JPS62279895A - Control of redox potential in anaerobic treatment - Google Patents

Control of redox potential in anaerobic treatment

Info

Publication number
JPS62279895A
JPS62279895A JP61123433A JP12343386A JPS62279895A JP S62279895 A JPS62279895 A JP S62279895A JP 61123433 A JP61123433 A JP 61123433A JP 12343386 A JP12343386 A JP 12343386A JP S62279895 A JPS62279895 A JP S62279895A
Authority
JP
Japan
Prior art keywords
reactor
raw water
liquid
gas
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61123433A
Other languages
Japanese (ja)
Inventor
Mitsugi Futaka
府高 貢
Yoshimasa Takahara
高原 義昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61123433A priority Critical patent/JPS62279895A/en
Publication of JPS62279895A publication Critical patent/JPS62279895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To achieve energy saving, by a method wherein the internal liquid of an acid producing reactor is returned and recirculated to the suction side piping of a raw water pump and gas is sucked by an injector. CONSTITUTION:A liquid is made to flow out from an acid producing reactor 3 or the internal liquid of said reactor 3 is taken out to be returned or recirculated to the suction side pipe of a raw water pump 5. The recirculation quantity is set to about 1/2-50 times the quantity of waste water supplied to the reactor 3. Said liquid is mixed with raw water supplied while recirculated and, during this time, air or oxygen is forcibly sucked in the liquid and further pressurized to perform the control of redox potential (ORP). The obtained gas-liquid mixture is sent into the pressure tank 2 provided to the leading end part of the emitting side piping of the raw water pump 5 and pressurized to promote the dissolution of the gas. The liquid mixture is treated in the reactor 3 rapidly and efficiently while treated water is made to flow out from an outflow pipe 13.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、酸化還元電位の制御方法に関するものであり
、更に詳細には、酸生成リアクター処理といった嫌気性
生物処理において、酸化還元電位をコントロールするた
めの新規にして極めて有効な方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for controlling redox potential, and more specifically, to an anaerobic biological treatment such as acid production reactor treatment. relates to a novel and extremely effective method for controlling redox potential.

本発明によれば、極めて迅速且つ正確にバイオリアクタ
ー内部液の酸化還元電位を調整することができるので、
従来より処理することが困難であった食品工業廃水その
他の特に高濃度の有機性廃水のメタン生成を伴う嫌気性
処理が可能となるものである。
According to the present invention, the redox potential of the bioreactor internal solution can be adjusted extremely quickly and accurately.
This makes it possible to perform anaerobic treatment involving methane production of food industry wastewater and other particularly high-concentration organic wastewater, which has been difficult to treat in the past.

したがって本発明は、農産製造、水畜産製造、発酵工業
、製糖工業等各種食品工業において排出される廃水はも
とより、濃尿処理下水、都市下水その他の各種有機性廃
水を処理する技術分野において重用されるものであって
、公害防止技術としても非常に有用なものである。また
更に1本発明によれば、効率よくメタンを得ることがで
きるので、メタン発酵といった嫌気性生物処理技術分野
においても重要なものである。
Therefore, the present invention is of great use in the technical field of treating not only wastewater discharged from various food industries such as agricultural production, water and livestock production, fermentation industry, and sugar manufacturing industry, but also concentrated urine treated sewage, urban sewage, and other various organic wastewaters. This technology is extremely useful as a pollution prevention technology. Furthermore, according to the present invention, methane can be obtained efficiently, so it is also important in the field of anaerobic biological treatment technology such as methane fermentation.

〔従来の技術〕[Conventional technology]

嫌気性生物処理、例えばメタン発酵は、各種有機性廃液
といった複雑な化合物混合体を低級脂肪酸といった有機
酸のような簡単な化合物に分解する工程、及び、これら
有機酸をメタンと炭酸ガスに分解する工程から成るもの
である。
Anaerobic biological treatment, such as methane fermentation, is a process that decomposes complex compound mixtures such as various organic waste liquids into simple compounds such as organic acids such as lower fatty acids, and decomposes these organic acids into methane and carbon dioxide gas. It consists of processes.

このような嫌気性生物処理技術における前者の工程、つ
まり処理対象となる有機物が低分子に分解される液化工
程(または、有機酸生成工程)においては、バイオリア
クター内部液の酸化還元電位のレベルによってこの工程
で作用する微生物の種類や、その産生ずる酵素活性が異
なってくる。
In the former process of such anaerobic biological treatment technology, that is, the liquefaction process (or organic acid production process) in which the organic matter to be treated is decomposed into low molecules, the level of redox potential of the internal liquid of the bioreactor changes. The types of microorganisms that act in this process and the enzyme activities they produce vary.

従って、酸生成リアクターにおける酸化還元電位(以下
rORPJ と略記することもある)を制御することが
処理効果に著しく影響する。
Therefore, controlling the redox potential (hereinafter sometimes abbreviated as rORPJ) in the acid production reactor significantly affects the treatment effect.

しかしながら、現状では嫌気性処理工程においては、O
RPについて留意されておらず、ましてや、工場レベル
でORPについて注意を払うだけでなくこれをコントロ
ールすることは、実用化はおろか考えられたこともない
However, at present, in the anaerobic treatment process, O
No attention has been paid to RP, and it has never been thought of to not only pay attention to ORP but also control it at the factory level, let alone put it into practical use.

ただ、わずかに、研究所における実験レベルで。However, only at the experimental level in a laboratory.

第2図に示したシステムが極く小規模で試験のために用
いられているにすぎない。つまり、原水貯槽31から原
水ポンプ33を介して、原水を原水供給管36から酸生
成リアクター32に注入し、この中にブロワ−34を用
いて空気及び/又は酸素を送気管39を通して送気し、
ORPを単にプラス側に変える試みがなされているにす
ぎない。
The system shown in Figure 2 has only been used for testing on a very small scale. That is, raw water is injected from the raw water storage tank 31 via the raw water pump 33 and into the acid production reactor 32 from the raw water supply pipe 36, and air and/or oxygen is supplied into the reactor 32 through the air supply pipe 39 using the blower 34. ,
Attempts are being made to simply change the ORP to the positive side.

なお、35はORPメーターであって、リアクター32
で処理された処理水ないし流出水は、リアクター32の
処理水流出管37から流出し、発生したガスはリアクタ
ーの排気管38から外部へ排出ないしは集気タンクに集
めて適宜な用途に利用される。
In addition, 35 is an ORP meter, and the reactor 32
The treated water or effluent water flows out from the treated water outflow pipe 37 of the reactor 32, and the generated gas is discharged to the outside from the exhaust pipe 38 of the reactor or collected in a collection tank and used for appropriate purposes. .

しかじかから、このような既知のシステムでは、酸生成
リアクターにおけるORPのデリケートなコントロール
は全く不可能であるし、もともと−上記したシステム自
体が工場用のシステムではなく、工場処理に適合した大
規模なORPコントロールは全く行われておらず、した
がって1本発明のように独特なシステムによってORP
を自由自在にコントロールするという技術思想は、従来
未知の全く新規なものであるどころか、工場レベルで大
規模にしかもデリケートにORPをコントロールすると
いう技術課題自体が既に新規なものである。
Indeed, with such known systems, delicate control of the ORP in acid-producing reactors is simply not possible, and originally - the above-mentioned system itself was not a factory system, but a large-scale system adapted for factory processing. Therefore, ORP control is not carried out at all, and therefore ORP control is not carried out at all by a unique system like the present invention.
The technical concept of freely controlling ORP is not only completely new and previously unknown, but the technical problem of controlling ORP on a large scale and delicately at the factory level itself is already new.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記したように従来技術が有する、特に次の
ような欠点を解決するためになされたものである。
The present invention has been made in order to specifically solve the following drawbacks of the prior art as described above.

■従来の嫌気性リアクターは滞留時間が10以Hもかか
り、応答速度がおそい。
■Conventional anaerobic reactors require residence time of 10 hours or more and have slow response times.

■酸生成リアクターに直接空気(または酸素)を吹込む
と、槽内液のm気状態を部分的に不調にする。
■Blowing air (or oxygen) directly into the acid production reactor will partially upset the atmospheric condition of the liquid in the tank.

■○RPレベルを目的とする所定値に制御することがで
きない。
■○The RP level cannot be controlled to a desired predetermined value.

■従来システムではORPレベルを晒にプラス側へもっ
ていくといった程度のいわば定性的ともいうべき○RP
コントロール(しかも実験室規模でのコントロール)し
かできず、工場レベルでの大規模且つ微妙な省エネルギ
ー的コントロールは全く不可能である。
■In the conventional system, ○RP can be called qualitative, such as bringing the ORP level to the positive side.
Control (moreover, control on a laboratory scale) is possible only, and large-scale and delicate energy-saving control on a factory level is completely impossible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記欠点を一挙に解決して、大規模リアクタ
ーにおいて極めて迅速且つ正確に酸化還元電位を調整す
る新規な省エネルギー的低コスト化方法を完成するため
になされたものであって、活性汚泥を中心とする微生物
学、流体の行動、固液分離、気液分離、汚水処理槽、バ
イオリアクター等、生物、物理、化学といった各方面か
ら広く且つ鋭意研究した結果、遂に完成されたものであ
る。
The present invention has been made in order to solve the above-mentioned drawbacks at once and complete a new energy-saving and cost-reducing method for adjusting the redox potential extremely quickly and accurately in a large-scale reactor. It was finally completed as a result of extensive and intensive research from various fields such as biology, physics, and chemistry, including microbiology, fluid behavior, solid-liquid separation, gas-liquid separation, sewage treatment tanks, and bioreactors. .

以下、本発明を図面を参照しながら詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

原水貯槽1に貯えた原廃水は、原水ポンプ5により原水
注入配管工0を介して酸生成リアクター3へ送入するの
であるが、この原液をそのままリアクター3へ搬送し、
リアクター3内へ空気を直接送入したのでは所期の目的
は達成されない。
The raw wastewater stored in the raw water storage tank 1 is sent to the acid production reactor 3 by the raw water pump 5 via the raw water injection plumber 0, and this raw solution is transported to the reactor 3 as it is,
Directly introducing air into the reactor 3 would not achieve the intended purpose.

その前に、次のようにしてORPのコントロールを実施
しなければならない。つまり、先ず、酸生成リアクター
3から流出水(処理水)ないしリアクター内部液を取り
出し、原水ポンプ5の吸込側管に返送ないし循環せしめ
る。流出水(処理水)ないし内部液の返送ないし循環量
は、リアクター3に供給する廃水の約1/2量〜50倍
量程度とするのが良く、特に、処理水や原液の種類、濃
度、○RPレベル等にしたがって適量を選択するのが好
ましく、一般的には、処理水(内部液)を原液と等量な
いしその30倍量程度使用するのが好適である。
Before that, the ORP control must be performed as follows. That is, first, the effluent water (treated water) or the reactor internal liquid is taken out from the acid production reactor 3 and returned or circulated to the suction side pipe of the raw water pump 5. The amount of return or circulation of the effluent water (treated water) or internal liquid is preferably about 1/2 to 50 times the amount of wastewater supplied to the reactor 3, and in particular, the type, concentration, It is preferable to select an appropriate amount according to the RP level, etc. Generally, it is preferable to use the treated water (internal liquid) in an amount equal to or 30 times the amount of the original solution.

このようにして流出水(処理水)ないし内部液を、上記
した特定量だけ、原水ポンプの吸込側配管に返送ないし
循環せしめつつ、供給原水と混合せしめしかもその間に
空気及び/又は酸素を強制的に吸込み、これを更に加圧
して、ORPコントロールを行う。例えばこの操作は次
のようにして行う。つまり、原水ポンプ5の吐出側から
吸込側配管に原水循環用配管9を設けるとともに、この
リサイクル配管9に空気(又は酸素)を吹込ませるため
のインジェクタ装置7を設け、更にポンプ5の下流に加
圧槽2を設けて、ORPコントロールを行う。先ず、リ
アクター3から引抜いてきた流出水ないし内部液は、原
水ポンプの吸込側配管に上記した特定量を返送ないし循
環させ、これを原水貯槽1からの原水と混合し、その一
部ないし全部をリサイクル管9に流入せしめる。そこで
、インジェクター7から強制吹込みされた酸素(又は空
気)によって原水中に酸素を混入溶解せしめる。吹込む
気体は、酸素及び/又は空気であるが、窒素やアルゴン
、キセノンガスといった各種不活性ガスと酸素の混合気
体も適宜使用できる。このようにして得られた気液混合
液は、原水ポンプ5の吐出側配管の先端部分に設けた加
圧タンク2に送入し、加圧することによって気体の溶解
度を向上させ、これを原水圧入配管10によってリアク
ター3に圧入し、この酸生成リアクター3に設けたOR
Pメータ8のレベルに合わせて吸込気体量を調整し、も
って、酸生成リアクター3のORPを正確且つ迅速にコ
ントロールするのである。なお11は、加圧タンク2か
らの圧力を除去したりそのコントロールを行ったりする
ための加圧槽排気管である。
In this way, the specified amount of the effluent water (treated water) or internal liquid is returned or circulated to the suction side piping of the raw water pump, while being mixed with the supplied raw water. This is then further pressurized and ORP control is performed. For example, this operation is performed as follows. In other words, a raw water circulation pipe 9 is provided from the discharge side of the raw water pump 5 to the suction side pipe, and an injector device 7 is provided for blowing air (or oxygen) into the recycling pipe 9. A pressure tank 2 is provided to perform ORP control. First, the effluent water or internal liquid drawn from the reactor 3 is returned or circulated in the above-mentioned specific amount to the suction side piping of the raw water pump, mixed with the raw water from the raw water storage tank 1, and part or all of it is It is made to flow into the recycling pipe 9. Therefore, oxygen (or air) forcedly blown in from the injector 7 is used to mix and dissolve oxygen into the raw water. The gas to be blown in is oxygen and/or air, but a mixed gas of oxygen and various inert gases such as nitrogen, argon, and xenon gas can also be used as appropriate. The gas-liquid mixture obtained in this way is sent to the pressurized tank 2 installed at the tip of the discharge side piping of the raw water pump 5, and pressurized to improve the solubility of the gas. It is press-fitted into the reactor 3 through the piping 10, and the OR provided in this acid generation reactor 3 is
The amount of suction gas is adjusted according to the level of the P meter 8, thereby accurately and quickly controlling the ORP of the acid production reactor 3. Note that 11 is a pressurized tank exhaust pipe for removing and controlling the pressure from the pressurized tank 2.

このようにして混合液は、一定のORP条件下で、リア
クター3内で迅速且つ効率よく処理されてリアクター流
入管12から流出し、レシーバ−タンク4を介して処理
水流出管13から流出する。
In this way, the mixed liquid is quickly and efficiently treated in the reactor 3 under constant ORP conditions, flows out from the reactor inlet pipe 12, and flows out from the treated water outflow pipe 13 via the receiver tank 4.

この流出液は、更にメタン発酵に使用したり、直ちに河
川に放流したり、工業用水として各種用途に利用できる
ほか、循環水ポンプ6を介して循環水配管16を通り原
水ポンプ5の上流側に送って、前記した返送ないし循環
液として使用することができる。また、この返送ないし
#I環液としては。
This effluent can be further used for methane fermentation, immediately discharged into a river, or used for various purposes as industrial water, or can be passed through the circulating water pipe 16 via the circulating water pump 6 to the upstream side of the raw water pump 5. It can be sent and used as the above-mentioned return or circulation fluid. Also, as this return or #I reflux liquid.

処理水、流出液のほかにリアクター内部液も適宜使用で
きるし、これらの混合液も自由に使用できる。なお、1
5はレシーバ−排気管を示し、これらは1図示したよう
にリアクター排気管14と連結してもよいし、連結する
ことなく独立させておいてもよい。
In addition to treated water and effluent, reactor internal liquid can also be used as appropriate, and mixtures thereof can also be used freely. In addition, 1
Reference numeral 5 indicates a receiver exhaust pipe, and these may be connected to the reactor exhaust pipe 14 as shown in Figure 1, or may be left independent without being connected.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

実施例 第1図に示した酸生成リアクターのORPコントロール
システムを用い、上水1a当りコーンステイープリカー
30gを溶解した原液を次のようにして処理した。
EXAMPLE Using the ORP control system of the acid production reactor shown in FIG. 1, a stock solution in which 30 g of cornstarch liquor was dissolved per 1 a of tap water was treated as follows.

実容積5Qの酸生成リアクターを使用し、リアクターの
運転水温は30℃に維持した。処理水返送率を原液の1
5倍量に設定し、加圧タンクにおいて、水柱50嗣の圧
力下で、空気をインジェクタ装置によって吸込ませて原
液の処理を行った。
An acid production reactor with an actual volume of 5Q was used, and the operating water temperature of the reactor was maintained at 30°C. The treated water return rate is 1
The undiluted solution was treated in a pressurized tank under a pressure of 50 water columns by inhaling air with an injector device.

空気の吹込量を10+wfl/winと2 Q mff
/winとにセットして原液を処理し、それぞれ次表の
ようなORPコントロール結果を得た。
Air blowing amount is 10+wfl/win and 2 Q mff
/win and processed the stock solutions, and obtained ORP control results as shown in the following table.

表 TOC負荷量10kg/mコ/日 TOC負荷量20k
g/mコ/日空気吹込10mA/l1lin    O
IIP−320mV      ORP−430mV空
気吹込20mQ/win              
ORP−330mV以上の結果から明らかなように、有
機物負荷量、空気吹込量に対してORPのレベルに比例
関係が認められ、有機物負荷量が一定の場合、供給する
気体量を調節することによってリアクター内部液のOR
Pレベルを正確且つデリケートに制御することが可能で
あることがわかる。
Table TOC load amount 10kg/m/day TOC load amount 20k
g/m/day Air blowing 10mA/l1lin O
IIP-320mV ORP-430mV air blowing 20mQ/win
As is clear from the results of ORP -330mV or higher, there is a proportional relationship between the ORP level and the amount of organic matter loading and the amount of air blown.When the amount of organic matter loading is constant, the reactor can be adjusted by adjusting the amount of gas supplied. OR of internal liquid
It can be seen that it is possible to accurately and delicately control the P level.

(効 果) 本発明は、前記したように、酸生成リアクター流出水(
処木理)またはリアクター内部液をリアクターに供給す
る廃水と等量ないし30倍量程度を原水ポンプの吸込側
配管に返送循環させ、原水ポンプ吐出側から吸込側配管
にリサイクル配管を設け、このリサイクル配管に空気(
または酸素)を吸込ませるためのインジェクター装置を
設け、原水ポンプの吐出側配管の先端に加圧タンクを設
け、気液混合液を加圧することによって気体の溶解度を
向上させ、酸生成リアクターに設けたORPメーターの
レベルに連動させて、吸込気体量を調整し、もってOR
Pをコントロールするものである。
(Effects) As described above, the present invention provides acid production reactor effluent water (
The same amount to 30 times the amount of waste water supplied to the reactor is returned and circulated to the suction side piping of the raw water pump, and a recycling piping is installed from the raw water pump discharge side to the suction side piping, and this recycling is carried out. Air in the piping (
An injector device was installed to inhale oxygen (or oxygen), and a pressurized tank was installed at the tip of the discharge side piping of the raw water pump to improve the solubility of the gas by pressurizing the gas-liquid mixture. The amount of suction gas is adjusted in conjunction with the level of the ORP meter, resulting in OR
It controls P.

したがって、本発明によれば、このような新規にして独
特な構成を採ることにより、工場レベルでの大規模なリ
アクター内のORPコントロールがはじめて可能となっ
たのである。
Therefore, according to the present invention, by adopting such a new and unique configuration, ORP control within a large-scale reactor at the factory level has become possible for the first time.

そのうえ1本発明はによれば1次のように、囃に大規模
ORPコントロールができるだけでなく。
Moreover, according to the present invention, large-scale ORP control is not only possible in the first order.

極めて迅速にしかも極めて正確にデリケートなORPコ
ントロールがきわめて省エネルギー的にできるという著
効も併せ得られるのである。
It also has the remarkable effect of being able to perform delicate ORP control extremely quickly, extremely accurately, and in an extremely energy-saving manner.

■ 酸生成リアクターに流入させる水量を増大させるこ
とによってリアクターにおける滞留時間を短縮して応答
速度を早くシ。
■ By increasing the amount of water flowing into the acid production reactor, the residence time in the reactor is shortened and the response speed is increased.

■ インジェクター装置によって気体を吸込ませ、加圧
タンクで加圧することによりブローワ等の動力設備を附
加することなく省エネルギー的に気体の溶解効果を向上
させ。
■ By inhaling gas with an injector device and pressurizing it with a pressurized tank, the gas dissolution effect is improved in an energy-saving manner without adding power equipment such as a blower.

■ リアクターに設置したORPメーターと吸込気体量
を連動させることによってORPレベルを正確に制御す
ることができる。(これはリアクターに供給する有機物
量と混合液に溶解する気体量とリアクターの○RPレベ
ルがある範囲に比例関係にあるからである。)
■ The ORP level can be accurately controlled by linking the intake gas amount with the ORP meter installed in the reactor. (This is because there is a proportional relationship between the amount of organic matter supplied to the reactor, the amount of gas dissolved in the mixed liquid, and the RP level of the reactor within a certain range.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る酸生成リアクターのORPコント
ロールシステムの1実施例を図示したものであり、第2
図は従来システムを図示したものである。 1.31・・・原水貯槽、    2・・・加圧槽、3
.32・・・酸生成リアクター15・・・原水ポンプ。 7・・・インジェクタ装置、  9・・・原水循環用配
管、16・・・循環水配管、34・・・ブロワ−0代理
人 弁理士 戸 1)親 男 第  1   図 七
FIG. 1 illustrates one embodiment of the ORP control system for an acid production reactor according to the present invention, and FIG.
The figure illustrates a conventional system. 1.31... Raw water storage tank, 2... Pressurized tank, 3
.. 32...Acid production reactor 15...Raw water pump. 7... Injector device, 9... Piping for raw water circulation, 16... Circulating water piping, 34... Blower-0 agent Patent attorney door 1) Parent Male No. 1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 酸生成リアクター内部液及び/又は酸生成リアクターか
ら処理されて流出してくる処理水を、該リアクターに供
給する廃液量の1/2量ないし50倍量だけ原水ポンプ
の吸込側配管に返送ないし循環させつつ、供給原液と合
して、混合せしめ、しかもその間に空気及び/又は酸素
を強制的に吹込み、次いでこのようにして得られた気液
混合液を加圧して気体の溶解度を向上させること、を特
徴とする嫌気処理における酸化還元電位の制御方法。
The internal liquid of the acid production reactor and/or the treated water that flows out from the acid production reactor is returned or circulated to the suction side piping of the raw water pump in an amount of 1/2 to 50 times the amount of waste liquid supplied to the reactor. The gas-liquid mixture thus obtained is then pressurized to improve the solubility of the gas. A method for controlling redox potential in anaerobic treatment, characterized by:
JP61123433A 1986-05-30 1986-05-30 Control of redox potential in anaerobic treatment Pending JPS62279895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123433A JPS62279895A (en) 1986-05-30 1986-05-30 Control of redox potential in anaerobic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123433A JPS62279895A (en) 1986-05-30 1986-05-30 Control of redox potential in anaerobic treatment

Publications (1)

Publication Number Publication Date
JPS62279895A true JPS62279895A (en) 1987-12-04

Family

ID=14860450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123433A Pending JPS62279895A (en) 1986-05-30 1986-05-30 Control of redox potential in anaerobic treatment

Country Status (1)

Country Link
JP (1) JPS62279895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015595A (en) * 1996-07-08 1998-01-20 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2014000550A (en) * 2012-06-20 2014-01-09 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015595A (en) * 1996-07-08 1998-01-20 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2014000550A (en) * 2012-06-20 2014-01-09 Sumitomo Heavy Industries Environment Co Ltd Methane fermentation system and methane fermentation method

Similar Documents

Publication Publication Date Title
WO2017173708A1 (en) Integrated reactor for biological treatment of livestock farm wastewater
EP0541076A2 (en) Cooling water ozonation system
BRPI0716961B1 (en) METHODS FOR TREATING WASTE WATER IN A WASTE WATER TREATMENT PLANT, AND TO REDUCE FOAM FORMATION OR WASTE WATER TUMPING IN AN ACTIVATED WATER BASIN
CN101723512A (en) Ammonia-contained waste water high-efficiency biochemical processing method
Aspé et al. Ammonia inhibition in the anaerobic treatment of fishery effluents
CN208471815U (en) A kind of high-concentration sewage treatment system of AO technique and Fenton system support
US20230071009A1 (en) Apparatus and method for synchronously treating sewage and sludge through combination of step-feed partial nitrification and anaerobic ammonia oxidation
CN106007171A (en) Integrated sludge reduction recycling and N2O emission reduction sewage treatment device and method for operating same
JPS62279895A (en) Control of redox potential in anaerobic treatment
CN203653325U (en) Device for realizing partial nitrification by synergistic inhibition of activity of nitrifying bacteria by free ammonia and free nitrous acid
Temesgen et al. Advancing aerobic digestion efficiency using ultrafine bubbles in wastewater treatment
CN109809630A (en) A method of multi-pollutant in collaboration low consumption removal nitrogenous fertilizer waste water
CN214654291U (en) Efficient biological denitrification system based on shortcut nitrification-denitrification technology
CN105776750B (en) A kind of testing and measuring technology of the enzyme catalytic treatment landfill leachate of three-stage
JPH0645034B2 (en) Method for adjusting pH of acid production reactor in methane fermentation
JPH0679295A (en) Treatment of organic waste water
CN113264586A (en) MBR (membrane bioreactor) process for treating nitrate wastewater
Gao et al. Co-treatment of mixed municipal sewage and landfill leachates via the hydrolytic acidification–sequencing batch reactors–membrane bioreactor process
CN205527988U (en) Waste water biological treatment of integral type plant reactor
CN205472940U (en) Sewage treatment plant through monitoring N2O automatic control
KR20010079014A (en) Automatic system and method for treating nitrogen in waste water
CN215828440U (en) Utilize waste molasses to cultivate good oxygen mud device
CN113979538B (en) Device and method for chemically strengthening biological dephosphorization
CN114426327B (en) Method for quickly starting biochemical unit of sewage treatment plant after shutdown maintenance
CN114455790B (en) Method for stably and efficiently producing nitrite based on iron ammonia oxidation and application thereof