JPS62278714A - Vacuum switch - Google Patents

Vacuum switch

Info

Publication number
JPS62278714A
JPS62278714A JP12256086A JP12256086A JPS62278714A JP S62278714 A JPS62278714 A JP S62278714A JP 12256086 A JP12256086 A JP 12256086A JP 12256086 A JP12256086 A JP 12256086A JP S62278714 A JPS62278714 A JP S62278714A
Authority
JP
Japan
Prior art keywords
current
vacuum
carrying shaft
vacuum switch
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12256086A
Other languages
Japanese (ja)
Inventor
佐藤 能也
徹 玉川
英治 金子
匠 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12256086A priority Critical patent/JPS62278714A/en
Publication of JPS62278714A publication Critical patent/JPS62278714A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は真空開閉器の構造の改良に関するものである。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to an improvement in the structure of a vacuum switch.

(従来の技術) 周知のように、真空遮断器は真空に密封された真空容器
中で電極を開離し、真空の優れた絶縁性能および消弧性
能により電流を遮断するものである。真空遮Wr器の性
能は、近年著しく向上し、それに伴い大電流を通電し且
つ遮断するようになっている。現在真空遮断器のインク
ラブタ部に用いられている電極構造としては、コントレ
イト形、スパイラル形、そして縦磁界形(軸方向磁界形
)の3種類が主流となっている。これらの3種類の電極
構造のうち、コントレイト形及びスパイラル形電極は、
アーク駆動形と称され、電極に流れる電流のつくる磁界
により、電極開離時に発生した真空アークの大電流密度
のアーク極を円周方向に高速で回転させ、電極面上の一
箇所に停滞しないようにして電流零点時に消弧させるも
のである。
(Prior Art) As is well known, a vacuum circuit breaker opens electrodes in a vacuum container sealed in a vacuum, and interrupts current by utilizing the excellent insulating performance and arc extinguishing performance of vacuum. The performance of vacuum circuit breakers has improved significantly in recent years, and as a result, they are now able to conduct and interrupt large currents. Currently, there are three main types of electrode structures used in the incluctor section of vacuum circuit breakers: contrast type, spiral type, and vertical magnetic field type (axial magnetic field type). Among these three types of electrode structures, contrast type and spiral type electrodes are
Referred to as an arc-driven type, the magnetic field created by the current flowing through the electrodes causes the arc poles of the vacuum arc generated when the electrodes are opened to rotate at high speed in the circumferential direction with a high current density, so that they do not stagnate in one spot on the electrode surface. In this way, the arc is extinguished when the current reaches zero point.

このような方式では、アーク電圧が高く、かつ大電流密
度のアーク電極が発生するため大電流遮断時の接点の二
ローションや損傷が激しく、接点表面の荒れによる絶縁
破壊的再発弧や、接点表面の極度の荒れへの熱集中など
に起因する熱的再発弧により、遮断性能に限界が生じる
In this type of method, the arc voltage is high and the arc electrode with a large current density is generated, which causes severe damage to the contacts when interrupting large currents, dielectric breakdown re-ignition due to contact surface roughness, and contact surface damage. Thermal re-ignition caused by heat concentration in extremely rough areas places a limit on interrupting performance.

第4図は従来の縦磁界形の真空バルブの一例を示すもの
で、通電軸1,2に流れる電流を電極4゜5の対向面面
側のコイル電極6.7で円周方向に分流させ、これによ
り発生する軸方向磁界により、アークを電極面上に均一
に分散点弧させ電流点時に遮断する方式である。この方
式の場合、アーク電圧も低く、真空アークが電極面上に
均一に分散点弧するため、電流密度が低下し、接点の嵐
傷も抑制され、遮断性能も著しく向上する。
Figure 4 shows an example of a conventional vertical magnetic field type vacuum valve, in which the current flowing through the current-carrying shafts 1 and 2 is shunted in the circumferential direction by the coil electrodes 6 and 7 on the opposing surfaces of the electrodes 4.5. This is a method in which the axial magnetic field generated by this causes the arc to be ignited evenly over the electrode surface, and is interrupted when the current is reached. In this method, the arc voltage is low and the vacuum arc is evenly distributed and ignited on the electrode surface, reducing current density, suppressing storm damage to the contacts, and significantly improving breaking performance.

しかし、真空バルブの投入時には通電軸1,2より分流
され、円周方向に伸びるコイル電極6゜7に通電電流が
常に流れるため、コイル電極6゜7の抵抗分やインダク
タンス分によるインピーダンスが大きく、発熱量が比較
的大きく、特に投入時の大電流通電には問題となる。尚
、第4図において8.9は接点、10は絶縁筒、11.
12はF、12.13はベローズ、14はアークシール
ドである。
However, when the vacuum valve is turned on, the current is shunted from the current-carrying shafts 1 and 2 and always flows through the coil electrode 6°7 extending in the circumferential direction, so the impedance due to the resistance and inductance of the coil electrode 6°7 is large. The amount of heat generated is relatively large, which poses a problem especially when applying a large current at the time of turning on. In FIG. 4, 8.9 is a contact, 10 is an insulating tube, and 11.
12 is F, 12.13 is a bellows, and 14 is an arc shield.

(発明が解決しようとする問題点) 上記した従来の真空バルブにあっては、大電流を遮断す
る遮断器には適用できず、しかもその投入時に通電した
場合には温度上昇が高くなる問題点がある。
(Problems to be Solved by the Invention) The above-mentioned conventional vacuum valve cannot be applied to circuit breakers that cut off large currents, and moreover, the problem is that the temperature rises high when energized when the valve is turned on. There is.

そこで、本発明は大電流を遮断することが可能でかつ、
役人時の大電流を可能にする真空開閉器を提供すること
を目的とする。
Therefore, the present invention is capable of interrupting large currents, and
The purpose of the present invention is to provide a vacuum switch that enables large current during official operation.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記目的を達成するため次のように構成したも
のである。すなわち、絶縁円筒の両端に端板を設けた真
空容器内に、固定通電軸および可動通電軸にそれぞれ支
持され、かつ互いに接離自在の一対の電極を設けた真空
開閉器において、上記通電軸と電気的に接続した主回路
導体の周囲に高透磁率材からなる薄板を複数層に市ねて
巻いて鉄心を(Iが成し、この鉄心の周囲に絶縁された
導電線を巻いて環状ソレノイドコイルを構成し、且つ上
記真空容器の絶縁円筒の周囲あるいはその両端側にそれ
ぞれソレノイドコイルを設け、このソレノイドコイルと
上記環状ソレノイドコイルを電気的に接続し、しかもこ
れらを上記通電軸および主回路導体とは電気的に絶縁し
たことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention is constructed as follows. That is, in a vacuum switch which is provided with a pair of electrodes supported by a fixed current-carrying shaft and a movable current-carrying shaft, respectively, and which are movable toward and away from each other, in a vacuum container having end plates provided at both ends of an insulating cylinder, the current-carrying shaft and A thin plate made of high magnetic permeability material is wound in multiple layers around an electrically connected main circuit conductor to form an iron core (I), and an insulated conductive wire is wound around this iron core to form an annular solenoid. A solenoid coil is provided around the insulating cylinder of the vacuum container or at both ends thereof, and the solenoid coil and the annular solenoid coil are electrically connected, and these are connected to the current-carrying shaft and the main circuit conductor. It is characterized by being electrically insulated.

(作用) 上記のように構成されているので、遮断時の遮断電流に
比例した軸方向磁界か電極間に得られ、充分な真空アー
クを拡散モードに維持できるため、遮断性能にすぐれ、
かつ投入時に大電流を通電しても温度上昇の少ない大電
流通電が可能となる。
(Function) With the above structure, an axial magnetic field proportional to the breaking current at the time of breaking can be obtained between the electrodes, and a sufficient vacuum arc can be maintained in the diffusion mode, resulting in excellent breaking performance.
Moreover, even if a large current is applied at the time of turning on, it is possible to carry out a large current with little temperature rise.

(実施例) 以下、本発明の真空開閉器の一実施例について第1図〜
第3図を参照して説明する。はじめに第1図により全体
の構成について説明する。すなわち、絶縁円筒20の両
端に端板21a、21bを設けて構成した真空容器内に
、接離自在とした一対の固定電極22a、可動電極22
bを配設した真空バルブにおいて、上記絶縁円筒20の
側面、あるいは両端の端板21a、21b上に一対のソ
レノイドコイル23a、23bを、固定通電軸24a、
可動通電軸24bを中心としてそれぞれ配置しである。
(Example) Hereinafter, an example of the vacuum switch of the present invention will be described in Figs.
This will be explained with reference to FIG. First, the overall configuration will be explained with reference to FIG. That is, a pair of fixed electrodes 22a and a movable electrode 22 are placed in a vacuum container configured by providing end plates 21a and 21b at both ends of an insulating cylinder 20, which can be freely brought into and out of contact with each other.
A pair of solenoid coils 23a, 23b are mounted on the side surface of the insulating cylinder 20 or on the end plates 21a, 21b at both ends, and a fixed current-carrying shaft 24a,
The movable energizing shaft 24b is the center of the arrangement.

そして固定通電軸24aと可動通電軸24bと、主回路
導体25a、25bにそれぞれ巻きつけた高透磁率材の
薄板の積層鉄心26a、26bに、銅などの導電細線に
絶縁被覆を施して巻かれた環状ソレノイドコイル27a
Then, thin conductive wires such as copper are coated with insulation and wound around laminated cores 26a and 26b made of thin plates of high magnetic permeability material, which are wound around the fixed current-carrying shaft 24a, the movable current-carrying shaft 24b, and the main circuit conductors 25a and 25b, respectively. annular solenoid coil 27a
.

27bをそれぞれ接続線3Qa、30bにより電気的に
接続しである。
27b are electrically connected by connection lines 3Qa and 30b, respectively.

このように構成されているので、遮断電流が主回路導体
に25a、25bに流れた時、主回路導体25a、25
bの周囲円周方向に発生する磁界により、環状ソレノイ
ドコイル26a、26bに誘起電圧が発生し、これに電
気的に接続された上シ己ソレノイドコイル1こ23 a
、  23 b電流が流れ、軸方向磁界を発生する。
With this configuration, when a breaking current flows through the main circuit conductors 25a, 25b, the main circuit conductors 25a, 25b
Due to the magnetic field generated in the circumferential direction around b, an induced voltage is generated in the annular solenoid coils 26a and 26b, and the upper solenoid coil 1 23a electrically connected thereto
, 23 b A current flows and generates an axial magnetic field.

しかして、上記ソレノイドコイル23a。Therefore, the solenoid coil 23a.

23bはその半径の2倍の間隔で電極22a。23b is the electrode 22a at an interval twice the radius of the electrode 22a.

22b間の空間を中心に配置しである。これは、電極2
2a、22b間の空間に一様な輪方向磁界を発生させる
ためである。
The space between 22b is the center of the arrangement. This is electrode 2
This is to generate a uniform circular magnetic field in the space between 2a and 22b.

さらに、上記型122a、22bには半径方向に直線状
に伸びるスリツトを設け、電極22a。
Further, the molds 122a and 22b are provided with slits extending linearly in the radial direction, and the electrodes 22a are formed.

22bの周囲を囲む円筒状の低導電率材からなる中間シ
ールド28を角シ、この中間シールド28は第2図に示
すようにその軸方向に細いスリット28aか施されてい
る。
A cylindrical intermediate shield 28 made of a low-conductivity material surrounding the periphery of the intermediate shield 22b is square, and the intermediate shield 28 is provided with a thin slit 28a in the axial direction thereof, as shown in FIG.

このようなことから、固定通電軸24a、可動通電軸2
4bを流れる電流を分流させることなく、軸方向磁界を
電極開離時の電極22a、22b間の空間に発生させ、
°大電流遮断が可能でかつ、投入時に通電軸24 a、
  24 bを流れる通電々流は、従来のコイル電極に
分流されることなく、主回路導体25aから直接電極2
2a、22bを通って反対側の主回路導体25bへ流れ
るため、発熱が抑制され、大電流通電が可能になる。な
お、第1図において29a、29bは上記電極22a。
For this reason, the fixed current-carrying shaft 24a and the movable current-carrying shaft 2
An axial magnetic field is generated in the space between the electrodes 22a and 22b when the electrodes are separated, without dividing the current flowing through the electrodes 4b.
°A large current can be cut off, and the current-carrying shaft 24 a when turned on,
The current flowing through 24b is directly connected to the electrode 2 from the main circuit conductor 25a without being shunted to the conventional coil electrode.
2a and 22b to the main circuit conductor 25b on the opposite side, heat generation is suppressed and large current can be passed. In FIG. 1, 29a and 29b are the electrodes 22a.

22bにそれぞれ同右された接点である。22b, respectively.

次に上記のように構成された真空開閉器の作用を説明す
る。短絡電流が主回路導体25a1固定通電軸24a、
接点29aに流れると、この主回路導体25aの周囲に
は、円周方向に強磁界を発生する。今、接点29b5電
極22b、可動通電軸24bにI  (A)の電流が流
れ遮断が行われるとすると、環状ソレノイドコイル27
a、27bに誘起される電圧VRは、環状ソレノイド2
7a。
Next, the operation of the vacuum switch configured as described above will be explained. The short circuit current flows through the main circuit conductor 25a1 fixed current-carrying shaft 24a,
When flowing to the contact point 29a, a strong magnetic field is generated in the circumferential direction around the main circuit conductor 25a. Now, assuming that a current of I (A) flows through the contact 29b5 electrode 22b and the movable current-carrying shaft 24b and is interrupted, the annular solenoid coil 27
The voltage VR induced in a and 27b is the annular solenoid 2
7a.

27bの単位長さあたりの巻数をn1鉄心26a。The number of turns per unit length of 27b is n1 iron core 26a.

26bの透磁率をμ、環状ソレノイドコイル27a、2
7bの断面積をaとすれば簡単に次式%式% このvRを起電圧とし、環状ソレノイドコイル27a、
27bとソレノイドコイル23a。
The magnetic permeability of 26b is μ, and the annular solenoid coils 27a, 2
If the cross-sectional area of 7b is a, then the following formula % Formula % Let this vR be the electromotive force, and the annular solenoid coil 27a,
27b and solenoid coil 23a.

23bのインダクタンスをそれぞれり、、L2、抵抗を
Rとしたとき、第3図に示すような等価回路により次の
電流iが流れる。
When the inductance of 23b is respectively L2, and the resistance is R, the following current i flows through an equivalent circuit as shown in FIG.

この電流iがソレノイドコイル23a、23bを流れる
ことにより、固定電極22a5可動電極22bの中央付
近では、各々のソレノイドコイル23a、23bにより
合成された次の磁界が発生する。ここでソレノイドコイ
ル23a、23bの平均半径をb1ソレノイドコイル2
3a、23bの中心間隔2d、各々の巻き数をNとすれ
ば、よって電NJi22a、22b間の空間には、上記
(3)式で示された軸方向磁界Hが発生することになる
As this current i flows through the solenoid coils 23a, 23b, the following magnetic field is generated near the center of the fixed electrode 22a5 and the movable electrode 22b, which are combined by the respective solenoid coils 23a, 23b. Here, the average radius of solenoid coils 23a and 23b is b1 solenoid coil 2
Assuming that the distance between the centers of 3a and 23b is 2d, and the number of turns of each is N, then an axial magnetic field H shown by the above equation (3) is generated in the space between the electric conductors 22a and 22b.

次に、実際の真空バルブに適用した場合について検討す
るが、ソレノイドコイル23a、23bと環状ソレノイ
ドコイル27a、27bはいずれも同一であるので、こ
こで片側のみについて説明する。ソレノイドコイル23
aの半径すを100mIR,ソレノイドコイル23a、
23b間の中心間隔dを200 mmとした場合、その
中心付近の軸方向磁界は(3)式で示される如く、 4.44X10  iNの磁束密度となる。今、0.2
Tの磁束密度が必要とされる場合、1Nは、4.5X1
04 ATとなり、ソレノイドコイル23aを500回
巻いたものとすれば、ここに流れる電流は90A必要と
なる。環状ソレノイドコイル27Hの断面積aを2Nと
し、単位長さぁたり50T/mを透磁率3X104程度
のセンダストから成る鉄心26aに巻いたとすると、誘
起電圧ピーク値V は、0.121゜ 程度となる。
Next, a case where the present invention is applied to an actual vacuum valve will be considered. Since the solenoid coils 23a and 23b and the annular solenoid coils 27a and 27b are the same, only one side will be described here. Solenoid coil 23
The radius of a is 100mIR, solenoid coil 23a,
When the center distance d between the two 23b is 200 mm, the axial magnetic field near the center has a magnetic flux density of 4.44×10 iN, as shown by equation (3). Now 0.2
If a magnetic flux density of T is required, 1N is 4.5X1
04 AT and the solenoid coil 23a is wound 500 times, the current flowing here is 90A. Assuming that the annular solenoid coil 27H has a cross-sectional area a of 2N and is wound at a rate of 50 T/m per unit length around an iron core 26a made of sendust with a magnetic permeability of about 3×10 4 , the induced voltage peak value V 1 will be about 0.121°.

今、主回路導体25aに10KAnIIlsが流れたと
するとvRは、1.7KVとなる。環状ソレノイドコイ
ル30のインダクタンスL1は(4)式で計算できる。
Now, if 10KAnIIls flows through the main circuit conductor 25a, vR will be 1.7KV. The inductance L1 of the annular solenoid coil 30 can be calculated using equation (4).

ここで、μ−μsμ0 一3X104 X4Xπ×10 であり、Nは巻き数り
はコイル表、r2はコイル外半径、「1はコイル内半径
である。これより、インダクタンスL1は数mH程度で
ある。ソレノイドコイル23aのインダクタンスL2は
長岡係数KOを用いて、 L2 −KOμ。yr  b2  N2 /7  − 
 (5)ここで、Ko=0.4として、J−0,05m
として計算すると、L2−0.1H程度となる。環状ソ
レノイドコイル27bとソレノイドコイル23aの抵抗
骨は各々の巻き数と、用いる絶縁被覆銅線の断面積で決
まるが、これは数Ω程度とみることができる。従って、
(2)式の電流iは全インピーダ°ンスを5Ωとすると
、1.7KV15−340A程度流れる。故に磁束 が
062Tを発生するには充分な電流を流しうる。この軸
方向磁界により遮断時に発生する真空アークは充分に拡
散される。
Here, μ-μsμ0 -3X104X4Xπ×10, N is the number of turns in the coil table, r2 is the outer radius of the coil, and 1 is the inner radius of the coil.From this, the inductance L1 is about several mH. The inductance L2 of the solenoid coil 23a is calculated using the Nagaoka coefficient KO, L2 −KOμ.yr b2 N2 /7 −
(5) Here, assuming Ko=0.4, J-0.05m
If calculated as follows, it will be approximately L2-0.1H. The resistance of the annular solenoid coil 27b and the solenoid coil 23a is determined by the number of turns of each coil and the cross-sectional area of the insulated copper wire used, and can be considered to be approximately several ohms. Therefore,
The current i in equation (2) flows approximately 1.7KV15-340A, assuming that the total impedance is 5Ω. Therefore, enough current can flow to generate a magnetic flux of 062T. Due to this axial magnetic field, the vacuum arc generated during interruption is sufficiently diffused.

また、投入時の通電々流は、第4の従来の縦磁界発生コ
イル電極のように、コイル電極6,7に分流され流れる
ことがなく、主回路導体25a。
Moreover, the current flowing at the time of turning on is not divided into the coil electrodes 6 and 7 and flows through the main circuit conductor 25a, unlike the fourth conventional vertical magnetic field generating coil electrode.

25bを流れた電流は直接固定通電軸24aあるいは可
動通電軸24bから電極22aあるいは22bを通り反
対側の極へ流れるので真空バルブのインピーダンスは充
分に低く大電流が通電可能である。
The current flowing through the vacuum valve 25b directly flows from the fixed current-carrying shaft 24a or the movable current-carrying shaft 24b through the electrode 22a or 22b to the opposite pole, so the impedance of the vacuum valve is sufficiently low and a large current can be passed.

〔発明の効果〕〔Effect of the invention〕

7 以上述べた本発明によれば、絶縁円筒の両端に端板
を設けた真空容器内に、固定通電軸および可動通電軸に
それぞれ支持され、かつ互いに接離自在の一対の電極を
設けた真空開閉器において、上記通電軸と電気的に接続
した主回路導体の周囲に高透磁率材からなる薄板を重数
層に市ねて巻いて鉄心を構成し、この鉄心の周囲に絶縁
された導電線を巻いて環状ソレノイドコイルを構成し、
且つ上記真空容器の絶縁円筒の周囲あるいはその両端側
にそれぞれソレノイドコイルを設け、このソレノイドコ
イルと上記環状ソレノイドコイルを電気的に接続し、し
かもこれらを上記通電軸および主回路導体とは電気的に
絶縁したので、遮断時の遮断電流に比例した軸方向磁界
が電極間で得られ、充分に真空アークを拡散モードに維
持できるため遮断性能に優れ、かつ投入時に大電流を通
電しても、温度上昇の少ない大電流通電が可能な真空開
閉器を提供することができる。
7 According to the present invention described above, a vacuum container is provided with a pair of electrodes supported by a fixed current-carrying shaft and a movable current-carrying shaft, respectively, and which are movable toward and away from each other, in a vacuum container having end plates provided at both ends of an insulating cylinder. In a switch, an iron core is constructed by wrapping several layers of thin plates made of high magnetic permeability material around the main circuit conductor electrically connected to the current-carrying shaft, and an insulated conductive layer is placed around this iron core. The wire is wound to form a circular solenoid coil.
Further, solenoid coils are provided around the insulating cylinder of the vacuum container or on both ends thereof, and the solenoid coil and the annular solenoid coil are electrically connected, and these are electrically separated from the current-carrying shaft and the main circuit conductor. Since it is insulated, an axial magnetic field proportional to the breaking current can be obtained between the electrodes, and the vacuum arc can be sufficiently maintained in the diffusion mode, resulting in excellent breaking performance. It is possible to provide a vacuum switch that can conduct large current with little increase.

【図面の簡単な説明】[Brief explanation of drawings]

′:21図は本発明の真空開閉器の一実施例の要部のみ
を示す概略f74成図、第2図は第1図の中間シールド
の一例を示す正面図、第3図は第1図の環状ソレノイド
とソレノイドコイルのなす電気的な等価回路図、第4図
は従来の縦磁界形真空バルブの一例を示す概略構成図で
ある。 20・・・絶縁円筒、21a、21b・・・端板、22
a・・・固定電極、22b・・・可動電極、23a。 23b・・・ソレノイドコイル、24a・・・固定通電
軸、24b・・・可動通電軸、25a、25b・・・主
回路導体、26a、26b−・・鉄心、27a、27b
・・・環状ソレノイドコイル、28・・・中間シールド
、28a・・スリット、29a、29b−・・接点、3
0a、30b・・・接続線。 出願人代理人 弁理士 鈴江武彦 第1 図 第2図 第3図
': Figure 21 is a schematic f74 diagram showing only the main parts of an embodiment of the vacuum switch of the present invention, Figure 2 is a front view showing an example of the intermediate shield in Figure 1, and Figure 3 is the figure in Figure 1. FIG. 4 is a schematic configuration diagram showing an example of a conventional vertical magnetic field type vacuum valve. 20... Insulating cylinder, 21a, 21b... End plate, 22
a... Fixed electrode, 22b... Movable electrode, 23a. 23b... Solenoid coil, 24a... Fixed current-carrying shaft, 24b... Movable current-carrying shaft, 25a, 25b... Main circuit conductor, 26a, 26b-- Iron core, 27a, 27b
...Annular solenoid coil, 28...Intermediate shield, 28a...Slit, 29a, 29b-...Contact, 3
0a, 30b...Connection lines. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁円筒の両端に端板を設けた真空容器内に、固
定通電軸および可動通電軸にそれぞれ支持され、かつ互
いに接離自在の一対の電極を設けた真空開閉器において
、上記通電軸と電気的に接続した主回路導体の周囲に高
透磁率材からなる薄板を複数層に重ねて巻いて鉄心を構
成し、この鉄心の周囲に絶縁された導電線を巻いて環状
ソレノイドコイルを構成し、且つ上記真空容器の絶縁円
筒の周囲あるいはその両端側にそれぞれソレノイドコイ
ルを設け、このソレノイドコイルと上記環状ソレノイド
コイルを電気的に接続し、しかもこれらを上記通電軸お
よび主回路導体とは電気的に絶縁したことを特徴とする
真空開閉器。
(1) In a vacuum switch which is provided with a pair of electrodes supported by a fixed current-carrying shaft and a movable current-carrying shaft, respectively, and which are movable toward and away from each other, in a vacuum container having end plates provided at both ends of an insulating cylinder, the current-carrying shaft is An iron core is formed by wrapping multiple layers of thin plates made of high magnetic permeability material around the main circuit conductor electrically connected to the main circuit conductor, and an annular solenoid coil is formed by winding an insulated conductive wire around this iron core. In addition, solenoid coils are provided around the insulating cylinder of the vacuum container or on both ends thereof, and the solenoid coil and the annular solenoid coil are electrically connected, and these are electrically connected to the current-carrying shaft and the main circuit conductor. A vacuum switch characterized by being electrically insulated.
(2)真空容器の絶縁筒の周囲あるいはその両端に取り
付けられたソレノイドコイルはその半径のほぼ2倍の間
隔で配置して、上記両ソレノイドコイル間中点付近に対
応する真空容器内で一様な軸方向磁界が発生するように
したことを特徴とする特許請求の範囲第1項記載の真空
開閉器。
(2) The solenoid coils attached to the periphery of the insulating cylinder of the vacuum vessel or at both ends thereof are arranged at intervals approximately twice the radius of the solenoid coils, and are uniformly arranged within the vacuum vessel corresponding to the midpoint between the two solenoid coils. 2. The vacuum switch according to claim 1, wherein an axial magnetic field is generated.
(3)一対の電極に、半径方向のスリットを設けたこと
を特徴とした特許請求の範囲第1項記載の真空開閉器。
(3) The vacuum switch according to claim 1, wherein a radial slit is provided in the pair of electrodes.
(4)真空容器内面に電極に対してある間隔を存して低
導電率材からなる中間シールドを設け、この中間シール
ドに軸方向スリットを形成したことを特徴とする特許請
求の範囲第1項記載の真空開閉器。
(4) Claim 1, characterized in that an intermediate shield made of a low conductivity material is provided on the inner surface of the vacuum vessel at a certain distance from the electrode, and an axial slit is formed in this intermediate shield. Vacuum switch as described.
JP12256086A 1986-05-28 1986-05-28 Vacuum switch Pending JPS62278714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12256086A JPS62278714A (en) 1986-05-28 1986-05-28 Vacuum switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12256086A JPS62278714A (en) 1986-05-28 1986-05-28 Vacuum switch

Publications (1)

Publication Number Publication Date
JPS62278714A true JPS62278714A (en) 1987-12-03

Family

ID=14838912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12256086A Pending JPS62278714A (en) 1986-05-28 1986-05-28 Vacuum switch

Country Status (1)

Country Link
JP (1) JPS62278714A (en)

Similar Documents

Publication Publication Date Title
US4663603A (en) Winding system for air-cooled transformers
US3091715A (en) Axial airgap rotary machines
JPH08203739A (en) Air-core coil device
US3195087A (en) Electrical shunt reactor
JP3193976B2 (en) High voltage noise filter and magnetron device
CA1094179A (en) Low volume sheet-wound transformer coils with uniform temperature distribution
JPS62278714A (en) Vacuum switch
GB2068646A (en) Summation transformer for a fault-current circuit breaker
JPS585932A (en) Vacuum circuit breaker
US2840790A (en) Tapped winding arrangement for variable ratio transformer
JPH0534090Y2 (en)
JPS62278713A (en) Vacuum interrupter
JPH0311534B2 (en)
JPH0326621Y2 (en)
JPS6350824Y2 (en)
CA1047133A (en) Coil for magnetic field generation
JPH0236254Y2 (en)
CA1077147A (en) Composite sheet winding for an electromagnetic induction apparatus
JPH06151213A (en) Twist thin type voltage converter and its use
JPS60210822A (en) Winding of stational induction electric apparatus
JPH0720903Y2 (en) Noise shielding transformer
JPH0317387Y2 (en)
JPH0519937Y2 (en)
JPH01111314A (en) Superconducting transformer
JPS6254220B2 (en)