JPS6228098A - Granular material for welding - Google Patents

Granular material for welding

Info

Publication number
JPS6228098A
JPS6228098A JP16841985A JP16841985A JPS6228098A JP S6228098 A JPS6228098 A JP S6228098A JP 16841985 A JP16841985 A JP 16841985A JP 16841985 A JP16841985 A JP 16841985A JP S6228098 A JPS6228098 A JP S6228098A
Authority
JP
Japan
Prior art keywords
fluoride
water glass
flux
welding
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16841985A
Other languages
Japanese (ja)
Other versions
JPH0461759B2 (en
Inventor
Norio Seike
規生 政家
Akinobu Goto
明信 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16841985A priority Critical patent/JPS6228098A/en
Publication of JPS6228098A publication Critical patent/JPS6228098A/en
Publication of JPH0461759B2 publication Critical patent/JPH0461759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To effectively provide an effect of a fluoride by compounding an alkaline earth metal fluoride or fluoride of a lanthanide element coated with 1-30wt% water glass in terms of SiO2 with a flux. CONSTITUTION:The alkaline earth metal fluoride or fluoride of the lanthanide element coated with 1-30wt% water glass in terms of SiO2 is compounded with the flux in the stage of producing the granular material (flux) for welding. The water glass melts earlier than the fluoride and acts as an excellent heat conductive medium to increase the contact area between the fluorides in the stage of welding if the fluoride coated with the water glass in the above- mentioned manner is used. As a result, the effect of improving the arc stability and blow hole resistance intrinsic to the fluoride is effectively obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフラックス入りワイヤ等に用いられる粉粒状溶
接用材料の改良に関し、詳細には該粉粒状溶接用材料に
配合されたアルカリ土類金属弗化物やランタニド元素弗
化物の溶接時における諸作用を有効に発揮させることに
成功した粉粒状溶接用材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of granular welding materials used in flux-cored wires, etc., and more specifically, the present invention relates to the improvement of granular welding materials used in flux-cored wires, etc., and in particular, the improvement of alkaline earth metals blended in the granular welding materials. The present invention relates to a granular welding material that has succeeded in effectively exerting various functions of fluorides and lanthanide element fluorides during welding.

[従来の技ml 粉粒状溶接用材料(以下フラックスという場合もある)
は、その目的や用途によって様々な組成のものが提案さ
れているが、その一つにアルカリ全屈弗化物、アルカリ
土類金属弗化物、ランタニド元素弗化物等の弗化物を配
合したものを挙げることができる。
[Conventional technique ml Powder and granular welding material (hereinafter sometimes referred to as flux)
A variety of compositions have been proposed depending on the purpose and application, and one of them is one containing fluorides such as alkali total fluoride, alkaline earth metal fluoride, and lanthanide element fluoride. be able to.

ところで粉粒状溶接用材料を製造するに当たっては、上
記アルカリ金属弗化物等を他の粉粒状原料(以下、上記
アルカリ金属弗化物等も含む概念としてスラックス原料
という用語を使用する場合もある)と共に混練し造粒φ
乾燥するといった工程を経るのが一般的であるが、該混
線工程は夫々のフラックス原料を混練機へ投入し、この
フラックス原料を機械的に攪拌するという月並みな方法
によって行なわれているのが実情であるから、夫々のフ
ラックス原料粒子を微視的に観察してみると夫々のフラ
ックス原料粒子同士の接触状態は、必ずしも十分に保た
れているとは限らず、場合によっては、該粒子同士が離
反した状態で微細な空孔を残していることさえも確認さ
れる。フラックス原料粒子の攪拌後におけるこの様な状
態は、たとえ造粒・乾燥工程を経たとしても大幅に変わ
るものとは期待されず勿論核原料を金属鞘中に充填した
後においても微細空孔を残してとるという状態は変らな
い。
By the way, when producing a powder-like welding material, the above-mentioned alkali metal fluoride, etc. is kneaded with other powder-like raw materials (hereinafter, the term "slack raw material" may be used as a concept that includes the above-mentioned alkali metal fluoride, etc.). Granulationφ
Although it is common to go through a process such as drying, the fact is that the mixing process is carried out by the common method of feeding each flux raw material into a kneading machine and mechanically stirring the flux raw materials. Therefore, when observing each flux raw material particle microscopically, it is found that the contact state between each flux raw material particle is not necessarily maintained sufficiently, and in some cases, the particles may It is even confirmed that fine holes are left in the separated state. This state of the flux raw material particles after stirring is not expected to change significantly even after the granulation and drying process, and of course, even after the core raw material is filled into the metal sheath, micropores will remain. The situation of taking things will not change.

フラックス入りワイヤに充填された上記フラックス粒子
間の接触状態が上述の如く不十分であると、溶接時にお
けるフラックス原料粒子間の熱伝導効率が必ずしも良好
に保たれるとは限らず、この為溶接時の熱作用が必ずし
もフラックス原料全粒子に及ぶとは言い難くなり、これ
に伴ない溶接時の作用効果も不十分なものとなる。
If the contact state between the flux particles filled in the flux-cored wire is insufficient as described above, the heat conduction efficiency between the flux raw material particles during welding will not necessarily be maintained well, and this will result in poor welding. It is difficult to say that the thermal effect during welding necessarily affects all particles of the flux raw material, and accordingly, the effects during welding become insufficient.

上記不十分さはフラックスの一成分である上記弗化物に
ついてもあてはまることであるが1元来該弗化物は、充
填フラックスの融点を低下させア・−り安定性や耐ブロ
ーホール性等を向上させる為に配合されているものであ
る。ところがこれらが粒子間の接触状態不良に伴なって
溶接時の熱作用を十分に受けなければ融点降下作用に伴
なう上記アーク安定化効果や耐ブローホール性にも悪影
響が及んでくることになる。まして弗化物の中でも高融
点側に位置するアルカリ土類金属弗化物やランタニド元
素弗化物を用いた場合にあっては。
The above-mentioned insufficiency also applies to the above-mentioned fluoride, which is a component of the flux, but the fluoride originally lowers the melting point of the filling flux and improves air stability, blowhole resistance, etc. It is formulated in order to However, if these are not sufficiently exposed to the heat action during welding due to poor contact between particles, the above-mentioned arc stabilizing effect and blowhole resistance due to melting point lowering action will be adversely affected. Become. Especially when using alkaline earth metal fluorides and lanthanide element fluorides, which are located on the high melting point side among fluorides.

上記M影響が一層顕著なものとなる(第1表参照)。The above M effect becomes even more pronounced (see Table 1).

(以下余白) ゛、 ’;’、(、+、:”=pl 従って弗化物としてアルカリ土類金属弗化物やランタニ
ド元素弗化物を用いる場合については。
(Left below) ゛, ';', (, +, :”=pl Therefore, when using alkaline earth metal fluorides or lanthanide element fluorides as the fluoride.

上記接触状態が十分に保証されていないことに伴なう悪
影響を可及的に緩和するための何らかの手段を講じる必
要がある。
It is necessary to take some measures to alleviate as much as possible the negative effects associated with the above-mentioned contact condition not being sufficiently guaranteed.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたものであって
、溶接時におけるアルカリ土類金14弗化物やランタニ
ド元素弗化物の作用を有効に発揮させることのできる粉
粒状溶接用材料を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made with attention to these circumstances, and it is an object of the present invention to effectively exhibit the effects of alkaline earth gold-14 fluorides and lanthanide element fluorides during welding. The purpose is to provide a powder-like welding material that can be used.

[問題点を解決するための手段] 本発明に係る粉粒状溶接用材料とは、SiO2に換算し
て1〜30重量%の水ガラスで被覆したアルカリ土類金
属弗化物又はランタニド元素弗化物を配合してなるとこ
ろにその要旨が存在するものである。
[Means for Solving the Problems] The granular welding material according to the present invention comprises an alkaline earth metal fluoride or a lanthanide element fluoride coated with 1 to 30% by weight of water glass in terms of SiO2. The gist lies in the combination of ingredients.

[作用及υ゛%′方色9J) 本発明に係る粉粒状溶接用材料は、(1)配合されるア
ルカリ土類金属弗化物又はランタニド元素弗化物を水ガ
ラスで被覆した点、(2)該水ガラスによる被覆の程度
(換言すれば水ガラスの含有量)を、SiO2に換算し
て該弗化物に対し1〜30重量%に規定した点、に最大
の特徴を有するものであるから、これらの点を中心に説
明する。
[Effect and υ゛%' square color 9J] The granular welding material according to the present invention has the following features: (1) the alkaline earth metal fluoride or lanthanide element fluoride to be blended is coated with water glass; The greatest feature is that the degree of coverage with the water glass (in other words, the water glass content) is defined as 1 to 30% by weight relative to the fluoride in terms of SiO2. The explanation will focus on these points.

(1)配合されるアルカリ土類金属弗化物又はランタニ
ド元素弗化物を水ガラスで被覆した点=アルカリ土類金
属弗化物やランタニド元素弗化物は、前述の如くフラッ
グス入すワイヤ等の溶接時におけるアーク安定性や耐ブ
ローホール性を向上させるといった目的で使用されるが
、該目的を十分達成する為には上記アルカリ土類金属弗
化物等が溶接時迅速且つ容易に溶融ガス化して十分なシ
ールド雰囲気を形成する必要性がある。
(1) The combined alkaline earth metal fluoride or lanthanide element fluoride is coated with water glass = The alkaline earth metal fluoride or lanthanide element fluoride is used during welding of wires etc. to be inserted into flags as mentioned above. It is used for the purpose of improving arc stability and blowhole resistance, but in order to fully achieve this purpose, the above-mentioned alkaline earth metal fluorides, etc. quickly and easily melt and gasify during welding to provide sufficient shielding. There is a need to create an atmosphere.

そこで本発明者等は、種々の観点から実証的研究を重ね
た結果、フラックスに配合されるアルカリ土類金属弗化
物やランタニド元素弗化物を水ガラスで被覆すれば、上
記必要性を満たすと同時に上記目的を十分達成できるこ
とを知った。その詳細なデータについては後述すること
とし、ここではその理由を箇条書き形式で述べる。
As a result of repeated empirical research from various viewpoints, the present inventors have found that if the alkaline earth metal fluorides and lanthanide element fluorides blended into flux are coated with water glass, the above needs will be met and at the same time I learned that the above objectives can be fully achieved. The detailed data will be described later, and the reasons will be explained here in bulleted form.

(イ)水ガラスは、(a)アルカリ土類金属弗化物やラ
ンタニド元素弗化物(以下アルカリ金属弗化物よりも融
点が高いという意味で、高融点側弗化物という場合もあ
る)に比較してその融点(1000℃以下)が低く、ま
た(b)これが高温で溶融した場合その表面張力が低い
という特性を有している。
(a) Compared to (a) alkaline earth metal fluorides and lanthanide element fluorides (hereinafter sometimes referred to as high melting point fluorides in the sense that they have a higher melting point than alkali metal fluorides), It has a low melting point (below 1000°C), and (b) has a low surface tension when melted at a high temperature.

(ロ)水ガラスは、低融点であるという上記(a)の特
性を有している為、溶接時においてアークからの輻射熱
や溶滴からの熱伝導が作用すると該水ガラス(前述の如
く弗化物の周囲を被覆している)は弗化物よりも迅速に
且つ容易に溶融する。
(b) Since water glass has the property mentioned in (a) above that it has a low melting point, when radiant heat from the arc and heat conduction from the droplets act during welding, the water glass (as described above) fluoride) melts more quickly and easily than fluoride.

(ハ)溶融した水ガラスの表面張力は、上記(b)に示
した如く低いので、該溶融水ガラスは、高融点側弗化物
の表面全体を容易に濡らすばかりか、他のフラックス原
料(例えば鉄粉その他金属、金属間化合物等)をも濡ら
し、その結果線溶融水ガラス、該弗化物、他のフラック
ス原料の相互間の接触面積が増えることになり、互いの
接触関係が緊密になるということができる。
(c) Since the surface tension of molten water glass is low as shown in (b) above, the molten water glass not only easily wets the entire surface of the high melting point side fluoride but also wets other flux raw materials (e.g. Iron powder, other metals, intermetallic compounds, etc.) are also wetted, and as a result, the contact area between the wire molten water glass, the fluoride, and other flux raw materials increases, resulting in a closer contact relationship between them. be able to.

(ニ)上記(ハ)の如く接触面積が増加したことは、高
融点側弗化物に対する上記能のフラックス原料からの熱
伝導効率が向上することを意味するから、上記高融点側
弗化物は多量の熱量を上記水ガラスを媒介として容易に
受は取り、これの融解・溶融が促進される。
(d) The increased contact area as described in (c) above means that the heat transfer efficiency from the flux raw material of the above ability to the high melting point side fluoride increases, so the high melting point side fluoride is used in large amounts. The amount of heat is easily absorbed through the water glass, and its melting and melting is promoted.

この様に溶融水ガラスは、上記高融点側弗化物に対して
優れた熱伝導媒体として作用し、該高融点側弗化物の溶
融を円滑にし、もって溶接時におれるアーク安定性や耐
ブローホール性能を向上させるという弗化物本来の作用
を有効に発揮せしめることができる。尚弗化物のみなら
ず他のフラックス原料をも含めこれら全てを水ガラスで
被覆すれば、被覆水ガラスの量が過剰になりすぎること
から、弗化物へのアーク熱の伝導が阻害され、この結果
金属箱内の上記弗化物等に溶は残りが生じ(フラックス
柱が出現する場合もある)、溶接性がかえって悪化する
In this way, molten water glass acts as an excellent thermal conductive medium for the high melting point side fluoride, smoothing the melting of the high melting point side fluoride, thereby improving arc stability and blowhole resistance during welding. Fluoride's original effect of improving performance can be effectively exhibited. If all of these materials, including not only the fluoride but also other flux raw materials, are coated with water glass, the amount of coated water glass will be too excessive, which will inhibit the conduction of arc heat to the fluoride. Dissolution remains in the fluoride, etc. in the metal box (flux columns may appear), and weldability deteriorates on the contrary.

また上記弗化物はシントロン性が悪いと言われているが
、上述の如く弗化物が水ガラスで被覆されていると、金
属鞘内における弗化物の偏析を防止することができると
いう別の効果をも享受することが可能である。
Furthermore, although the above-mentioned fluoride is said to have poor syntronic properties, when the fluoride is coated with water glass as mentioned above, another effect is that it can prevent segregation of the fluoride within the metal sheath. It is also possible to enjoy

(2)該水ガラス被覆の程度を、SiO2に換算して該
高融点側弗化物に対し1〜30屯u%と規定した点: 水ガラス添加率が1重量%未満であると、弗化物の被覆
が不完全となり、これに伴なって水ガラスの作用即ち熱
伝導媒体としての作用が減弱し、この為溶接中の弗化物
が十分に溶融することができず、従って溶接時における
弗化物の作用を必ずしも十分に発揮することができなか
った。一方30重量%を超えると、各フラックス原料の
配合率に悪影響が及び必要なフラックス原料の配合が不
可能になることが分かった。また水ガラスの配合量が過
剰であることから、溶融スラグの物性変化が起こり溶接
作業性の悪化を招いた。
(2) The extent of the water glass coating is defined as 1 to 30 ton u% of the high melting point side fluoride in terms of SiO2: If the water glass addition rate is less than 1% by weight, the fluoride The coating becomes incomplete, and the action of water glass, that is, the action as a heat transfer medium, is weakened, and for this reason, the fluoride during welding cannot be sufficiently melted. It was not always possible to fully demonstrate its effects. On the other hand, when it exceeds 30% by weight, it has been found that the blending ratio of each flux raw material is adversely affected and it becomes impossible to blend the necessary flux raw materials. Furthermore, since the amount of water glass blended was excessive, the physical properties of the molten slag changed, resulting in deterioration of welding workability.

以下実施例を挙げることによって本発明を具体的に説明
する。
The present invention will be specifically explained below by giving examples.

実施例l CaF2 、CaF3粉を水ガラスと共に混練し、造粒
・乾燥・粒度調整工程を経て水ガラスを被覆したCaF
2 、CaF3粉(以下水ガラス被1caF2.水ガラ
ス被IQceF3粉という)を得た0次いで上記で得た
水ガラス被mcaF2粉等を用い、下記第2表に示すフ
ラックスを得、これを1.2膳膳すの軟鋼シース材へ充
填して複合ワイヤを得た。
Example 1 CaF2 and CaF3 powders were kneaded with water glass and coated with water glass through granulation, drying, and particle size adjustment steps.
2. CaF3 powder (hereinafter referred to as water glass coated 1caF2.Water glass coated IQceF3 powder) was obtained. Next, using the water glass coated mcaF2 powder etc. obtained above, the flux shown in Table 2 below was obtained, and this was mixed into 1. Composite wires were obtained by filling two sets of mild steel sheath materials.

尚水ガラス被覆量(Si02に換算)は。The amount of water glass covered (converted to Si02) is:

CaF2に対し25 ’if1 i、t%、CeF3に
対し8重11%であり、またフラックス充填率は15重
量%であった。一方金属鞘としては、C: 0.03%
The content was 25'if1 i, t% for CaF2, 11% by weight for CeF3, and the flux filling rate was 15% by weight. On the other hand, as a metal sheath, C: 0.03%
.

M n : 0.30%、Si:0.01%、 P :
 0.010%。
Mn: 0.30%, Si: 0.01%, P:
0.010%.

S : 0.014%(夫々重量%)、残部Feの軟鋼
を用いた。
Mild steel with S: 0.014% (each weight %) and the balance Fe was used.

比較の為に、上記フラックス原料全てを水ガラスで被Y
Qシたものを用いて得た場合ワイヤ、及びAl2O3で
被覆したCaF2 、CeF3を用いて複合ワイヤ等を
同時に試作して検討した。得られた各複合ワイヤを用い
、下記の条件で溶接作業性の調査を行なったところ、第
3表に示す結果が得られた。
For comparison, all of the above flux raw materials were coated with water glass.
A wire obtained using a Q-type material and a composite wire using CaF2 and CeF3 coated with Al2O3 were simultaneously fabricated and examined. Using each of the composite wires obtained, welding workability was investigated under the following conditions, and the results shown in Table 3 were obtained.

溶接条件 供試母材:5M41B 開先形状:ビードオンプレート シールドガス:Ar80%、CO220%。Welding conditions Test base material: 5M41B Bevel shape: bead on plate Shield gas: Ar80%, CO220%.

25 u/sin 溶接姿勢:下向き 溶接電流: 280A 、30V 、30CP!。25 u/sin Welding position: downward Welding current: 280A, 30V, 30CP! .

極性: DCRP ・  61′ 木1)ハイスピードビデオを用い、アーク長の変動を評
価した。
Polarity: DCRP ・61′ Wood 1) High-speed video was used to evaluate the variation in arc length.

×:アーク長の変動がワイヤ径以上 O:アーク長の変動がワイヤ径以下 木2)溶接されたビードをX線透過により調査した。×: The variation in arc length is greater than the wire diameter O: Arc length fluctuation is less than the wire diameter Wood 2) The welded bead was examined by X-ray transmission.

Xニブローホール数3個/IOc+w以上Oニブローホ
ール数3@/10cm未満零3)造粒に使用された水ガ
ラス量は、フラックス全重量に対しSiO2量で20%
であった。
X Number of nib blow holes: 3 / IOc+w or more O Number of nib blow holes: 3 @ / Less than 10 cm 0 3) The amount of water glass used for granulation is 20% of the total weight of flux in terms of SiO2 amount.
Met.

これらの結果を箇条書き形式にまとめると下記の通りで
ある。
These results are summarized in bulleted form as follows.

第3表より明らかな様に、本発明の水ガラス被1caF
2  、CeF3 よりなる試験No、2.3゜4.5
,6.7においては、アーク安定性、耐ブローホール性
とも良好な結果が得られた。
As is clear from Table 3, 1caF of water glass of the present invention
2, Test No. consisting of CeF3, 2.3°4.5
, 6.7, good results were obtained in both arc stability and blowhole resistance.

試験No、  lは、CaF2 、CeF3が水ガラス
により被覆されていないので、溶接時におけるC a 
F2 、 Ce F3の溶融が容易でなく、その為アー
ク安定性、耐ブローホール性とも悪い結果が得られてい
る。
In test No. 1, CaF2 and CeF3 were not covered with water glass, so CaF2 and CeF3 were not covered with water glass.
It is not easy to melt F2 and CeF3, and therefore poor results are obtained in both arc stability and blowhole resistance.

試験No、 8は、全フラックスを水ガラスで被覆した
例であり、この例においては、全フラックスが被覆され
ている為造粒フラックス粒子内部への熱伝導がかえって
悪くなり、その為弗化物の溶融が阻害される結果を招き
、アーク安定性、耐ブローホール性の両者とも悪化して
いた。
Test No. 8 is an example in which the entire flux was coated with water glass. In this example, since the entire flux was coated, the heat conduction to the inside of the granulated flux particles was rather poor, and as a result, the fluoride As a result, melting was inhibited, and both arc stability and blowhole resistance were deteriorated.

試験No、 9は、CaF2をAl2O3で被覆した例
であり、試験No、lOはCeF3をAl2O3で被覆
した例である。これらの例においては、Al2O3の融
点がSiO2に比較して高い為、水ガラス被1caF2
.CeF3に見られた良好なアーク安定性、耐ブローホ
ール性は得られなかった。
Test No. 9 is an example in which CaF2 is coated with Al2O3, and test No. 1O is an example in which CeF3 is coated with Al2O3. In these examples, since the melting point of Al2O3 is higher than that of SiO2, 1caF2
.. The good arc stability and blowhole resistance seen in CeF3 could not be obtained.

実施例2 BaF2 、LiBaF3粉を水ガラスと共に混練し、
造粒・乾燥・粒度調整工程を経て、水ガラス被rnBa
F2 、LiBaF3を得た0次いで上記で得た木ガラ
ス被覆B a F 2粉等を用い下記第4表に示す配合
率のフラックスを得、これを3.2m−の軟鋼鞘へ充填
して複合ワイヤを得た。
Example 2 BaF2 and LiBaF3 powders were kneaded with water glass,
After granulation, drying and particle size adjustment process, water glass coated rnBa
F2 and LiBaF3 were obtained. Next, using the wood glass-coated BaF2 powder obtained above, etc., a flux having a compounding ratio shown in Table 4 below was obtained, and this was filled into a 3.2 m-long mild steel sheath to form a composite. Got the wire.

(以下余白)、;“ト 尚水力ラス被覆量(Si02換算)は、BaF2に対し
20重礒%、LiBaF3に対し12重h1%であり、
フラー7クス充填率は1.8重量%であった。また金属
相は、C: 0.08%、 M n :0.40%、 
S i : 0.05%、 P : 0.014%、S
二0.008%(夫々重量%)、残部Feの軟鋼であっ
た。
(Left below), ;"The hydraulic lath coverage (Si02 equivalent) is 20% by weight for BaF2 and 12% by weight for LiBaF3,
The Fuller 7x filling rate was 1.8% by weight. In addition, the metal phase includes C: 0.08%, Mn: 0.40%,
Si: 0.05%, P: 0.014%, S
It was a mild steel containing 20.008% (each % by weight) and the balance Fe.

実施例1と同様、比較の為に上記フラックス原料の全て
を氷カラスで被覆した。その様な複合ワイヤ、及びAl
2O3で被覆したBaF2゜LiBaF3粉を用いた複
合ワイヤを同時に試作した。
As in Example 1, all of the above flux raw materials were covered with ice glass for comparison. Such composite wire and Al
At the same time, a composite wire using BaF2°LiBaF3 powder coated with 2O3 was fabricated.

得られた複合ワイヤを用い、下記の条件で溶接作業性の
調査を行なったところ、第5表に示す結果が得られた。
Using the obtained composite wire, welding workability was investigated under the following conditions, and the results shown in Table 5 were obtained.

溶接条件 供試母材:5M50A 開先形状:ビードオンプレート 溶接姿勢二下向き 溶接電流:40OA、27V、30cps。Welding conditions Test base material: 5M50A Bevel shape: bead on plate Welding position 2 facing downward Welding current: 40OA, 27V, 30cps.

極性:DC3Pセルフシールド この結果を箇条どき形式にまとめると下記の通りである
Polarity: DC3P self-shield The results are summarized in itemized form as follows.

第5表より明らかな様に、試験No、2.3゜4.5.
6は、全て本発明条件を満足した例であり、良好なアー
ク安定性、耐ブローホール性が得られている。
As is clear from Table 5, test No. 2.3°4.5.
No. 6 is an example in which all the conditions of the present invention were satisfied, and good arc stability and blowhole resistance were obtained.

試験No、  lは、従来例であり弗化物が水ガラスに
より被覆されていないので、溶接時における弗化物の溶
融が容易でなく、この為アーク安定性。
Test No. 1 is a conventional example in which the fluoride is not covered with water glass, so the fluoride is not easily melted during welding, resulting in poor arc stability.

1耐ブローホール性の両者とも悪化しているという結果
であった・ 試験N017は、全フラックスを全て水ガラスにより被
覆した例である。全フラックスを全て水ガラスにより被
覆すると、溶融に必要な熱伝導が低下する為、フラック
ス全体としての溶融が容易でなくなり、この為かえって
アーク安定性、耐ブローホール性は不十分となった。
1. The result was that both blowhole resistance properties were deteriorated. Test No. 17 is an example in which the entire flux was entirely covered with water glass. If the entire flux was covered with water glass, the heat conduction necessary for melting would be reduced, making it difficult to melt the flux as a whole, and for this reason, the arc stability and blowhole resistance would become insufficient.

試験No、 8 、9は、Bap2 、LiBaF3を
Al2O3により被覆した例である。実施例1の場合と
同様、Al2O3被mBaF2゜゛ LiBaFiを適
用した複合ワイヤにおいては、Al2O3の融点がSi
O2に比べ高い為、BaF2 、LiBaFa (7)
溶解が、SiO2被慎BaF2 、LiBaF3を用い
た複合ワイヤに比較して困難となり、その結果アーク安
定性、耐ブローホール性とも悪化した。
Test Nos. 8 and 9 are examples in which Bap2 and LiBaF3 were coated with Al2O3. As in Example 1, in the composite wire to which Al2O3-covered mBaF2゜゛ LiBaFi is applied, the melting point of Al2O3 is equal to that of Si.
Since it is higher than O2, BaF2, LiBaFa (7)
Melting became difficult compared to composite wires using SiO2, BaF2, and LiBaF3, and as a result, both arc stability and blowhole resistance deteriorated.

[発明の効果] 本発明は以上の様に構成されているので、溶接時におけ
るアルカリ土類金属弗化物やランタニド元素弗化物の諸
作用を有効に発揮させることのできる粉粒状溶接用材料
を提供することができた。
[Effects of the Invention] Since the present invention is configured as described above, it provides a granular welding material that can effectively exhibit the effects of alkaline earth metal fluorides and lanthanide element fluorides during welding. We were able to.

Claims (1)

【特許請求の範囲】[Claims] SiO_2に換算して1〜30重量%の水ガラスで被覆
したアルカリ土類金属弗化物又はランタニド元素弗化物
を配合してなることを特徴とする粉粒状溶接用材料。
A granular welding material comprising an alkaline earth metal fluoride or a lanthanide element fluoride coated with water glass in an amount of 1 to 30% by weight in terms of SiO_2.
JP16841985A 1985-07-29 1985-07-29 Granular material for welding Granted JPS6228098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16841985A JPS6228098A (en) 1985-07-29 1985-07-29 Granular material for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16841985A JPS6228098A (en) 1985-07-29 1985-07-29 Granular material for welding

Publications (2)

Publication Number Publication Date
JPS6228098A true JPS6228098A (en) 1987-02-06
JPH0461759B2 JPH0461759B2 (en) 1992-10-01

Family

ID=15867773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16841985A Granted JPS6228098A (en) 1985-07-29 1985-07-29 Granular material for welding

Country Status (1)

Country Link
JP (1) JPS6228098A (en)

Also Published As

Publication number Publication date
JPH0461759B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
CA2366261C (en) Welding electrode and method for reducing manganese in fume
EP1537940B1 (en) Colloidal silica binder for a welding flux, wleding flux and method
JP2004283915A (en) Flux binder system
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
JPH0521675B2 (en)
US4338142A (en) Melting flux composition for submerged arc welding
JPH11188496A (en) Burning type flux for submerged arc welding, and manufacture
US2164775A (en) Welding flux
JPS6228098A (en) Granular material for welding
JPH0131996B2 (en)
US2731373A (en) Electrode flux covering for copper and copper-base alloy core materials
US2785094A (en) Coated copper alloy arc welding electrode
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JPS5937719B2 (en) Sintered flux for submerged arc welding
JPS61169194A (en) Fused flux for submerged arc welding
JPH1071491A (en) Ceramic backing material for carbon dioxide gas arc welding
JPS605396B2 (en) Melting type flux for submerged mark welding
JPS6250235B2 (en)
JPS61154794A (en) Cored wire for non-shielded arc welding
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JPH06320297A (en) Flux cored wire for gas shielded metal-arc welding
RU2078664C1 (en) Electrode coating composition
JPS61209792A (en) Raw material for welding material
JPH08267280A (en) Sio2-mno baked flux for submerged arc welding
JPH04118197A (en) Production of composite wire for arc welding