JPS62278755A - Manufacture of cathode plate for alkaline storage battery - Google Patents

Manufacture of cathode plate for alkaline storage battery

Info

Publication number
JPS62278755A
JPS62278755A JP61121783A JP12178386A JPS62278755A JP S62278755 A JPS62278755 A JP S62278755A JP 61121783 A JP61121783 A JP 61121783A JP 12178386 A JP12178386 A JP 12178386A JP S62278755 A JPS62278755 A JP S62278755A
Authority
JP
Japan
Prior art keywords
substrate
active material
raw
pores
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61121783A
Other languages
Japanese (ja)
Inventor
Toshio Henmi
逸見 敏夫
Narifumi Matsuki
松木 成文
Naoya Kobayashi
直哉 小林
Makoto Konishi
真 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP61121783A priority Critical patent/JPS62278755A/en
Publication of JPS62278755A publication Critical patent/JPS62278755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase quick discharge performance of a cathode by washing out concentrated raw salt in pores in a substrate after finishing intermediate drying process in cathode plate impregnation process to retard blockage of pores, and impregnating active materials. CONSTITUTION:A sintered nickel substrate is immersed in a raw salt solution, dried at temperature higher than heat decomposition temperature of the raw salt to concentrate the raw salt solution. The surfaces of the sintered nickel particles are corroded with concentrated heated salt and the corroded layer is converted into active material layer. The substrate is immersed in warm water or warm dilute raw salt solution to wash out the concentrated raw salt solution left in pores in the substrate. Thereby, the amount of hydroxide of the raw salt to be produced in the next alkali-immersion process is controlled to retard blockage of pores. After that, active material is impregnated to continue impregnation process of a cathod plate for alkaline storage battery. Therefore, formation of coarse active material is prevented, and quick discharge performance of the cathode can be improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は急速放電形アルカリ蓄電池用陽極板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for manufacturing an anode plate for a rapid discharge type alkaline storage battery.

従来の技術 従来アルカリ蓄電池の陽極板は焼結式ニッケル基板中に
原料塩水溶液を含浸し、次いでアルカリ水溶液1こ浸漬
して基板の細孔内の原料塩を陽極活物質である原料塩の
水酸化物に変換することにより製造されでいる。
Conventional technology The anode plate of a conventional alkaline storage battery is made by impregnating a sintered nickel substrate with an aqueous raw salt solution, and then immersing it in an alkaline aqueous solution to remove the raw salt in the pores of the substrate from the water containing the raw salt, which is the anode active material. It is produced by converting it into an oxide.

発明が解決しようとする問題点 ところで、近年、玩具や電動工具用アルカ11蓄′11
?池の需要の増大に伴い、急速放電性能の向上が望まれ
、。急速放電時の活物質利用率を増大せしめることか不
可欠となった。しかし、従来の活物質製造方法では、高
容量化をはかっても急速放電性能は向上しないことかわ
かった。
Problems to be solved by the inventionIn recent years, Alka 11 storage for toys and power tools has been developed.
? As demand for batteries increases, improvements in rapid discharge performance are desired. It has become essential to increase the utilization rate of active materials during rapid discharge. However, it has been found that with conventional active material manufacturing methods, rapid discharge performance does not improve even if the capacity is increased.

上記製造方法による陽極板は、急速放電時の容量か短く
、放電終期の放N′M、圧か低下する等の欠点を有して
いる。
The anode plate manufactured by the above manufacturing method has shortcomings such as a short capacity during rapid discharge and a decrease in discharge N'M and pressure at the end of discharge.

問題点を解決するための手段 本発明は上記の如き欠点を除去するもので、陽極板含浸
工程における中間乾燥終了後に基板の細孔に残留してい
る濃厚な原料塩を洗い出し、細孔内の活物質充填量を規
制するものである。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by washing out the concentrated raw material salt remaining in the pores of the substrate after the intermediate drying in the anode plate impregnation process, and cleaning the pores in the pores. This is to regulate the amount of active material filled.

作用 陽極板含浸工程の中間乾燥終了後に細孔内に残留してい
る儂厚な原料塩を洗い出すことにより、細孔内には固形
状に沈着した原料塩しか存在せず、この原料塩が次工程
のアルカリ水溶液と置換して水酸化物となるので、細孔
内の活物質層には微細な空隙が多数形成されるため、極
板の電解液の保液量が増加し、かっ細孔内部への電解液
の拡散を容易ならしめることができる。
By washing out the thick raw material salt remaining in the pores after the intermediate drying of the working anode plate impregnation process, only the raw material salt deposited in solid form is present in the pores, and this raw material salt is used for the next process. Since it replaces the alkaline aqueous solution in the process and becomes hydroxide, many fine voids are formed in the active material layer within the pores, which increases the amount of electrolyte retained in the electrode plate and closes the pores. Diffusion of the electrolyte into the interior can be facilitated.

また、粗大な活物質の形成が抑制されるので、活物質中
のプロトンの拡散距離が短かくなり、プロトンの拡散抵
抗を減少せしめることかできる。
Furthermore, since the formation of a coarse active material is suppressed, the diffusion distance of protons in the active material is shortened, and the diffusion resistance of protons can be reduced.

実施例 原料塩水溶液にはL〜towt%の硝酸コバルトあるい
は硝酸カドミウムを含有する硝酸ニッケル水溶液(液温
50℃にて比M1.70.pH2)、低濃度の原料塩水
溶液には液温6o’cにて比重1.20.pH4の水溶
液を使用し、温水の場合も液温は60’Cとした。なお
、浸漬は2〜5分間行なった。また、アルカリ水溶液に
は2QWtlの水酸化ナトリウム水溶液を使用した。中
間乾燥は炉内雰囲気温度をt2o’cに設定し、乾燥時
間lま10分間とした。
The raw material salt aqueous solution of the example was a nickel nitrate aqueous solution containing L~twt% of cobalt nitrate or cadmium nitrate (ratio M1.70.pH2 at a liquid temperature of 50°C), and the raw material salt aqueous solution with a low concentration was a liquid temperature of 6o'. Specific gravity at c: 1.20. An aqueous solution with a pH of 4 was used, and even in the case of hot water, the liquid temperature was 60'C. In addition, immersion was performed for 2 to 5 minutes. Moreover, 2QWtl of sodium hydroxide aqueous solution was used as the alkaline aqueous solution. For intermediate drying, the furnace atmosphere temperature was set to t2o'c, and the drying time was 10 minutes.

焼結式ニッケル基板(ぷ50Kw50XtO,55)を
使用し°C1従来の製造方法及び本発明による製造方法
に従い活物質を基板に充填した場合における細孔内の活
物質観察結果を第1図に示す。111図から、本発明に
よる製造方法を用いた活物質は、従来の製造方法に比べ
小さく、各々の活物質問に空隙が存在することがわかる
Figure 1 shows the observation results of the active material inside the pores when a sintered nickel substrate (P50Kw50XtO, 55°C) was used and the active material was filled into the substrate according to the conventional manufacturing method and the manufacturing method according to the present invention. . From FIG. 111, it can be seen that the active material produced using the production method according to the present invention is smaller than that produced by the conventional production method, and that voids exist in each active material.

次に、この極板の一部分(/312xw12)を白金網
を対極としC131,2VVtlの過剰な水酸化カリウ
ム水溶液中で、理論容[1ζ対し1.50で1時間充電
を行なった後100で放電を行ない、陽極電位を測定し
た。この結果を第C放電容量は大きく、かつ放@電位も
高く推移していることがわかる。
Next, a part of this electrode plate (/312xw12) was charged in an excess potassium hydroxide aqueous solution of C131,2VVtl using a platinum mesh as a counter electrode at a theoretical volume of 1.50 for 1ζ, and then discharged at 100. The anode potential was measured. From this result, it can be seen that the C-th discharge capacity is large and the discharge potential also remains high.

発明の効果 上述のように本発明によれば、焼結式ニッケル基板の細
孔内の活物質充填量を規制し、活物質層に空隙を形成せ
しめ、粗大な活物質の形成を抑制することによって、陽
極の急速放電特性を向上ならしめることができる等工業
的価値きわめC大なるものである。
Effects of the Invention As described above, according to the present invention, the amount of active material filled in the pores of the sintered nickel substrate is regulated, voids are formed in the active material layer, and formation of coarse active material is suppressed. This has great industrial value, as it can improve the rapid discharge characteristics of the anode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得た陽極板と従来の製造方法によ
り得た陽極板の活物質観察結果を示す説明図、第2図は
本発明により得た陽極板と従来の製造方法により得た陽
極板の急速放電特性を示す比較図である。 lは本発明の製造方法による陽極板、2は従来の製造方
法の陽極板 特許用にin人 新神戸tff!株式会社 代表取締役  櫻 井 泰 男 第2図
Fig. 1 is an explanatory diagram showing the observation results of active materials of the anode plate obtained by the present invention and the anode plate obtained by the conventional manufacturing method, and Fig. 2 is an explanatory diagram showing the active material observation results of the anode plate obtained by the present invention and the anode plate obtained by the conventional manufacturing method. FIG. 3 is a comparison diagram showing the rapid discharge characteristics of anode plates. 1 is an anode plate manufactured by the manufacturing method of the present invention, and 2 is an anode plate manufactured by the conventional manufacturing method for the patent in Shin-Kobe TFF! Co., Ltd. Representative Director Yasuo Sakurai Figure 2

Claims (1)

【特許請求の範囲】[Claims] 焼結式ニッケル基板を原料塩水溶液に浸漬せしめ、中間
乾燥、次いでアルカリ水溶液に浸漬させ基板内に活物質
として原料塩の水酸化物を沈着せしめた後水洗を行う一
連工程を数回行ない規定量の活物質を基板内に充填して
陽極板となす陽極板含浸操作において、原料塩水溶液に
基板を浸漬せしめた後原料塩の熱分解温度以上で中間乾
燥を行ない原料塩水溶液を濃縮せしめかつ焼結ニッケル
粒子表面層を前記濃縮熱原料塩にて腐食させ腐食層を活
物質化した後該基板を温水もしくは低濃度の原料塩温水
溶液に浸漬し基板の細孔に固形化せずに残留している濃
厚な原料塩を洗い出し、次工程のアルカリ浸漬で生成す
る原料塩の水酸化物量を規制して細孔の閉塞を抑制せし
め基板の細孔に活物質を充填することを特徴とするアル
カリ蓄電池用陽極板の製造方法。
A sintered nickel substrate is immersed in a raw salt aqueous solution, intermediately dried, then immersed in an alkaline aqueous solution to deposit the hydroxide of the raw salt as an active material within the substrate, followed by washing with water several times to obtain a specified amount. In the anode plate impregnation operation in which active material is filled into a substrate to form an anode plate, the substrate is immersed in a raw salt aqueous solution, and then intermediate drying is performed at a temperature higher than the thermal decomposition temperature of the raw salt to concentrate the raw salt aqueous solution and sintered. After corroding the surface layer of the nickel particles with the concentrated hot raw material salt and turning the corroded layer into an active material, the substrate is immersed in warm water or a hot aqueous solution of the raw material salt with a low concentration, so that it remains in the pores of the substrate without solidifying. This method is characterized by washing out the concentrated raw material salt, regulating the amount of hydroxide in the raw material salt produced in the next step of alkaline immersion, suppressing pore clogging, and filling the pores of the substrate with active material. A method of manufacturing an anode plate for a storage battery.
JP61121783A 1986-05-27 1986-05-27 Manufacture of cathode plate for alkaline storage battery Pending JPS62278755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121783A JPS62278755A (en) 1986-05-27 1986-05-27 Manufacture of cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121783A JPS62278755A (en) 1986-05-27 1986-05-27 Manufacture of cathode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS62278755A true JPS62278755A (en) 1987-12-03

Family

ID=14819782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121783A Pending JPS62278755A (en) 1986-05-27 1986-05-27 Manufacture of cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS62278755A (en)

Similar Documents

Publication Publication Date Title
JPS62278755A (en) Manufacture of cathode plate for alkaline storage battery
JP3267075B2 (en) Manufacturing method of electrode plate for lead-acid battery
US3533842A (en) Process for impregnating sintered nickel plaques
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPH0514382B2 (en)
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS60225356A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0410181B2 (en)
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JPH041992B2 (en)
JPH0241865B2 (en)
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JPH04109557A (en) Non-sintered type positive electrode plate for alkaline storage battery
JPH0193057A (en) Manufacture of cathode plate for sealed alkaline storage battery
JPH01120763A (en) Manufacture of anode plate for alkaline storage battery
JPS6110864A (en) Iron electrode and method of producing same
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPH08180857A (en) Electrode plate for lead-acid battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPS60146453A (en) Manufacture of nickel electrode for alkaline battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH0475257A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery