JPS62279607A - Magnetic shield of uniform field magnet - Google Patents

Magnetic shield of uniform field magnet

Info

Publication number
JPS62279607A
JPS62279607A JP61122783A JP12278386A JPS62279607A JP S62279607 A JPS62279607 A JP S62279607A JP 61122783 A JP61122783 A JP 61122783A JP 12278386 A JP12278386 A JP 12278386A JP S62279607 A JPS62279607 A JP S62279607A
Authority
JP
Japan
Prior art keywords
magnetic field
uniform magnetic
hole
uniform
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61122783A
Other languages
Japanese (ja)
Inventor
Masaki Yamana
山名 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61122783A priority Critical patent/JPS62279607A/en
Publication of JPS62279607A publication Critical patent/JPS62279607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To check the lowering of the uniformity of a uniform magnetic field by a construction wherein a dummy hole which is substantially analogous to a hole piercing through a tubular member of a magnetic shield is provided in an angular area dividing the tubular member equally in the circumferential direction. CONSTITUTION:A magnetic shield 15 comprises a tubular member 15B surrounding a cryostat 2 wherein a coil 1 is held, and a pair of end plates 15A which are joined to the opposite end portions in the axial direction of the tubular member 15B and have, in the central portion, a communicating hole Corresponding to a hollow member 7. A branch hole 6 and a dummy branch hole 16 are dieposed opposite in the vertical direction to each other so that they are positioned symmetrically with respect to the axis in angular areas different at an angle of 180 degrees to each other on a plane of symmetry drawn through the center O of the shield 15. While magnetic reluctance turns high in the respective space parts of both branch holes 6 and 16 and leakage flux density lowers therein, the effect of the turbulence of leakage fluxes upon the intensity B of the uniform magnetic field of a uniform magnetic field space 8 is directed reversely to each other, and consequently the effect is lessened. Thereby the lowering of the uniformity of the uniform magnetic field is checked.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の属する技術分野〕 本発明は、はぼ軸対称形の@気シールドによシ中空筒状
の均一磁場コイルが包囲された均一磁場マグネット、こ
とに核磁気共鳴形コンビューク断層像撮影装置(以下M
MR−CTと略称する)用の均一磁場マグネットの磁気
シールドの構造に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a uniform magnetic field in which a hollow cylindrical uniform magnetic field coil is surrounded by an axisymmetric @ki shield. Magnets, especially nuclear magnetic resonance Konbuque tomography equipment (hereinafter referred to as M
The present invention relates to the structure of a magnetic shield for a uniform magnetic field magnet (abbreviated as MR-CT).

〔従来技術とその問題点〕[Prior art and its problems]

NMR−CT用の均一磁場マグネットにおいては、人体
を収納する中空部内に常電導形で0.05ないし0.3
 T 、超電導形では0.3以上の磁場強度を有し、か
つその均一性が数1QPPmといった高度の均一磁場を
発生させる必要があり、マグネットの設置室の外に磁束
が漏れることによって生ずる障害2例えば隣接する室の
患者の体内に埋め込まれたペースメーカーの誤動作の防
止などのために漏れ磁束密度を5ガウス以下に抑さえる
必要があること、ならびに漏れ磁束が建屋の鉄筋等の強
磁性体と鎖交することによ)分布が乱れ、漏れ磁界の分
布の乱れが均一磁場の均一性を低下させることなどの不
都合を排除するために、均一磁場コイルを軸対称性を有
する厚い鉄板等からなる磁気シールドで覆って漏れ磁束
の帰路を形成することにより、漏れ磁束の広がりを阻止
するよう構成したものが知られている。
In a uniform magnetic field magnet for NMR-CT, a normal conductivity type magnet of 0.05 to 0.3
T. In the superconducting type, it is necessary to generate a highly uniform magnetic field with a magnetic field strength of 0.3 or more and a uniformity of several 1 QPPm, and problems caused by leakage of magnetic flux outside the magnet installation room2. For example, in order to prevent malfunction of a pacemaker implanted in the body of a patient in an adjacent room, it is necessary to suppress leakage magnetic flux density to 5 Gauss or less, and leakage magnetic flux must be connected to ferromagnetic materials such as reinforcing bars in buildings. In order to eliminate problems such as the distribution of leakage magnetic fields being disturbed and the disturbance of the distribution of the leakage magnetic field reducing the uniformity of the uniform magnetic field, the uniform magnetic field coil is made of a thick iron plate or the like with axial symmetry. There is a known structure in which the leakage flux is prevented from spreading by covering it with a shield to form a return path for the leakage flux.

第8図は従来技術の一例を示す均一磁場マグネットの概
略側断面図、第9図は第8図の中心0位置くおける軸方
向の側断面図であシ、超電導形マグネットの場合を例に
示したものである。図において、1は超電導形の筒状コ
イルI A 、 !jング状ココイル1Bらなる均一磁
場コイルであ)、液体ヘリウム9を包蔵したクライオス
タット2に収納されておシ、均一磁場コイル1は中心0
に対して軸対称に形成され、中空部Z内の破線で示す球
状の均一磁場8に実線矢印で示すZ方向の磁束密度Bな
る均一磁場を発生するよう構成されている。
Fig. 8 is a schematic side sectional view of a uniform magnetic field magnet showing an example of the prior art, and Fig. 9 is a side sectional view in the axial direction at the center 0 position of Fig. 8, taking the case of a superconducting magnet as an example. This is what is shown. In the figure, 1 is a superconducting cylindrical coil I A, ! The uniform magnetic field coil 1 is a uniform magnetic field coil consisting of a ring-shaped cocoil 1B), and is housed in a cryostat 2 containing liquid helium 9. The uniform magnetic field coil 1 is centered at 0.
It is formed axially symmetrically with respect to the hollow part Z, and is configured to generate a uniform magnetic field having a magnetic flux density B in the Z direction shown by a solid arrow in a spherical uniform magnetic field 8 shown by a broken line in the hollow part Z.

また、クライオスタット2は中心0を通るZ方向の角度
領域に突出した筒状のサービスタレット3を備え、この
部分から均一磁場コイル1に導電接続された図示しない
大電流リードや液体ヘリウム配管、真空配管等が引き出
されるよう構成されている。5はクライオスタットをほ
ぼ軸対称に包囲する鉄板等からなる磁気シールドであシ
、筒状部5Bと、中央部に中空部7に相応する孔を有す
る゛ 一対の端板5Aとからなシ、サービスタレット3
に相応する部分にはサービスタレットを包囲して外側に
突出した管状の分岐孔6が形成されている。
The cryostat 2 also includes a cylindrical service turret 3 that protrudes in an angular region in the Z direction passing through the center 0, and a large current lead (not shown), liquid helium piping, and vacuum piping that are conductively connected from this part to the uniform magnetic field coil 1. etc. are drawn out. 5 is a magnetic shield made of iron plate or the like that surrounds the cryostat almost axially symmetrically, and consists of a cylindrical part 5B and a pair of end plates 5A having a hole corresponding to the hollow part 7 in the center. Turret 3
A tubular branch hole 6 that surrounds the service turret and projects outward is formed in a portion corresponding to the service turret.

前述のように構成された均一磁場マグネットにおいては
、中空部で矢印Z方向に発生した磁束の大部分は比透磁
率の大きい鉄板からなシ、はぼ軸対称な磁気シールド5
の筒状部5Bを矢印Z方向とは逆向きに通って中空部Z
側に環流することによシ、磁気シールドの内部の磁界を
乱すことなく磁気シールドの外側に分布する漏れ磁束を
大幅に低減することができる。しかしながら、サービス
タレット6の部分に分岐孔6を有するために、この部分
で磁気シールドが局部的に非軸対称構造となシ、この部
分における磁気抵抗が高まることによシ、漏れ磁束密度
が低くなる傾向を示し、この磁場の乱れが中空部Z内の
均一磁場8の磁束分布にも影警を及ぼし、磁場の強さの
均一性が低下する欠点がある。
In the uniform magnetic field magnet configured as described above, most of the magnetic flux generated in the hollow part in the direction of the arrow Z is not caused by the iron plate with high relative magnetic permeability, but by the almost axially symmetrical magnetic shield 5.
Pass through the cylindrical part 5B in the opposite direction to the arrow Z direction and enter the hollow part Z.
By circulating the magnetic flux to the side, leakage magnetic flux distributed outside the magnetic shield can be significantly reduced without disturbing the magnetic field inside the magnetic shield. However, since the service turret 6 has the branch hole 6, the magnetic shield has a locally non-axisymmetric structure in this part, and the magnetic resistance in this part increases, resulting in a low leakage magnetic flux density. This disturbance of the magnetic field also affects the magnetic flux distribution of the uniform magnetic field 8 within the hollow part Z, resulting in a disadvantage that the uniformity of the magnetic field strength decreases.

第10図ないし第13図は0点を中心とする均一磁場空
間8の磁場の乱れを示す特性線図であシ、第10図はサ
ービスタットが設けられた角度領域Z方向の磁場の変歪
量ΔEyの分布を、第11図はX方向の磁場の変歪量Δ
Bxの分布を、第12図はZ方向の磁場の変歪量ΔBz
を、第16図はZ方向を起点として反時計方向の角度θ
に対する角度方向の磁場の変歪量ΔBθの分布をそれぞ
れ示したものである。Z方向の変歪量ΔByは第10図
に示すように分岐孔乙に近い側で少く遠い側で高い右下
がシの分布を、またX方向およびZ方向の変歪量ΔBx
、ΔBZは第11図および第12図に示すように分岐孔
6の直下の中心0位置で高いほぼ対称な山形特性を示し
ておυ、その結果角度θ方向の変歪量ΔBθは第13図
に示すように分岐孔乙のある角度θ=O・ 方向(Z方
向)で最も低く2反分岐孔方向の角度θ=180’方向
(−Z方向)で最も高い分布を示している。第16図に
示す角度θ方向の変歪量ΔBθの分布のうち角度θに対
して一様な成分ΔBθ1に関しては軸対称性を有するの
で例えば均一磁場コイル1に流す電流を制御することに
よシ補正できるので問題ないが、角度θ方向に非対称な
変歪量ΔBθ2については均一磁場コイル1による補正
が不可能であり、変歪量ΔBθ2によって均一磁場8の
磁場の強さBの均一性が損われることになる。
10 to 13 are characteristic line diagrams showing the disturbance of the magnetic field in the uniform magnetic field space 8 centered on the 0 point, and FIG. Figure 11 shows the distribution of the amount ΔEy, and the distribution of the amount of distortion Δ of the magnetic field in the X direction.
Figure 12 shows the distribution of Bx and the amount of distortion ΔBz of the magnetic field in the Z direction.
, Figure 16 shows the angle θ in the counterclockwise direction starting from the Z direction.
3 shows the distribution of the amount of distortion ΔBθ of the magnetic field in the angular direction with respect to the angular direction. As shown in Fig. 10, the amount of deformation ΔBy in the Z direction is smaller on the side closer to the branch hole B, and higher on the side farther away from the branch hole B, with the lower right being the distribution.
, ΔBZ exhibits a high, almost symmetrical mountain-shaped characteristic at the center 0 position directly below the branch hole 6 as shown in FIGS. 11 and 12, and as a result, the amount of deformation ΔBθ in the angle θ direction is As shown in , the distribution is lowest in the angle θ=O・ direction (Z direction) of the branch hole B, and highest in the direction of the angle θ=180′ (−Z direction) in the direction of the branch hole B. In the distribution of the amount of strain ΔBθ in the direction of the angle θ shown in FIG. 16, the component ΔBθ1, which is uniform with respect to the angle θ, has axial symmetry. There is no problem because it can be corrected, but the uniform magnetic field coil 1 cannot correct the distortion amount ΔBθ2 that is asymmetrical in the angle θ direction, and the uniformity of the magnetic field strength B of the uniform magnetic field 8 is impaired by the variation distortion amount ΔBθ2. You will be killed.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、均一磁場
の周方向(角度方向)に非対称な均一磁場の強さの変歪
量を低減できる磁気シールドを備えた均一磁場マグネッ
トを提供することを目的とする。
The present invention has been made in view of the above-mentioned situation, and an object of the present invention is to provide a uniform magnetic field magnet equipped with a magnetic shield that can reduce the amount of variation in the strength of a uniform magnetic field that is asymmetrical in the circumferential direction (angular direction) of the uniform magnetic field. With the goal.

〔発明の要点〕[Key points of the invention]

本発明は、中空筒状の均一磁場コイルを包囲する磁気シ
ールドの所定の角度領域に磁気シールドの筒状部を貫通
する孔に対し、前記筒状部を周方向に等分割する角度領
域に前記孔とほぼ相似なダミー孔を設けるよう構成した
ことによ)、均一磁場の角度方向に生ずる磁場の変歪量
の分布とは角度方向に位相のずれた変歪量分布をダミー
孔で補正させることができ、両変歪量分布の和によって
決まる全体的な変歪量のうち均一磁場コイルで補正でき
ない非対称成分を低減できるようにしだものである。
The present invention provides a hole penetrating the cylindrical portion of the magnetic shield in a predetermined angular region of the magnetic shield surrounding a hollow cylindrical uniform magnetic field coil, and a hole penetrating the cylindrical portion in the angular region equally dividing the cylindrical portion in the circumferential direction. By providing a dummy hole that is almost similar to the hole), the dummy hole corrects the distribution of deformation amount that is out of phase in the angular direction from the distribution of deformation amount of the magnetic field that occurs in the angular direction of the uniform magnetic field. This makes it possible to reduce the asymmetrical component that cannot be corrected by the uniform magnetic field coil in the overall amount of deformation determined by the sum of both distributions of the amount of deformation.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例装置を示す概略側断面図、第2
因は第1図における中心位置0を通る軸方向の断面図で
あ)、従来技術と同じ部分には同一参照符号を付して詳
細な説明は省略する。図において、15は磁気シールド
であυ、巻線1を収納したクライオスタット2を包囲す
る筒状部15Bと、筒状部15Bの軸方向両端部に結合
され。
FIG. 1 is a schematic side sectional view showing an embodiment of the device of the present invention, and FIG.
The reason for this is the axial cross-sectional view passing through the center position 0 in FIG. In the figure, reference numeral 15 denotes a magnetic shield υ, which is coupled to a cylindrical portion 15B surrounding the cryostat 2 housing the winding 1 and to both axial ends of the cylindrical portion 15B.

中央部に中空部7に相応する連通孔を有する一対の端板
15Aからな)、筒状部15Bには均一磁場コイルの中
心0を通る平面上のX方向角度領域にサービスタレット
3が貫通する分岐孔6を備えるとともに、分岐孔6と角
度θ=180−異なる角度領域−X方向に分岐孔6に対
称なダミー分岐孔16が形成されている。
A pair of end plates 15A each having a communication hole corresponding to the hollow part 7 in the center), and a cylindrical part 15B through which a service turret 3 penetrates in an angular region in the X direction on a plane passing through the center 0 of the uniform magnetic field coil. In addition to the branch hole 6, a dummy branch hole 16 is formed that is symmetrical to the branch hole 6 in the angle θ=180−different angle region−X direction.

前述のように構成された均一磁場マグネットにおいては
、磁気シールド15の中心0を通る対称面上の1800
異なる角度領域に軸対称に分岐孔6とダミー分岐孔16
とが上下方向に対向して配されることにより、両分岐孔
部それぞれの空間部で磁気抵抗が高くなυ、漏れ磁束密
度が低下するが、この漏れ磁束密度の乱れが均一磁場空
間8の均一磁場の強さBに及ぼす影響が互いに逆向きと
なることにより、影響が減殺され、したがりて均一磁場
の均一性の低下を抑制することがてきる。
In the uniform magnetic field magnet configured as described above, 1800 on the plane of symmetry passing through the center 0 of the magnetic shield 15
A branch hole 6 and a dummy branch hole 16 are arranged axially symmetrically in different angle regions.
By arranging them vertically to face each other, the magnetic resistance increases in the space of both branch holes, υ, and the leakage magnetic flux density decreases, but this disturbance in the leakage magnetic flux density causes the uniform magnetic field space 8 to Since the influences on the strength B of the uniform magnetic field are opposite to each other, the influences are attenuated and, therefore, a decrease in the uniformity of the uniform magnetic field can be suppressed.

第6図ないし第5図は実施例装置における中心0を通る
対称面における均一磁場の変歪量を示す特性線図であシ
、第6図は分岐孔の角度領域X方向の磁場り強さの変歪
量ΔBy の分布を、第4図ばX方向の変歪量ΔBX 
の分布を、第5図は角度θ方向の変歪量ΔBθ をX方
向をθ=0°として反時計方向の角度を横軸にとってそ
れぞれ示したものである。第6図において、分岐孔乙に
よる変歪量曲線6yは第10図におけると同様に分岐孔
6のあるX方向で少い右下が)の特性を示すが、ダミー
分岐孔16による変歪i−は曲線16yに示すようにダ
ミー分岐孔のある一y側で少い左下が9の特性を示し、
両曲線の和で決まるX方向の変歪量ΔBy  の分布は
曲線15.Yで示すように中心0に下限値を有する谷形
の曲線となる。一方、X方向の変歪量ΔBx  の分布
は第4図に示すように分岐孔6側の曲線6X、ダミー分
岐孔16側の曲線16Xともに中心Oにピーク値を有す
る山形特性を示し、両曲線の和で決まるΔEX の分布
は曲線15Xで示すように曲線6X、16Xの2倍の変
歪量?示す山形曲線となる。またZ方向の変歪量は図示
していないが第4図と同様な山形特性となる。したがっ
て、X方向、X方向、2方向の各分布曲線が合成された
角度θ方向の変歪量ΔBθの分布は第5図に示すように
、分岐孔6側の分布曲線6θと、ダミー分岐孔16側の
分布曲線16θとが互いに180’角度方向の位相がず
れた特性を示すことによシ、両曲線の和からなるΔBθ
の角度方向分布曲線15θは、周期が曲線16θ、6θ
のそれの%に短縮された非軸対称成分ΔBθ2七、角度
方向に一様な軸対称成分ΔBθ1との合成値からな9、
軸対称成分ΔBθ1は第16図における従来技術のそれ
に比べて大幅に増加するが、非軸対称成分ΔBθ2は大
幅に一低減される。したがって、軸対称成分ΔBθ1を
均一磁場フィル1で補正するようにすれば、均一磁場コ
イルで補正できない非軸対称成分ΔBθ2によってのみ
均一磁場が乱れることになり、ΔBθ2が従来技術に比
べて大幅に低減されることによシ、均一磁場空間8にお
ける磁場の強さBの均一性の低下を従来技術に比べて大
幅に抑制することができる。
Figures 6 and 5 are characteristic diagrams showing the amount of distortion of the uniform magnetic field in the plane of symmetry passing through the center 0 in the embodiment device, and Figure 6 shows the magnetic field strength in the angular region of the branch hole in the X direction. Figure 4 shows the distribution of the amount of strain ΔBy in the X direction.
FIG. 5 shows the amount of distortion ΔBθ in the direction of angle θ, with θ=0° in the X direction, and the horizontal axis represents the counterclockwise angle. In FIG. 6, the distortion amount curve 6y due to the branch hole B shows a characteristic of 2) (lower right), which is smaller in the X direction where the branch hole 6 is located, as in FIG. - shows the characteristics of 9 on the lower left side where there is a dummy branch hole as shown in curve 16y,
The distribution of the amount of strain ΔBy in the X direction determined by the sum of both curves is curve 15. As shown by Y, it becomes a valley-shaped curve having a lower limit value at the center 0. On the other hand, as shown in FIG. 4, the distribution of the amount of deformation ΔBx in the As shown by curve 15X, the distribution of ΔEX determined by the sum of is twice the amount of distortion as curves 6X and 16X. The result is a chevron curve as shown. Although the amount of deformation in the Z direction is not shown, it has a chevron-shaped characteristic similar to that shown in FIG. Therefore, the distribution of the amount of strain ΔBθ in the direction of angle θ, which is a combination of the distribution curves in the X direction, the X direction, and the two directions, is as shown in FIG. Since the distribution curve 16θ on the 16th side exhibits a characteristic in which the phase is shifted from each other in the 180' angle direction, ΔBθ consisting of the sum of both curves
The angular direction distribution curve 15θ has periods of curves 16θ and 6θ
It is the composite value of the non-axisymmetric component ΔBθ27 which is shortened to % of that of 9, and the axisymmetric component ΔBθ1 which is uniform in the angular direction.
Although the axisymmetric component ΔBθ1 is significantly increased compared to that of the prior art in FIG. 16, the non-axisymmetric component ΔBθ2 is significantly reduced. Therefore, if the axisymmetric component ΔBθ1 is corrected by the uniform magnetic field filter 1, the uniform magnetic field will be disturbed only by the non-axisymmetric component ΔBθ2 that cannot be corrected by the uniform magnetic field coil, and ΔBθ2 will be significantly reduced compared to the conventional technology. As a result, a decrease in the uniformity of the magnetic field strength B in the uniform magnetic field space 8 can be significantly suppressed compared to the prior art.

第6図は本発明の異なる実施例を示す磁気シールドの要
部の側断面図であり、磁気シールド25の筒状部に分岐
孔6に対して筒状部を4分割する位置に6個のダミー分
岐孔25A、25B、25Cを設けるよう構成した点が
前述の実施例と異なっており、角度方向の磁場の変歪量
ΔBθ のうち非軸対称成分ΔBθ2をさらに低減でき
る利点が得られる。なお分岐孔6を二つ以上必要とする
場合には、ダミー分岐孔25A 、25B 、25Cの
いずれかを分岐孔として利用することができる。
FIG. 6 is a side sectional view of the main part of a magnetic shield showing a different embodiment of the present invention, in which six pieces are installed in the cylindrical part of the magnetic shield 25 at positions dividing the cylindrical part into four parts with respect to the branch hole 6. This embodiment differs from the previous embodiment in that dummy branch holes 25A, 25B, and 25C are provided, and there is an advantage that the non-axisymmetric component ΔBθ2 of the amount of distortion ΔBθ of the magnetic field in the angular direction can be further reduced. Note that if two or more branch holes 6 are required, any one of the dummy branch holes 25A, 25B, and 25C can be used as the branch hole.

第7図は本発明のさらに異なる実施例を示す磁気シール
ドの概略すU断面図であシ、磁気シールド35の筒状部
に分岐孔乙に対してθ=120・異なる角度領域に2個
のダミー分岐孔35A、35Bを設けた点が前述の実施
例と異なってお)、角度方向の磁場の変歪量を低減でき
るとともに、下方にダミー分岐孔が突出しないことによ
)、磁気シールドの高さを第6図のそれに比べて低くで
きる利点がある。
FIG. 7 is a schematic U cross-sectional view of a magnetic shield showing still another embodiment of the present invention, in which the cylindrical portion of the magnetic shield 35 has two holes at θ=120 with respect to the branch hole A and two at different angle regions. The difference from the previous embodiment is that the dummy branch holes 35A and 35B are provided, and the amount of distortion of the magnetic field in the angular direction can be reduced, and since the dummy branch holes do not protrude downward), the magnetic shielding There is an advantage that the height can be lower than that shown in FIG.

以上本発明は超電導形の均一磁場マグネットに用途が限
定されるものではなく、例えば常電導マグネットにおい
て電流1.1 ’X−ドや冷却配管を引き出す場合の分
岐孔、あるいは均一磁場コイル外周側の突出部を覆う場
合の外側に突出したポケット部等に対しても、ダミー分
岐孔を設けることにより磁場の均一性の低下を抑制する
ことができる。
As described above, the application of the present invention is not limited to superconducting uniform magnetic field magnets, but for example, in a normal conducting magnet, a branch hole for drawing out a current of 1.1' By providing dummy branch holes also in pockets that protrude outward when covering protrusions, it is possible to suppress deterioration in the uniformity of the magnetic field.

また、分岐孔とダミー分岐孔の形状寸法が互いに等しく
ない場合においても磁場の均一性の低下の抑制機能を得
ることが可能である。したがって、ダミー分岐孔を単に
均一磁場の乱れの補正手段としてだけでなく、他の機能
を有する機構部分として有効利用を計ることによりダミ
ー分岐孔を設けたことによる経済的不利益を回避するこ
とができる。
Further, even when the shapes and dimensions of the branch hole and the dummy branch hole are not equal to each other, it is possible to obtain the function of suppressing a decrease in the uniformity of the magnetic field. Therefore, it is possible to avoid the economic disadvantage caused by providing a dummy branch hole by effectively utilizing the dummy branch hole not only as a means for correcting disturbances in the uniform magnetic field but also as a mechanical part with other functions. can.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、中空筒状の均一磁場コイルを包
囲する磁気シールドの筒状部の所定の角度領域を貫通し
て外側に突出した分岐孔に対応ム分岐孔に対して筒状部
を周方向に等分割する角度領域に分岐孔とほぼ相似なダ
ミー分岐孔を設けるよう構成した。その結果、分岐孔に
よる均一磁場の変歪量の角度方向の非軸対称成分を打消
す成分をダミー分岐孔によって発生することが可能とな
シ、従来技術に比べて磁場の均一性の低下の少い均一磁
場マグネットを提供することができる。また、ダミー分
岐孔を均一磁場マグネットのリード線や配管類の導出孔
、突起物の収納ポケット、・・ンドホール等に活用する
ことによシ、ダミー分岐孔を設けることKよる経済的不
利益を回避することができる。
As described above, the present invention provides a cylindrical portion corresponding to a branch hole that penetrates a predetermined angular region of a cylindrical portion of a magnetic shield surrounding a hollow cylindrical uniform magnetic field coil and protrudes outward. Dummy branch holes, which are substantially similar to the branch holes, are provided in angular regions that are equally divided in the circumferential direction. As a result, the dummy branch hole can generate a component that cancels out the non-axisymmetric component in the angular direction of the amount of distortion of the uniform magnetic field caused by the branch hole, and the decrease in the uniformity of the magnetic field is reduced compared to the conventional technology. It is possible to provide a magnet with a less uniform magnetic field. In addition, by utilizing the dummy branch hole as an outlet hole for the lead wires and piping of the uniform magnetic field magnet, a storage pocket for protrusions, a lead hole, etc., the economic disadvantage caused by providing the dummy branch hole can be avoided. can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略側断面図、第2図は
実施例装置の軸方向の側断面図、第5図は実施例におけ
るX方向の磁場の変歪歪特性線図、第4図はX方向の変
歪歪特性線図、第5図は角度方向の変歪歪特性線図、第
6図は異なる実施例を示す要部の断面図、第7図はさら
に異なる実施例を示す要部の断面図、第8図は従来装置
の側断面図、第9図は第8図の軸方向側断面図、第10
図ないし第13図は従来装置における均一磁場の変歪i
特性線図である。 1・・・均一磁場コイル、2・・・クライオスタット、
3・・・サービスタレット、5,15.25.35・・
・磁気シールド、5A 、15A・・・端板、5B、1
5B・・・筒状部、6・・・分岐孔、7・・・中空部、
8・・・均一磁場、9・・・液体ヘリウム、16,25
A、25B、25C,35A、35B・・・ダミー分岐
孔、B・・・均一磁場の磁束密度、ΔBy、ΔBx、Δ
Bz、ΔBθ・・・均一磁場の変歪量、ΔBθl・・・
軸対称変歪量、ΔBθ2・・・非軸対称変歪量。 第1図 第2図 第3図     第4図 y   −x   −y   x   y第5図 25Cへ     へ25B 第6図 第7図 第8(¥1 第9図 第10図     第11図 第12図 第13図
FIG. 1 is a schematic side sectional view showing an embodiment of the present invention, FIG. 2 is a side sectional view in the axial direction of the embodiment device, and FIG. 5 is a variable strain characteristic diagram of the magnetic field in the X direction in the embodiment. Fig. 4 is a distortion characteristic diagram in the X direction, Fig. 5 is a variation characteristic diagram in the angular direction, Fig. 6 is a sectional view of the main part showing a different embodiment, and Fig. 7 is a further different embodiment. 8 is a side sectional view of the conventional device; FIG. 9 is an axial sectional view of FIG. 8;
Figures 1 to 13 show the variation of the uniform magnetic field i in the conventional device.
It is a characteristic line diagram. 1... Uniform magnetic field coil, 2... Cryostat,
3...Service turret, 5,15.25.35...
・Magnetic shield, 5A, 15A...end plate, 5B, 1
5B... Cylindrical part, 6... Branch hole, 7... Hollow part,
8... Uniform magnetic field, 9... Liquid helium, 16,25
A, 25B, 25C, 35A, 35B...Dummy branch hole, B...Magnetic flux density of uniform magnetic field, ΔBy, ΔBx, Δ
Bz, ΔBθ...Amount of distortion of uniform magnetic field, ΔBθl...
Axisymmetric strain amount, ΔBθ2...non-axisymmetric strain amount. Figure 1 Figure 2 Figure 3 Figure 4 y -x -y x y Figure 5 Go to 25C Go to 25B Figure 6 Figure 7 Figure 8 (¥1 Figure 9 Figure 10 Figure 11 Figure 12 Figure Figure 13

Claims (1)

【特許請求の範囲】[Claims] 1)中空筒状に形成され中空部内に均一磁場を発生させ
る均一磁場コイルと、この均一磁場コイルを包囲する筒
状部、ならびに筒状部の軸方向両端部に結合されて前記
均一磁場コイルの軸方向端面を包囲しその中央部に前記
中空部に相応する連通孔を有する端板からなる磁気シー
ルドとを備え、この磁気シールドの筒状部の所定の角度
領域に筒状部を貫通する孔を有するものにおいて、この
孔に対して前記筒状部を周方向に等分割する角度領域に
前記孔とほぼ相似なダミー孔を設けたことを特徴とする
均一磁場マグネットの磁気シールド。
1) A uniform magnetic field coil that is formed into a hollow cylindrical shape and generates a uniform magnetic field within the hollow portion, a cylindrical portion surrounding this uniform magnetic field coil, and a cylindrical portion that is coupled to both axial ends of the cylindrical portion of the uniform magnetic field coil. a magnetic shield consisting of an end plate surrounding an axial end face and having a communication hole in the center thereof corresponding to the hollow portion; a hole penetrating the cylindrical portion in a predetermined angular region of the cylindrical portion of the magnetic shield; 1. A magnetic shield for a uniform magnetic field magnet, characterized in that a dummy hole substantially similar to the hole is provided in an angular region equally dividing the cylindrical portion in the circumferential direction with respect to the hole.
JP61122783A 1986-05-28 1986-05-28 Magnetic shield of uniform field magnet Pending JPS62279607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122783A JPS62279607A (en) 1986-05-28 1986-05-28 Magnetic shield of uniform field magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122783A JPS62279607A (en) 1986-05-28 1986-05-28 Magnetic shield of uniform field magnet

Publications (1)

Publication Number Publication Date
JPS62279607A true JPS62279607A (en) 1987-12-04

Family

ID=14844498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122783A Pending JPS62279607A (en) 1986-05-28 1986-05-28 Magnetic shield of uniform field magnet

Country Status (1)

Country Link
JP (1) JPS62279607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243503A (en) * 1988-03-25 1989-09-28 Toshiba Corp Static magnetic field magnet for magnetic resonance imaging device
WO2008081999A1 (en) * 2006-12-28 2008-07-10 Kyushu University, National University Corporation Separable magnetic shield device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243503A (en) * 1988-03-25 1989-09-28 Toshiba Corp Static magnetic field magnet for magnetic resonance imaging device
WO2008081999A1 (en) * 2006-12-28 2008-07-10 Kyushu University, National University Corporation Separable magnetic shield device
JP2008166618A (en) * 2006-12-28 2008-07-17 Kyushu Univ Isolation type magnetic shielding apparatus
US8031039B2 (en) 2006-12-28 2011-10-04 Kyushu University, National University Corporation Separate type magnetic shield apparatus

Similar Documents

Publication Publication Date Title
US5793273A (en) Choke coil for suppressing common-mode noise and normal-mode noise
JPH09190913A (en) Superconducting magnet device and magnetic resonance imaging apparatus using this device
US5517169A (en) Superconducting magnet with magnetic shielding
US5396208A (en) Magnet system for magnetic resonance imaging
US6909348B2 (en) Low-leakage magnetic-field magnet and shield coil assembly
US5581223A (en) Superconducting magnet
US5384538A (en) Magnetic field generation device for use in superconductive type MRI
JPS62279607A (en) Magnetic shield of uniform field magnet
JPH0516678B2 (en)
GB2214312A (en) Electromagnet with a magnetic shield
US4800355A (en) Electromagnet having magnetic shield
JPH04105307A (en) Superconducting magnet apparatus
JPS625161A (en) Magnet for mri
US5038129A (en) Electromagnetic having magnetic shield
JP7416377B2 (en) Multipolar electromagnets and accelerators using them
JPH0516133B2 (en)
JPH02174099A (en) Superconductive deflecting electromagnet
JPH03139328A (en) Superconductive magnet for mri apparatus
KR930000388B1 (en) Magnetic shunt deflection yokes
JPH01109799A (en) Magnetic shielding device
JPH03284243A (en) Magnet apparatus for mri
JPH01109290A (en) Magnetic shield apparatus
JPH0448606A (en) Low-temperature container for superconducting magnet
JP2014223169A (en) Magnetic resonance imaging device
JPH05198426A (en) Actively shielded magnet