V is expressed as follows.

この定常速度偏差esdvの値を一定にづ゛る1cめに
は、定常速度偏差esdvの規定値exを用いて交差角
周波数ω。を次のように選べばよい。
In the first step of keeping the steady speed deviation esdv constant, the crossing angular frequency ω is determined using the specified value ex of the steady speed deviation esdv. You can choose as follows.

・・・・・・(8) 実際には、流入流量の変化帛予測値Δq・の大ぎさ、ま
たは、定常速度偏差の規定値exの値によっては交差角
周波数ω。の値が大きくなるのでサンプリング制御を行
うことにより安定性が悪化する。
(8) In reality, the crossing angular frequency ω depends on the magnitude of the predicted change value Δq· of the inflow flow rate or the value of the specified value ex of the steady speed deviation. Since the value of becomes large, stability deteriorates when sampling control is performed.

また、交差角周波数ω。をあまり小さくしてもステップ
外乱に起因する水位偏差が大きくなる等、応答性が悪く
なる。そこで、交差角周波数ω。を望ましい範囲で可変
するためには、(8)式中の流入流量変化量予測値ΔQ
iの大きさを制限すると共に、交差角周波数ω。自体の
大きさを制限するようにすればよい。
Also, the crossing angular frequency ω. Even if it is made too small, the water level deviation due to step disturbance becomes large, resulting in poor responsiveness. Therefore, the crossing angular frequency ω. In order to vary within a desired range, the predicted inflow flow rate change amount ΔQ in equation (8) must be
While limiting the magnitude of i, the crossing angular frequency ω. It is best to limit its size.

第5図は上述した液位制御パラメータK 。FIG. 5 shows the liquid level control parameter K mentioned above.

T、の決定手順を示したものである。この第5図におい
て、先ず、流入流量変化量予測手段5によって予測され
た流入流量変化量予測値Δq、に対■ して、Δqi リミッタ21によってその人ぎさを制限
する。次に、ω。計算ブロック22において、リミッタ
処理後の流入流量変化量予測値Δ向・定数hc、制御周
期τおよび定常速度偏差規定値exを用いて第3図、第
4図に示した液位制御系の交差角周波数ω。を演篩する
。次に、この交差角周波数ω。に対してω。リミッタ2
3により上下限を制限した交差角周波数寄。を得る。続
いて、K、、Ti計算ブロック24において、リミッタ
処理後の交差角周波数ω 、定数り。およびポンプます
断面積Aを(5)、(6)式に代入して制御パラメータ
に、、T、を算出する。
This figure shows the procedure for determining T. In FIG. 5, first, the Δqi limiter 21 limits the harshness of the predicted value Δq of the inflow flow rate change predicted by the inflow flow rate change amount predicting means 5. Next, ω. In calculation block 22, the intersection of the liquid level control system shown in FIGS. 3 and 4 is calculated using the predicted value of change in inflow flow rate after limiter processing Δ direction/constant hc, control period τ, and steady speed deviation specified value ex. Angular frequency ω. sieve. Next, this crossing angular frequency ω. Against ω. Limiter 2
Crossing angle frequency with upper and lower limits limited by 3. get. Subsequently, in the K, , Ti calculation block 24, the crossing angular frequency ω after limiter processing is calculated as a constant. By substituting the pump mass cross-sectional area A into equations (5) and (6), the control parameter ,T is calculated.

この制御パラメータに、、T、の決定は、制御周期τご
とに行われるものである。
This control parameter, T, is determined every control period τ.

かくしてこの実施例によれば、流入流は変化量予測値Δ
會、に基いて制御パラメータK  、T・l     
                   plを変化さ
せることにより、流入流量の変動に応じて水位制御系の
応答を変えることができるので、液位変動量を小さく抑
制した制御と併せて安定した制御を行うことができる。
Thus, according to this embodiment, the inflow flow has a predicted change value Δ
Based on the control parameters K, T・l
By changing pl, the response of the water level control system can be changed in accordance with fluctuations in the inflow flow rate, so stable control can be performed in conjunction with control that suppresses the amount of fluctuation in the liquid level.

なお上記実施例では、回転数制御が可能な電動機を用い
ているが、本発明はこれに限定されるものではなく、流
量制御が可能なポンプのすべてに適用できるものである
In the above embodiment, an electric motor whose rotation speed can be controlled is used, but the present invention is not limited to this, and can be applied to any pump whose flow rate can be controlled.

また、上記実施例では流入流量変化量の予測と制御パラ
メータの算出とを同期しで行っているが、流入流量変化
量の予測は流入流量の変動にも依存するものでこの限り
ではない。
Furthermore, in the embodiment described above, the prediction of the amount of change in the inflow flow rate and the calculation of the control parameters are performed synchronously, but the prediction of the amount of change in the inflow flow rate also depends on fluctuations in the inflow flow rate, and is not limited to this.

なおまた、上記実施例では2つのリミッタを持つ制御パ
ラメータ調整手段について説明したが、これは−例を示
したにすぎず、その個数および制限方法はこれに限定さ
れるものではなく、例えば、安定性をよくするために、
制御パラメータに、。
Furthermore, in the above embodiment, the control parameter adjusting means having two limiters was explained, but this is merely an example, and the number and limiting method are not limited to this. To improve sex,
to the control parameters.

Ti自身にも絶対値リミッタや変化量リミッタを用いる
ようにしてもよい。
An absolute value limiter or a variation limiter may also be used for Ti itself.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかな如く、本発明によれば、ポ
ンプますへの流入流量の変動に依存して制御パラメータ
に、、T、を調整しているので、天候に左右されること
なく、安定し、且つ、液位変動量を抑制した制御を行う
ことができる。
As is clear from the above explanation, according to the present invention, the control parameter T is adjusted depending on fluctuations in the flow rate flowing into the pump cell, so it is stable regardless of the weather. , and control that suppresses the amount of liquid level fluctuation can be performed.

また、下流工程への外乱となるポンプの吐出流量の変動
を抑制することもでき、制御パラメータを固定したこと
によって生じる従来装置の欠点を解消することができて
いる。
Furthermore, it is possible to suppress fluctuations in the discharge flow rate of the pump, which may cause disturbances to downstream processes, and it is possible to eliminate the drawbacks of conventional devices caused by fixed control parameters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例の概略構成を示すブロック図、第3図は
同実施例の動作を説明するための伝達関数ブロック図、
第4図は同実施例の動作を説明するためのゲイン−位相
図、第5図は同実施例の主要素の詳細な構成を示す機能
ブロック図である。 1・・・液位制御手段、2・・・ポンプ、3・・・ポン
プます、5・・・流入流量変化量予測手段、6・・・制
御パラメータ調整手段、7・・・吐出流量測定手段、8
・・・液位測定手段、9・・・電動機、10・・・電子
計算機。
Fig. 1 is a block diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a block diagram showing the schematic structure of the embodiment, and Fig. 3 is a transfer function block diagram for explaining the operation of the embodiment. ,
FIG. 4 is a gain-phase diagram for explaining the operation of the embodiment, and FIG. 5 is a functional block diagram showing the detailed configuration of the main elements of the embodiment. DESCRIPTION OF SYMBOLS 1... Liquid level control means, 2... Pump, 3... Pump mass, 5... Inflow flow rate variation prediction means, 6... Control parameter adjustment means, 7... Discharge flow rate measuring means , 8
...Liquid level measuring means, 9...Electric motor, 10...Electronic computer.

Claims (1)

【特許請求の範囲】 1、ポンプますの液位を測定する液位測定手段と、この
液位測定手段の液位測定値と前記ポンプますの液位設定
値との偏差が零になるようにポンプを制御する液位制御
手段と、前記ポンプの吐出流量を測定する吐出流量測定
手段と、この吐出流量測定手段の吐出流量測定値および
前記液位測定手段の液位測定値に基いて前記ポンプます
の流入流量変化量を予測する流入流量変化量予測手段と
、この流入流量変化量予測手段の流入流量変化量予測値
に基づき前記液位制御手段の制御パラメータを調整する
制御パラメータ調整手段とを備えたことを特徴とするポ
ンプ運転制御装置。 2、前記液位制御手段がPI調節動作を行うとき、前記
制御パラメータ調整手段は前記ポンプますの液位に対す
る定常速度偏差が一定になるように前記液位制御手段の
制御パラメータを調整することを特徴とする特許請求の
範囲第1項記載のポンプ運転制御装置。
[Scope of Claims] 1. A liquid level measuring means for measuring the liquid level of the pump cell, and a liquid level measuring means for measuring the liquid level of the pump cell, such that the deviation between the liquid level measurement value of the liquid level measuring means and the liquid level set value of the pump cell becomes zero. a liquid level control means for controlling the pump; a discharge flow rate measuring means for measuring the discharge flow rate of the pump; and a discharge flow rate measuring means for measuring the discharge flow rate of the pump; an inflow flow rate change amount prediction means for predicting an inflow flow rate change amount of the trout, and a control parameter adjustment means for adjusting a control parameter of the liquid level control means based on a predicted value of an inflow flow rate change amount of the inflow flow rate change amount prediction means. A pump operation control device characterized by comprising: 2. When the liquid level control means performs a PI adjustment operation, the control parameter adjustment means adjusts the control parameters of the liquid level control means so that a steady speed deviation with respect to the liquid level of the pump chamber is constant. A pump operation control device according to claim 1.
JP12488386A 1986-05-30 1986-05-30 Pump operation control device Pending JPS62281001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12488386A JPS62281001A (en) 1986-05-30 1986-05-30 Pump operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12488386A JPS62281001A (en) 1986-05-30 1986-05-30 Pump operation control device

Publications (1)

Publication Number Publication Date
JPS62281001A true JPS62281001A (en) 1987-12-05

Family

ID=14896453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12488386A Pending JPS62281001A (en) 1986-05-30 1986-05-30 Pump operation control device

Country Status (1)

Country Link
JP (1) JPS62281001A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211586A (en) * 1982-06-04 1983-12-09 Meidensha Electric Mfg Co Ltd Pump operating apparatus
JPS5987505A (en) * 1982-11-10 1984-05-21 Toshiba Corp Water level control device
JPS6184702A (en) * 1984-10-01 1986-04-30 Toshiba Corp Controller of intake flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211586A (en) * 1982-06-04 1983-12-09 Meidensha Electric Mfg Co Ltd Pump operating apparatus
JPS5987505A (en) * 1982-11-10 1984-05-21 Toshiba Corp Water level control device
JPS6184702A (en) * 1984-10-01 1986-04-30 Toshiba Corp Controller of intake flow

Similar Documents

Publication Publication Date Title
JPS62281001A (en) Pump operation control device
CN109976405A (en) A kind of ceramic kiln temperature composite control method, equipment and system
US4178132A (en) Method and device for controlling the number of pumps to be operated
JP2779995B2 (en) Water level control device
KR870001551B1 (en) Adaptive gain compressor surge control system
CN104503245B (en) The control method and device of a kind of Nonself-regulating plant
JPS6226506A (en) Pump operation control device
JP2856601B2 (en) Operation control device for multiple distribution stations
Srinivasan et al. Optimisation-Based Control with Imposed Feedback Structures
JPS63148302A (en) Controller using sliding mode control
CN102953966A (en) Self-adaptive iterative control method of variable-frequency pumps in pump station group
CN216561431U (en) Constant-pressure water supply system of water works
JP2766502B2 (en) Hydropower station water level control system
Reddy Evaluation of optimal constant-volume control for irrigation canals
JP3849734B2 (en) Water distribution control method considering the water level of clean water reservoir and distribution reservoir
JPS62229413A (en) Controller for liquid level in storage tank
JPH05157054A (en) Controller of rainwater pump
JP2000029536A (en) Dam controller
JPS63171910A (en) Dam gate control system
SU1303660A1 (en) Method of distributing water from canal with power water intake
JPH0461367B2 (en)
JPH04104307A (en) Control method for dam discharge rate
CN117519329A (en) Automatic reclaimed water sulfuric acid dosing control system with open-loop and closed-loop compound control
JPH11324932A (en) Water-distribution pressure control device
JPS60171511A (en) Flow rate control method