JPS62279415A - Controlling method for pulsating flow in tube - Google Patents
Controlling method for pulsating flow in tubeInfo
- Publication number
- JPS62279415A JPS62279415A JP12277986A JP12277986A JPS62279415A JP S62279415 A JPS62279415 A JP S62279415A JP 12277986 A JP12277986 A JP 12277986A JP 12277986 A JP12277986 A JP 12277986A JP S62279415 A JPS62279415 A JP S62279415A
- Authority
- JP
- Japan
- Prior art keywords
- pulsation
- point
- pulsating flow
- conduit
- downstream side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 11
- 230000010349 pulsation Effects 0.000 claims abstract description 69
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims description 9
- 238000007619 statistical method Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 abstract description 14
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000012417 linear regression Methods 0.000 abstract description 3
- 238000013016 damping Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Control Of Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
本発明は、能動的に管内脈動流れを制御し得るようにし
た方法に関するものである。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for actively controlling pulsating flow within a tube.
[従来の技術]
化学プラント等の流体輸送装置、各種産業機械の配管系
、油圧装置、原子力発電プラント等の冷却系、その他、
全ゆる流体輸送を伴う配管系では種々の脈動減衰手段が
採用されている。[Conventional technology] Fluid transport devices for chemical plants, piping systems for various industrial machines, hydraulic systems, cooling systems for nuclear power plants, etc.
Various pulsation damping means are employed in all piping systems involving fluid transport.
従来の脈動減衰手段について説明すると、第4図及び第
5図はアキュムレータ方式で、管路aの中途部にはアキ
ュムレータbが取付けられ、該アキュムレータb内のゴ
ム膜Cにより形成された容積d内には気体が封入してあ
り、気体の圧力により脈動圧が防止される。第5図中e
はオリフィスである。To explain the conventional pulsation damping means, FIGS. 4 and 5 show an accumulator type, in which an accumulator b is attached to the middle of the pipe a, and the volume d formed by the rubber membrane C in the accumulator b is is filled with gas, and the pressure of the gas prevents pulsating pressure. e in Figure 5
is the orifice.
第6図は分岐管方式で、管路aの中途部には分岐管rが
設けられ、分岐管rの長さを調節することにより分岐管
r部で音響的に共鳴が生じ、脈動エネルギーが減衰され
る。Figure 6 shows a branch pipe system, in which a branch pipe r is provided in the middle of pipe a, and by adjusting the length of the branch pipe r, acoustic resonance occurs in the branch pipe r, and pulsating energy is Attenuated.
又上記以外にも管路の中途部にオリフィスを設け、絞り
抵抗により脈動を減衰させるものもある。In addition to the above, there is also a method in which an orifice is provided in the middle of the conduit to attenuate pulsation by throttling resistance.
[発明が解決しようとする問題点]
しかしながら、上述の脈動減衰手段では、(1) 何
れも固有の特性を持つため脈動の減衰量には限界があり
、対象とする全周波数の脈動を減衰させることはできな
い、
C〕 効果的な脈動減衰量を得るには、脈動が発生して
いる管路系の特性と減衰器の特性が最適な関係となるよ
う減衰器を設計する必要があるが、計算誤差、使用状態
の変化等により大きな脈動減衰量を得られないことがあ
る、(至)従来の減衰器は受動形であり、脈動減衰量に
は限界がある、
(へ)状態の変化に適応できない、
等の問題があった。[Problems to be Solved by the Invention] However, with the above-mentioned pulsation damping means, (1) there is a limit to the amount of pulsation attenuation because each of them has unique characteristics, and it is difficult to attenuate pulsations of all target frequencies; C] In order to obtain effective pulsation attenuation, it is necessary to design the attenuator so that the characteristics of the pipe system where pulsation occurs and the characteristics of the attenuator have an optimal relationship. It may not be possible to obtain a large amount of pulsation attenuation due to calculation errors, changes in usage conditions, etc. (To) Conventional attenuators are passive type, and there is a limit to the amount of pulsation attenuation. (To) Due to changes in conditions There were problems such as not being able to adapt.
本発明は上述の実情に鑑み、全周波数の脈動に対して大
きな脈動減衰量が得られ、しかも状態変化に対しても容
易に適応できるようにした能動的な管内脈動流れの制御
方法を提供することを目的としてなしたものである。In view of the above-mentioned circumstances, the present invention provides a method for actively controlling pulsating flow in a pipe, which can obtain a large amount of pulsation attenuation for pulsations of all frequencies and can easily adapt to changes in conditions. This was done for that purpose.
[問題点を解決するための手段]
本発明は管路内の上流側と下流側二点間の脈動流れの人
出力特性を観alll値から統計的手法を利用して同定
し、同定した入出力特性から求めた脈動伝達関数が組込
まれた制御演算器に管路」二流側観J+点の脈動流れ観
測値を人力させて管路下流側観測点の脈動値を予想させ
、予想された脈動値の符号を反転させた出力信号を脈動
に変換して管路内下流側観測点の直後に加え、管路向上
流側観測点で発生している脈動に起因する管路下流側観
測点より下流側の脈動を打消し抑制する構成を備えてい
る。[Means for Solving the Problems] The present invention identifies the human output characteristics of pulsating flow between two points on the upstream side and the downstream side in a pipeline using statistical methods from all values, and The pulsating flow observation value at point J+ from the second-stream side of the pipe is manually input to a control calculator incorporating the pulsation transfer function determined from the output characteristics to predict the pulsation value at the observation point on the downstream side of the pipe, and the predicted pulsation is calculated. The output signal with the sign of the value reversed is converted into pulsation and added immediately after the downstream observation point in the pipeline, and the output signal is added to the downstream side of the pipeline from the downstream observation point due to the pulsation occurring at the upstream observation point of the pipeline. It has a structure that cancels out and suppresses side pulsations.
[作 用]
管路内の上流側と下流側の二点で観測された脈動流れか
ら統計的手法を用いて脈動流れの入出力特性が同定され
ると共に該人出力特性から求めた脈動伝達関数及び管路
上流側観測点の脈動流れの観測値を基に管路下流側観測
点の脈動値が予想され、予想された脈動値は符号が反転
されて出力され、該出力信号は脈動に変換されて管路内
下流側観測点の直後に加えられ、脈動が打消され、抑制
される。[Operation] The input/output characteristics of the pulsating flow are identified using a statistical method from the pulsating flow observed at two points on the upstream side and downstream side in the pipe, and the pulsating transfer function determined from the human output characteristics. The pulsation value at the observation point on the downstream side of the pipe is predicted based on the observed value of the pulsating flow at the observation point on the upstream side of the pipe, the sign of the predicted pulsation value is inverted and output, and the output signal is converted to pulsation. It is applied immediately after the observation point on the downstream side of the pipe, canceling out and suppressing pulsations.
[実 施 例〕
以下、本発明の実施例を添付図面を参照しつつ説明する
。[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1図は本発明の一実施例で、lは流体が第1図の左か
ら右へ流れB点より左で脈動が発生している管路、2は
管路1と連通し、本発明制御方法を実施することにより
0点より右で脈動が抑制される管路、3は管路1のA点
で観71111された脈動流れを基に求めたAB間の脈
動伝達モデルを組込み得るようにした制御演算器、4は
制御演算器3から出力された信号を反転させる反転器、
5は管路1,2のBC間に設けられた脈動補償部で、反
転器4からの信号を脈動圧又は脈動流量に変換する装置
である。FIG. 1 shows an embodiment of the present invention, where 1 is a conduit through which fluid flows from left to right in FIG. 1 and pulsation occurs to the left of point B; 2 is in communication with conduit 1; By implementing the control method, the pulsation is suppressed on the right side of the 0 point in the pipeline, and 3 is designed to incorporate the pulsation transmission model between AB, which is calculated based on the pulsating flow observed at point A of the pipeline 1. 4 is an inverter that inverts the signal output from the control calculator 3;
Reference numeral 5 denotes a pulsation compensator provided between the BCs of the conduits 1 and 2, which is a device that converts the signal from the inverter 4 into a pulsating pressure or a pulsating flow rate.
脈動補償部5の詳細は第2図に示され、流体流通部6と
制御室7はゴム膜等の弾性体8により仕切られている。Details of the pulsation compensation section 5 are shown in FIG. 2, and the fluid circulation section 6 and the control chamber 7 are partitioned off by an elastic body 8 such as a rubber membrane.
制御室7には流体源9からの流体圧力若しくは流量を制
御するためのサーボ弁10が接続され、反転器4で反転
された出力信号はサーボ弁10へ与え得るようになって
いる。A servo valve 10 for controlling the fluid pressure or flow rate from the fluid source 9 is connected to the control chamber 7, and an output signal inverted by the inverter 4 can be given to the servo valve 10.
脈動を打消し抑制するためには、先ず管路1のA点及び
B点の脈動流れを観測し、管路1内の脈動流れの入出力
特性を観測値から統計的手法を利用して同定し、同定し
た脈動伝達モデルを制御演算器3内へ組込む必要がある
。In order to cancel and suppress pulsation, first observe the pulsating flow at points A and B in conduit 1, and identify the input/output characteristics of the pulsating flow in conduit 1 from the observed values using statistical methods. However, it is necessary to incorporate the identified pulsation transmission model into the control calculator 3.
今、A点の脈動流れをu (k) 、B点の脈動流れを
y (k)とする。ここでkは観測時点を意味し、u
(k) 、!/ (k)はに時点の観ap+値を意味す
る。又Z−’ Y (k) −y (k−1)で表わさ
れるような遅延演算子Zを導入すれば、統計的手法を応
用した同定のひとつの方法として次のような線形回帰モ
デルが利用できる。ただし、y(k−1)はkよりも一
時点前の観測値である。Now, let the pulsating flow at point A be u (k) and the pulsating flow at point B be y (k). Here, k means the observation time, and u
(k),! / (k) means the ap+ value at the time. In addition, by introducing a delay operator Z expressed as Z-' Y (k) -y (k-1), the following linear regression model can be used as an identification method using statistical methods. can. However, y(k-1) is an observed value one point before k.
y (k) −−(a、 Z−’ +a2 Z−2+−
・・+anZ(l) y (k)+ (b+ Z−’
+ bz Z−’ +・・−+bn Z−n) u (
k)+v (k)
ここで、a、bは回帰モデルのパラメータであり、例え
ば最小二乗法により、すなわちモデル誤差v (k)の
二乗が最小になるように決定され、管路の脈動伝達関数
Gは
である。y (k) --(a, Z-' +a2 Z-2+-
・・+anZ(l) y (k)+ (b+ Z-'
+ bz Z-' +...-+bn Z-n) u (
k) + v (k) Here, a and b are the parameters of the regression model, and are determined, for example, by the least squares method, that is, so that the square of the model error v (k) is minimized, and the pulsation transfer function of the pipe G is.
上述の線形回帰モデルは管路の動的なモデルであり、A
点にu (k)の脈動流れが観測されれば、B点にy(
k)の脈動値が発生することになる。従って、運転時に
は、上述のようにして予めu (k) 、y (k)か
ら脈動伝達関数Gを定めて制御演算器3に脈動伝達関数
Gを組込みu (k)を入力する。The linear regression model described above is a dynamic model of the pipeline, and A
If a pulsating flow of u (k) is observed at point B, y (
k) pulsation value will occur. Therefore, during operation, the pulsation transfer function G is determined in advance from u (k) and y (k) as described above, and the pulsation transfer function G is incorporated into the control calculator 3 and u (k) is input.
管路1内を流れる流体に発生したA点の脈動流れu (
k)は制御演算器3へ送られ、該制御演算器3ではV
(k) −G−u (k)により管路[のB点での脈動
流れが演算、予想されて出力され、反転器4で−Y (
k)に変換されて指令信号としてサーボ弁10へ与えら
れる。このため、流体源9からの流体はサーボ弁10に
より制御され、脈動補償部5の制御室7に導入され、弾
性体8がB点の脈動を打消すよう作動するため、管路2
の0点以降では流体の脈動は抑制される。Pulsating flow u (
k) is sent to the control calculator 3, and in the control calculator 3, V
(k) −G−u (k) calculates and predicts the pulsating flow at point B of the pipe [, and outputs it, and the inverter 4 outputs −Y (
k) and given to the servo valve 10 as a command signal. Therefore, the fluid from the fluid source 9 is controlled by the servo valve 10 and introduced into the control chamber 7 of the pulsation compensator 5, and the elastic body 8 operates to cancel the pulsation at point B.
Fluid pulsation is suppressed after the 0 point.
次に上記脈動の抑制について、第3図(イ)〜仁)によ
り説明すると、管路1のA点の脈動流れが、第3図(イ
)に示すような正弦波であり、管路1のB点の脈動流れ
が第3図(ロ)に示すように、δだけ脈動の伝播時間が
ある波形である場合、反転器4で反転されてサーボ弁1
0に与えられる脈動指令は第3図(ハ)に示すようにな
る。このため、管路2の0点では、第3図(ロ)に示す
波形と第3図Q\)に示す波形が合成された結果となり
、第3図に))に示すように脈動が抑制される。Next, to explain the above-mentioned suppression of pulsation with reference to FIGS. If the pulsating flow at point B has a waveform with a pulsating propagation time of δ as shown in FIG.
The pulsation command given to 0 is as shown in FIG. 3(c). Therefore, at the 0 point of conduit 2, the waveform shown in Fig. 3 (b) and the waveform shown in Fig. 3 Q\) are combined, and the pulsation is suppressed as shown in Fig. 3)). be done.
なお、本発明の実施例では、脈動伝達モデルをオフライ
ンで同定する場合について説明したが、運転中にオンラ
インで同定し、時々刻々適宜の時間間隔で脈動伝達モデ
ルを制御eJ算器に入れ換えるようにすることもできる
こと、脈動補償部の制御室には弾性体ではなくピストン
を用いても実施できること、正弦波に限らず任意の波形
を採用し得ること、その他、本発明の要旨を逸脱しない
範囲内で種々変更を加え得ること、等は勿論である。In the embodiments of the present invention, the case where the pulsation transfer model is identified off-line has been explained, but it is also possible to identify the pulsation transfer model on-line during operation and replace the pulsation transfer model with the control eJ calculator at appropriate time intervals. It is also possible to use a piston instead of an elastic body in the control chamber of the pulsation compensator, it is possible to adopt any waveform other than a sine wave, and other aspects do not depart from the gist of the present invention. Of course, various changes can be made.
[発明の効果コ
本発明の管内脈動流れの制御方法によれば、(D 全周
波数にわたり能動的に大きな脈動の減衰を行うことがで
きるため、脈動抑制効果が大きい、
(II) 管路の脈動モデルは運動方程式から求める
のではな(観測値から統=1的処理を施す等して求めて
いるため、モデルは正確であり、しかも作動条件、状態
の変化に対しても適応できる、
■ 一般的には能動式の減衰装置としては、脈動の補償
を加えたとき、脈動入力値そのものが変り、試行錯誤的
に補償値を求める必要があるが、本発明では管路の伝達
モデルそのものは補償を加えても変らないことに告目し
、補償を加えると変化する他点の脈動値を制御系の入力
とし、予想される脈動出力値を補償するようにしている
ため自動的に脈動を減衰させることができる、
■ 脈動だけでなく過渡的な流れも制御できる、等、種
々の優れた効果を奏し得る。[Effects of the Invention] According to the method for controlling pulsating flow in a pipe according to the present invention, (D) pulsation can be actively attenuated over all frequencies, resulting in a large pulsation suppressing effect; (II) Pulsation in a pipe The model is not calculated from the equation of motion (it is calculated by applying uniform processing from the observed values, etc.), so the model is accurate and can be adapted to changes in operating conditions and states. ■ General Generally speaking, as an active damping device, when pulsation compensation is added, the pulsation input value itself changes, and it is necessary to find the compensation value by trial and error. However, in the present invention, the conduit transmission model itself is compensated. The pulsation value at other points, which changes when compensation is added, is input to the control system, and the expected pulsation output value is compensated for, so the pulsation is automatically attenuated. (2) The ability to control not only pulsation but also transient flow, etc., can produce various excellent effects.
第1図は本発明の管内脈動流れの制御方法の説明図、第
2図は第1図の脈動補償部の説明図、第3図(イ)<0
)(A)仁)は本発明の管内脈動流れの制御方法を行う
場合の脈動状態を示すグラフ、第4図、第5図、第6図
は従来例の説明図である。
図中1,2は管路、3は制御演算器、4は反転器、5は
脈動補償部、7は制御室、8は弾性体、9は流体源、1
0はサーボ弁を示す。Fig. 1 is an explanatory diagram of the method for controlling pulsating flow in a pipe according to the present invention, Fig. 2 is an explanatory diagram of the pulsation compensator in Fig. 1, and Fig. 3 (A) <0
) (A) Figure 6 is a graph showing the pulsation state when performing the method of controlling pulsating flow in a tube according to the present invention, and Figures 4, 5, and 6 are explanatory diagrams of conventional examples. In the figure, 1 and 2 are pipes, 3 is a control calculator, 4 is an inverter, 5 is a pulsation compensator, 7 is a control chamber, 8 is an elastic body, 9 is a fluid source, 1
0 indicates a servo valve.
Claims (1)
特性を観測値から統計的手法を利用して同定し、同定し
た入出力特性から求めた脈動伝達関数が組込まれた制御
演算器に管路上流側観測点の脈動流れ観測値を入力させ
て管路下流側観測点の脈動値を予想させ、予想された脈
動値の符号を反転させた出力信号を脈動に変換して管路
内下流側観測点の直後に加え、管路内上流側観測点で発
生している脈動に起因する管路下流側観測点より下流側
の脈動を打消し抑制することを特徴とする管内脈動流れ
の制御方法。1) The input/output characteristics of the pulsating flow between two points on the upstream and downstream sides of the pipeline were identified using statistical methods from the observed values, and the pulsating transfer function determined from the identified input/output characteristics was incorporated. The pulsating flow observed value at the observation point on the upstream side of the pipe is input into the control calculator to predict the pulsation value at the observation point on the downstream side of the pipe, and the output signal with the sign of the predicted pulsation value inverted is converted into pulsation. In addition to immediately after the downstream observation point in the pipeline, the pulsation downstream of the downstream observation point in the pipeline due to pulsations occurring at the upstream observation point in the pipeline is canceled out and suppressed. Method for controlling pulsating flow in a tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12277986A JPS62279415A (en) | 1986-05-28 | 1986-05-28 | Controlling method for pulsating flow in tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12277986A JPS62279415A (en) | 1986-05-28 | 1986-05-28 | Controlling method for pulsating flow in tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62279415A true JPS62279415A (en) | 1987-12-04 |
Family
ID=14844403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12277986A Pending JPS62279415A (en) | 1986-05-28 | 1986-05-28 | Controlling method for pulsating flow in tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62279415A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0414116A (en) * | 1990-05-08 | 1992-01-20 | Hidekazu Kojima | Pressure pulsation controller for fluid pipeline system |
JP2012529050A (en) * | 2009-06-05 | 2012-11-15 | エックスワイ,エルエルシー | Continuously regulated precision pressure fluid delivery system |
JP2017182747A (en) * | 2016-03-31 | 2017-10-05 | 大阪瓦斯株式会社 | Pressure governor |
-
1986
- 1986-05-28 JP JP12277986A patent/JPS62279415A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0414116A (en) * | 1990-05-08 | 1992-01-20 | Hidekazu Kojima | Pressure pulsation controller for fluid pipeline system |
JP2012529050A (en) * | 2009-06-05 | 2012-11-15 | エックスワイ,エルエルシー | Continuously regulated precision pressure fluid delivery system |
JP2017182747A (en) * | 2016-03-31 | 2017-10-05 | 大阪瓦斯株式会社 | Pressure governor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5018202A (en) | Electronic noise attenuation system | |
CA2635036C (en) | Sound pressure level feedback control | |
ITTO941004A1 (en) | DUCT FOR THE ADDUCTION OF A FLUID WITH ATTENUATION OF THE PRESSURE PULSATIONS | |
JP2018176396A5 (en) | ||
JPS62279415A (en) | Controlling method for pulsating flow in tube | |
Pan et al. | Novel integrated control of fluid-borne noise in hydraulic systems | |
Pan et al. | Hybrid fluid-borne noise control in fluid-filled pipelines | |
Sanada | Real-time implementation of Kalman filter for unsteady flow measurement in a pipe | |
CN102081368A (en) | Cascadable feedforward active control unit and distributed feedforward active control system | |
Maillard et al. | Active control of pressure pulsations in piping systems | |
Liu et al. | Hydraulic Fluid-Borne Noise Measurement and Simulation for Off-Highway Equipment | |
KR101815192B1 (en) | Pipeline system with structure controlling water hammering pressure by looped pipe and pressure surge control method through optimization of pipeline dimensions and hydraulic structure for a looped pipeline system equipped with a surge arrest device | |
Lee et al. | Model-free joint torque control strategy for hydraulic robots | |
Tahmeen et al. | Simulation of dynamic responses of tapered fluid lines | |
KR102327853B1 (en) | Method of arranging treatment process | |
Khalighi et al. | Water hammer simulation by explicit central finite difference methods in staggered grids | |
CN114396523B (en) | Active and passive composite muffler for liquid filling pipeline | |
KR102574750B1 (en) | In-ship noise attenuation systems and methods | |
JPS6249516B2 (en) | ||
Kuribayashi et al. | Experimental Investigation on the Helmholtz Hydraulic Silencer With Flat Cylindrical Vessel Configuration | |
US10720142B2 (en) | Active duct noise control system and method thereof | |
Karczub et al. | Piping System Noise Issues: Multiple Noise Sources | |
JPH02288428A (en) | Echo canceller control system | |
Takita | Vibration Control of the Piping System: A Method Using Feedback-Error-Learning | |
IT202000012010A1 (en) | DEVICE FOR THE DIAGNOSTICS OF PNEUMATIC SYSTEMS |