JPS62278443A - Air/fuel ratio measuring apparatus - Google Patents

Air/fuel ratio measuring apparatus

Info

Publication number
JPS62278443A
JPS62278443A JP61122822A JP12282286A JPS62278443A JP S62278443 A JPS62278443 A JP S62278443A JP 61122822 A JP61122822 A JP 61122822A JP 12282286 A JP12282286 A JP 12282286A JP S62278443 A JPS62278443 A JP S62278443A
Authority
JP
Japan
Prior art keywords
timer
fuel ratio
voltage
air
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122822A
Other languages
Japanese (ja)
Other versions
JPH0545183B2 (en
Inventor
Akinobu Moriyama
明信 森山
Isao Murase
功 村瀬
Yutaka Hashizume
橋詰 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61122822A priority Critical patent/JPS62278443A/en
Publication of JPS62278443A publication Critical patent/JPS62278443A/en
Publication of JPH0545183B2 publication Critical patent/JPH0545183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To achieve a higher reliability while eliminating control operation based on erroneous counts and protecting a detector completely, by shifting a timer to a counting standby position or a time counting position with a voltage comparator. CONSTITUTION:A changeover switch 11 is provided between the output side of a driving amplifier 7 and a pumping current supply electrode 5(5a-5d) to connect the electrode 5 selectively to the output side of the amplifier 7 or a constant current circuit 15. A timer 12 turns the switch 11 to the constant current circuit 15 at the counting standby position and at the time counting position and to the output side of a detector 1 after the end of an increment counting. A voltage comparator 14 is provided between the switch 11 and the timer 12. When the voltage between each of the pumping current supply electrodes 5a-5d is outside the range of the upper limit and lower limit assumed to damage electrodes, the voltage comparator 14 sets the timer 12 to the counting standby position while it does the timer 12 to the time counting position when the voltage is within the range of both the limits. The timer 12 is also set to the counting standby position simultaneously with the closing of a power source of an air/fuel ratio measuring apparatus.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は空燃比測定装置に関するものであり、特に、該
測定装置を構成するセンサ(空燃比検出器)をJFi傷
の危険から十分に保護することができる空燃比測定装置
に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air-fuel ratio measuring device, and in particular, the sensor (air-fuel ratio detector) constituting the measuring device is The present invention relates to an air-fuel ratio measuring device that can be sufficiently protected from the risk of scratches.

(従来の技術) 従来から、セラミックとしたジルコニアは室温では電気
的に絶縁体であるが、高温(約500’C以上)では伝
導体になることが知られている。また高温下でのジルコ
ニアは、選択的に酸素のみを透過する特性(以下、「選
択的酸素透過特性」という)を有することも知られてい
る。
(Prior Art) It has been known that zirconia, which is made into a ceramic, is an electrical insulator at room temperature, but becomes a conductor at high temperatures (approximately 500'C or higher). It is also known that zirconia at high temperatures has the property of selectively permeating only oxygen (hereinafter referred to as "selective oxygen permeation property").

前記選択的酸素透過特性からジルコニア板の両主面側の
酸素濃度の相違に応じた起電圧が得られる。すなわち、
起電圧と該ジルコニア板の一方主面側の酸素濃度が既知
でおれば、反対主面側の酸素濃度を一定の式(ネルンス
トの式)から算出できるので、ジルコニアは酸素濃度検
出素子として用いられることができる。
From the selective oxygen permeability characteristic, an electromotive voltage can be obtained that corresponds to the difference in oxygen concentration on both main surfaces of the zirconia plate. That is,
If the electromotive force and the oxygen concentration on one main surface of the zirconia plate are known, the oxygen concentration on the opposite main surface can be calculated from a certain formula (Nernst's formula), so zirconia can be used as an oxygen concentration detection element. be able to.

また、ジルコニア板は、その2つの主面間に該板を貫通
するように電流を通すと、電流の向きとは反対方向へ酸
素を移動させる働きを有する。すなわち、ジルコニア板
の一方の主面側の酸素を使方の主面側へ汲み出すという
ポンピング作用を有する。
Furthermore, when a current is passed through the zirconia plate between its two main surfaces, the zirconia plate has the function of moving oxygen in a direction opposite to the direction of the current. That is, it has a pumping effect of pumping oxygen from one main surface side of the zirconia plate to the other main surface side.

従来から、前記のジルコニアの酸素濃度検出作用および
ポンピング作用を組み合せてなる空燃比検出器が知られ
ている。
Conventionally, there has been known an air-fuel ratio detector that combines the oxygen concentration detection function and pumping function of zirconia.

第2図は、前記空燃比検出器を用いた従来の空燃比測定
装置の一例を示す回路図である。
FIG. 2 is a circuit diagram showing an example of a conventional air-fuel ratio measuring device using the air-fuel ratio detector.

同図において、1は空燃比検出器(以下、単に検出器と
いう)である。この検出器1は、酸素濃度検出の動作を
行なう第1のジルコニア2とポンピング動作を行なう第
2のジルコニア3と、前記第1および第2のジルコニア
間に設けられた中空窄4と、前記第1および第2のジル
コニア2、3のそれぞれの両主面に、例えば白金等によ
って形成ざれた薄膜状の電極5とからなる。
In the figure, 1 is an air-fuel ratio detector (hereinafter simply referred to as a detector). This detector 1 includes a first zirconia 2 that performs an oxygen concentration detection operation, a second zirconia 3 that performs a pumping operation, a hollow constriction 4 provided between the first and second zirconia, and the second zirconia 3 that performs a pumping operation. A thin film electrode 5 made of, for example, platinum is formed on each of the main surfaces of the first and second zirconias 2 and 3.

第2のジルコニア3には小孔6が設けられている。なお
、この小孔6の部分は、該小孔6と等価な特性を有する
多孔質のコーテイング膜としてもよい。
A small hole 6 is provided in the second zirconia 3. Note that the portion of the small pores 6 may be formed of a porous coating film having characteristics equivalent to those of the small pores 6.

また、前記電極5のうち、第1および第2のジルコニア
2、3の内側の電極5b、5Cは接地ざれており、第1
のジルコニア2の外側の電極5aは駆動増幅器7の(−
)入力端子と、また第2のジルコニア3の外側電極5d
は前記駆動増幅器7の出力端子とそれぞれ接続ざれてい
る。
Further, among the electrodes 5, the electrodes 5b and 5C inside the first and second zirconia 2 and 3 are grounded, and the first
The outer electrode 5a of the zirconia 2 is connected to the drive amplifier 7 (-
) input terminal and also the outer electrode 5d of the second zirconia 3
are connected to the output terminals of the drive amplifier 7, respectively.

駆動増幅器7の(+)入力端子には基準電圧Erが印加
されている。なお、検出器1は、第2図の回路に対して
着脱可能となっている。
A reference voltage Er is applied to the (+) input terminal of the drive amplifier 7. Note that the detector 1 is detachable from the circuit shown in FIG.

前記構成からなる空燃比測定装置では、例えば内燃別間
の排気ガスから、空燃比を検出することができる。空燃
比検出の際には、前記第1のジルコニア2の外側主面(
電71 5 a側)は大気に接し、また第2のジルコニ
ア3の外側主面(電極5d側)は、濃度拡散により流れ
て来た排気ガスと接するようにされる。故に、中空室4
内には小孔6を介して排気ガスが流入する。
With the air-fuel ratio measuring device having the above configuration, the air-fuel ratio can be detected from, for example, exhaust gas between internal combustion engines. When detecting the air-fuel ratio, the outer main surface of the first zirconia 2 (
The electrode 71 5 a side) is in contact with the atmosphere, and the outer main surface of the second zirconia 3 (electrode 5 d side) is in contact with the exhaust gas flowing due to concentration diffusion. Therefore, hollow chamber 4
Exhaust gas flows into the interior through small holes 6.

以下、空燃比が大きい希薄燃焼時の場合と、空燃比が小
さい過濃燃焼時の場合とに分けて、第2図の動作を説明
する。
The operation shown in FIG. 2 will be explained below separately for lean combustion with a large air-fuel ratio and rich combustion with a small air-fuel ratio.

(1)希薄燃焼時の動作 希薄燃焼時は、排気ガス中に比較的多量の残留酸素が存
在する。このような排気ガスが中空室4内に流入すると
、該中空苗4内の酸素濃度CVと大気中の酸素濃度Cr
との濃度差は比較的小さくなる。この為に、第1のジル
コニア2で生ずる起電圧、すなわち電極5a、5b間(
酸素濃度検出電極間)の電圧Fは基準電圧Erよりも小
さくなる。
(1) Operation during lean burn During lean burn, a relatively large amount of residual oxygen exists in the exhaust gas. When such exhaust gas flows into the hollow chamber 4, the oxygen concentration CV in the hollow seedling 4 and the oxygen concentration Cr in the atmosphere
The difference in concentration between the two is relatively small. For this reason, the electromotive force generated in the first zirconia 2, that is, between the electrodes 5a and 5b (
The voltage F (between the oxygen concentration detection electrodes) becomes smaller than the reference voltage Er.

したがって、−8N燃焼時には、駆動増幅器7の出力は
正となり、基準電圧Erと前記起電圧Eの差に応じた矢
印へ方向(正方向)のポンピング電流が電極5dを介し
て第2のジルコニア3に供給される。
Therefore, during -8N combustion, the output of the drive amplifier 7 becomes positive, and a pumping current in the direction of the arrow (positive direction) corresponding to the difference between the reference voltage Er and the electromotive force E flows through the electrode 5d to the second zirconia 3. supplied to

この結果、中空室4内の酸素は、ジルコニアのボンピン
グ作用により、第2のジルコニア3を貫通してその外方
主面側へ汲み出される。そして、前記正方向のボンピン
グ電流により汲み出される酸素量と、中空室4内に流入
される酸素量とがバランスするようになると、前記ポン
ピング電流はある一定値に安定する。
As a result, the oxygen in the hollow chamber 4 is pumped out to the outer main surface side of the second zirconia 3 by the pumping action of the zirconia. When the amount of oxygen pumped out by the pumping current in the positive direction and the amount of oxygen flowing into the hollow chamber 4 become balanced, the pumping current stabilizes at a certain constant value.

(2)過濃燃焼時の動作 過濃燃焼時には、排気ガス中に比較的多量の水素および
一酸化炭素が存在する。このような排気ガスが小孔6か
ら中空室4内に流入すると、該中空室4内の酸素と化合
して水および二酸化炭素となる。この結果、中空室4内
の酸素濃度CVは大幅に減少し、大気中の酸素濃度Cr
との濃度差が大きくなる。
(2) Operation during rich combustion During rich combustion, relatively large amounts of hydrogen and carbon monoxide are present in the exhaust gas. When such exhaust gas flows into the hollow chamber 4 through the small hole 6, it combines with oxygen in the hollow chamber 4 to become water and carbon dioxide. As a result, the oxygen concentration CV in the hollow chamber 4 decreases significantly, and the oxygen concentration Cr in the atmosphere decreases.
The difference in concentration between the

この為に、駆動増幅器7の(−)入力端子に印加される
電圧(第1のジルコニア2で生ずる起電圧)Eは基準電
圧Erよりも大きくなる。したがって、過濃燃焼時には
、駆動増幅器7の出力は負となり、基準電圧Erと起電
圧Eの差に応じた矢EIIB方向(負方向)のポンピン
グ電流が第2ジルコニア3に供給される。
For this reason, the voltage (electromotive voltage generated in the first zirconia 2) E applied to the (-) input terminal of the drive amplifier 7 becomes larger than the reference voltage Er. Therefore, during rich combustion, the output of the drive amplifier 7 becomes negative, and a pumping current in the direction of arrow EIIB (negative direction) corresponding to the difference between the reference voltage Er and the electromotive voltage E is supplied to the second zirconia 3.

この結果、第2のジルコニア3の外方主面側の酸素(排
気ガス中の酸素)が、ジルコニアのボンピング作用によ
って中空室4内に取り込まれる。
As a result, oxygen (oxygen in the exhaust gas) on the outer main surface side of the second zirconia 3 is taken into the hollow chamber 4 by the pumping action of the zirconia.

そして、前記負方向のポンピング電流によって取り込ま
れる酸素量と、水素または一酸化炭素と化合する酸素量
とがバランスすると、前記ポンピング電流はある値に落
ち着く。
When the amount of oxygen taken in by the negative pumping current and the amount of oxygen combined with hydrogen or carbon monoxide are balanced, the pumping current settles to a certain value.

前記のような構成および動作の空燃比測定装置において
、空燃比は、前記(1)、(2)の動作時でのボンピン
グ電流に基づいて、周知の式より、排気ガス中の酸素濃
度または水素、−酸化炭素濃度を算出し、該算出値より
演譚により求めることかできる。
In the air-fuel ratio measuring device configured and operated as described above, the air-fuel ratio is calculated from a well-known formula based on the pumping current during the operations of (1) and (2) above. , - The carbon oxide concentration can be calculated, and the calculated value can be calculated by calculation.

ところで、検出器1の使用に際しては、第2のジルコニ
ア3に過大な電力を供給してはならないという制限があ
る。その理由は、過大な電力を供給した場合には、第2
のジルコニア3が加熱され、電極5d、したがって検出
器1が熱損傷することになるからである。
By the way, when using the detector 1, there is a restriction that excessive power must not be supplied to the second zirconia 3. The reason is that if excessive power is supplied, the second
This is because the zirconia 3 will be heated and the electrode 5d, and therefore the detector 1, will be thermally damaged.

第2のジルコニア3での消費電力は、ボンピング電流と
、電極5d、5C間(ポンピング電流供給電極間)の電
圧の積で決定される。
The power consumption in the second zirconia 3 is determined by the product of the pumping current and the voltage between the electrodes 5d and 5C (between the pumping current supply electrodes).

前記ボンピング電流は、第2図の動作説明から明らかな
ように、排気ガス(被測定ガス)の酸素濃度または水素
、−酸化炭素濃度に比例して決定される正または負の値
を有する。また、電極5d、5C間の電圧は、主に前記
ボンピング電流と課電ti5d、5C間の内部抵抗の積
で決定される。
As is clear from the operation description in FIG. 2, the pumping current has a positive or negative value determined in proportion to the oxygen concentration or hydrogen or carbon oxide concentration of the exhaust gas (measured gas). Further, the voltage between the electrodes 5d and 5C is mainly determined by the product of the above-mentioned bombing current and the internal resistance between the applied voltages ti5d and 5C.

ところで、電極5d、5C間の内部抵抗は、主に検出器
1の温度に依存し、検出器1の温度が低い時(約600
′C以下)には内部抵抗が非常に大きく、特に空温では
数10MΩとなる。
By the way, the internal resistance between the electrodes 5d and 5C mainly depends on the temperature of the detector 1, and when the temperature of the detector 1 is low (approximately 600
'C or less), the internal resistance is extremely large, especially at air temperature, reaching several tens of MΩ.

そこで、第2のジルコニア3への過大電力の供給をなく
し、検出器1の熱損傷を避ける為に、検出器1を、空燃
比測定装置の電源投入と同時に、検出器自体に内蔵され
ているか、または外付けされているヒータにより、動作
温度(通常700’C位)にまで加熱している。
Therefore, in order to eliminate excessive power supply to the second zirconia 3 and avoid heat damage to the detector 1, the detector 1 is installed inside the detector itself at the same time as the power is turned on to the air-fuel ratio measuring device. or an external heater to heat it to the operating temperature (usually around 700'C).

しかし、次のような場合は、電極5d、5C間の内部抵
抗が大きく、第2のジルコニア3に過大な電力が供給さ
れることとなるので、ポンピング電流の供給を阻止し、
検出器1が熱損傷することを予防する必要がある。
However, in the following case, the internal resistance between the electrodes 5d and 5C is large and excessive power is supplied to the second zirconia 3, so the supply of pumping current is blocked,
It is necessary to prevent the detector 1 from being damaged by heat.

(a)空燃比測定装置への電源投入後、検出器1が前記
した動作温度に達していない場合。
(a) When the detector 1 has not reached the above-mentioned operating temperature after the power is turned on to the air-fuel ratio measuring device.

(b)空燃比測定装置の使用中に新たな検出器1に交換
し、いまだ該検出器1が前記した動作温度に達していな
い場合。
(b) When the air-fuel ratio measuring device is replaced with a new detector 1 while it is in use, and the detector 1 has not yet reached the operating temperature described above.

(C)検出器1を加熱するヒータが断線した場(d)被
測定ガスにより検出器1が過度に冷却された場合。
(C) When the heater that heats the detector 1 is disconnected; (d) When the detector 1 is excessively cooled by the gas to be measured.

なお、以上の場合には、検出器1が正しい動作をぜず、
したがって正確な空燃比を算出することもできない。
In addition, in the above case, the detector 1 does not operate correctly,
Therefore, it is also impossible to calculate an accurate air-fuel ratio.

また、次の場合は、ポンピング電流が過大となるのでこ
れを制限し、検出器1が熱損傷することを予防する必要
がある。
Furthermore, in the following cases, the pumping current becomes excessive, so it is necessary to limit this to prevent thermal damage to the detector 1.

(e)被測定ガス中の酸素濃度または水素、−酸化炭素
濃度が過濃な場合。
(e) When the oxygen concentration or hydrogen or carbon oxide concentration in the gas to be measured is excessively high.

第3図は前記した検出器1が熱損傷する場合を考慮して
、これをできるだけ予防する為に案出された従来の空燃
比測定装置の一例を示す回路図である。図において、第
2図と同一の符号は、同一または同等部分を必られして
いる。
FIG. 3 is a circuit diagram showing an example of a conventional air-fuel ratio measuring device devised to prevent thermal damage to the detector 1 as much as possible. In the figure, the same reference numerals as in FIG. 2 indicate the same or equivalent parts.

第3図の特徴は、駆動増幅器7の出力端子と電極5dと
の間に、ポンピング電流制限回路8および、タイマ9の
出力信号により開閉するスイッチ回路10を設けるよう
にした点にある。
The feature of FIG. 3 is that a pumping current limiting circuit 8 and a switch circuit 10 which is opened and closed by the output signal of a timer 9 are provided between the output terminal of the drive amplifier 7 and the electrode 5d.

タイマ9は、空燃比測定装置の電源投入に応じて既知の
適宜の手段により計数を開始し、予定時間が経過すると
スイッチ回路10にカウントアツプ信号を出力する。こ
の結果、スイッチ回路10は、電源投入から検出器1が
動作温度に達するでおろう予定時間経過(通常、10〜
30秒)後に、閉状態になる。これにより第2のジルコ
ニア3にポンピング電流が供給される。
The timer 9 starts counting by a known appropriate means when the air-fuel ratio measuring device is powered on, and outputs a count-up signal to the switch circuit 10 when the scheduled time has elapsed. As a result, the switch circuit 10 detects that the expected time (usually 10 to
After 30 seconds), it becomes closed. As a result, a pumping current is supplied to the second zirconia 3.

また、前記ポンピング電流は、その正負の電流が予定値
よりも過大となった時にはポンピング電流制限回路8に
より予定値に制限されることになる。
Further, the pumping current is limited to the predetermined value by the pumping current limiting circuit 8 when the positive and negative currents thereof become larger than the predetermined value.

したがって、第3図の回路によれば、前記(a)の場合
には、ポンピング電流の供給を阻止することができ、ま
たポンピング電流が過大となる(e)の場合にも、該ポ
ンピング電流を予定直に制限することができる。故に、
これらに起因する検出器1の熱損傷は予防される。
Therefore, according to the circuit shown in FIG. 3, in the case (a), the pumping current can be prevented from being supplied, and also in the case (e), where the pumping current becomes excessive, the pumping current can be stopped. It is possible to limit the number of appointments. Therefore,
Thermal damage to the detector 1 caused by these is prevented.

(発明が解決しようとする問題点) しかしながら、第3図の回路では、ポンピング電流を阻
止しなければならない前記(b)、(C)(d)の場合
において、ポンピング電流の供給を阻止できず、したが
ってこれらの場合には検出器1を熱損傷させてしまうと
いう問題点があった。
(Problems to be Solved by the Invention) However, in the circuit shown in FIG. 3, in the cases (b), (C), and (d) above, where the pumping current must be blocked, the supply of the pumping current cannot be blocked. Therefore, in these cases, there is a problem that the detector 1 is damaged by heat.

本発明は、前述の問題点を解決するためになされたもの
である。
The present invention has been made to solve the above-mentioned problems.

(問題点を解決するための手段および作用)前記の問題
点を解決するために、本発明は、駆動増幅器の出力側と
ポンピング電流供給電)伽の一方との間に配され、前記
ボンピング電流供給電極の一方を駆動増幅器の出力側ま
たは定電流回路と選択的に接続する切り換え手段と、前
記切り換え手段を、計数待機状態および時間計数状態で
は前2定電流回路に、カウントアツプ1多は検出器の出
力側にそれぞれ切り換えるタイマと、前記切り換え手段
の出力側とタイマとの間に設けられ、前記タイマを計数
待機状態または時間計数状態とする電圧比較器とを設け
るようにし、前記電圧比較器は、ポンピング電流供給電
極間の電圧がポンピング電流供給電極を損傷する虞れが
ある予定の上限電圧および下限電圧の範囲外にある時は
前記タイマを計数待機状態にし、前記上限電圧および下
限電圧の範囲内にある時は前記タイマを時間計数状態に
し、また前記タイマは空燃比測定装置の電源投入と同時
に計数待機状態になるようにした点に特徴がおる。
(Means and operations for solving the problems) In order to solve the above problems, the present invention provides a method for solving the above-mentioned problems by disposing the drive amplifier between the output side of the drive amplifier and one side of the pumping current supply voltage. a switching means for selectively connecting one of the supply electrodes to the output side of the drive amplifier or a constant current circuit; a voltage comparator that is provided between the output side of the switching means and the timer and that puts the timer in a counting standby state or a time counting state; When the voltage between the pumping current supply electrodes is outside the expected upper and lower limit voltage ranges that may damage the pumping current supply electrodes, the timer is put into a counting standby state and the upper and lower limit voltages are The timer is in a time counting state when it is within the range, and the timer is in a counting standby state at the same time as the power of the air-fuel ratio measuring device is turned on.

(実施例) 以下に図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の回路図である。図において
、第3図と同一の符号は、同一または同等部分をあられ
している。
FIG. 1 is a circuit diagram of an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 3 represent the same or equivalent parts.

第1図において、切り換えスイッチ11は電極5dと駆
動増幅器7との間に設けられ、タイマ12の出力信号に
より、可動接点11aが固定接点11b、11cのいず
れか一方に切り換わる。
In FIG. 1, a changeover switch 11 is provided between an electrode 5d and a drive amplifier 7, and an output signal from a timer 12 switches a movable contact 11a to one of fixed contacts 11b and 11c.

すなわち、タイマ12が計数待機状態または時間計数状
態にあるときは可動接点11aが固定接点11C側に接
し、抵抗R1および電源13からなる定電流回路15と
電極5dとが接続される。
That is, when the timer 12 is in a counting standby state or a time counting state, the movable contact 11a is in contact with the fixed contact 11C, and the constant current circuit 15 consisting of the resistor R1 and the power source 13 is connected to the electrode 5d.

また、タイマ12が予定時間の計数を完了(カウントア
ツプ)してカウントアツプ信号を出力すると、可動接点
11aが固定接点11b側に接するので、ポンピング電
流制限回路8を通して駆動増幅器7の出力端子と電極5
dとが接続される。
Furthermore, when the timer 12 completes counting (counts up) the scheduled time and outputs a count-up signal, the movable contact 11a contacts the fixed contact 11b, so the output terminal of the drive amplifier 7 and the electrode 5
d is connected.

電源13から第2のジルコニア3に供給される電流は、
ポンピング電流制限回路8から出力される電流(数mA
程度の正負の電流)よりも十分に小さな値(敗μA以内
)となるように抵抗R1により規制される。
The current supplied from the power supply 13 to the second zirconia 3 is
The current output from the pumping current limiting circuit 8 (several mA
It is regulated by the resistor R1 so that it has a sufficiently smaller value (within μA) than the positive and negative currents.

電源13の電圧EOは、後記する電圧比較器14の上限
電圧(正電圧)■pよりも十分高く設定されている。な
お、タイマ12は、空燃比測定装置の電源投入と同時に
既知の適宜の手段により計数待機状態になる。
The voltage EO of the power supply 13 is set sufficiently higher than the upper limit voltage (positive voltage) p of the voltage comparator 14, which will be described later. Note that the timer 12 enters a counting standby state by a known appropriate means at the same time as the power of the air-fuel ratio measuring device is turned on.

電圧比較器14は、第2のジルコニア3に印加される電
圧が予定の上限電圧vpを越えるか、または下限(負電
圧)Vmよりも小ざい時に、前記タイマ12を計数待期
状態にし、前記上下限の電圧Vp、7mの範囲内にある
時はタイマ12を時間計数状態とするように動作する。
When the voltage applied to the second zirconia 3 exceeds a predetermined upper limit voltage vp or is smaller than a lower limit (negative voltage) Vm, the voltage comparator 14 puts the timer 12 into a counting standby state, and When the voltage Vp is within the upper and lower limits of 7 m, the timer 12 is operated to count time.

前記上下限の電圧Vp、7mの絶対値は、検出器1の正
常な動作状態における第2のジルコニア3に生じ得る電
圧の絶対値(2v程度)よりも大きく、かつポンピング
電流制限回路8の最大出力電流と、この時に第2のジル
コニア3に生じる電圧の積で決定される電力が、検出器
1を損傷させない最大電力と等しくなる時の電圧以下と
なるように設定される。本発明者の実験によれば、通常
3〜6V程度である。
The absolute value of the upper and lower limit voltage Vp, 7 m is larger than the absolute value (about 2 V) of the voltage that can occur in the second zirconia 3 in the normal operating state of the detector 1, and is larger than the maximum value of the pumping current limiting circuit 8. The power determined by the product of the output current and the voltage generated across the second zirconia 3 at this time is set to be equal to or lower than the voltage at which the detector 1 is equal to the maximum power that will not damage it. According to the inventor's experiments, it is usually about 3 to 6V.

また、駆動増幅器7の(−)入力端子側は抵抗R2を通
して接地されている。この抵抗R2の値は検出器1の酸
素濃度検出電極間(電極5a、5b間)の室温時におけ
る内部抵抗の値(数10MΩ)よりも小さく、かつ加熱
時(600’C以上〉の値(数にΩ)よりも十分大きな
値に設定されている。通常は1MΩ程度に設定すること
ができる。
Further, the (-) input terminal side of the drive amplifier 7 is grounded through a resistor R2. The value of this resistance R2 is smaller than the internal resistance value (several tens of MΩ) between the oxygen concentration detection electrodes (between electrodes 5a and 5b) of the detector 1 at room temperature, and the value (several tens of MΩ) during heating (over 600'C) It is set to a value that is sufficiently larger than the number of Ω).Usually, it can be set to about 1MΩ.

次に本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

(1)空燃比測定装置に電源を投入すると、タイマ12
が計数待期状態とされ、切り換えスイッチ11が図示の
状態となるので、電極5dは定電流回路15と接続され
る。この電源投入直後においては、検出器1はほぼ空温
に近いので、電極5d。
(1) When the power is turned on to the air-fuel ratio measuring device, the timer 12
is in a counting standby state and the changeover switch 11 is in the state shown, so that the electrode 5d is connected to the constant current circuit 15. Immediately after the power is turned on, the detector 1 is at almost air temperature, so the electrode 5d is heated.

5C間の内部抵抗は非常に高くなっている。The internal resistance between 5C and 5C is very high.

この結果、抵抗R1を通って電源13から供給される微
小電流によって電極5d、5C間に生じる電圧は、電圧
比較器14の上限電圧Vpよりも高い値となる。この結
果、前記タイマ12は計数清明状態を保持し、計数動作
を開始しない。
As a result, the voltage generated between the electrodes 5d and 5C due to the minute current supplied from the power supply 13 through the resistor R1 has a value higher than the upper limit voltage Vp of the voltage comparator 14. As a result, the timer 12 maintains the counting clear state and does not start counting.

(2)空燃比測定装置に電流が投入されると、検出器1
に内蔵されているか、または外付けされているヒータ(
図示せず)が検出器1の加熱を開始する。これにより検
出器1の温度は上昇し、これに伴い電極5d、5C間の
内部抵抗は急速に降下する。
(2) When current is applied to the air-fuel ratio measuring device, the detector 1
A heater built into or externally attached to the
(not shown) starts heating the detector 1. As a result, the temperature of the detector 1 increases, and the internal resistance between the electrodes 5d and 5C rapidly decreases accordingly.

電極5d、50間の内部抵抗がある値(例えば10にΩ
)となり、該電極5d、5C間の電圧が前記上限電圧V
p以下になると、電圧比較器14はタイマ12を計数待
機状態から時間計数状態にする。これによりタイマ12
は計数動作を開始する。
The internal resistance between the electrodes 5d and 50 is a certain value (for example, 10Ω
), and the voltage between the electrodes 5d and 5C is the upper limit voltage V
When the voltage becomes equal to or less than p, the voltage comparator 14 changes the timer 12 from a counting standby state to a time counting state. This causes timer 12
starts counting operation.

(3)検出器1が動作温度になるでおろう予定時間が経
過すると、タイマ12はカウントアツプ信号を出力する
。この結果、切り換えスイッチ11の可動接点11aは
固定接点11b側に切り換わる。
(3) When the scheduled time for the detector 1 to reach the operating temperature has elapsed, the timer 12 outputs a count-up signal. As a result, the movable contact 11a of the changeover switch 11 is switched to the fixed contact 11b side.

これにより、電極5dはポンピング電流制限回路8を通
して駆動増幅器7の出力端子と接続され、空燃比測定装
置の正規の動作が開始する。なお、動作温度における電
極5d、5C間の内部抵抗は、通常100Ω程度である
Thereby, the electrode 5d is connected to the output terminal of the drive amplifier 7 through the pumping current limiting circuit 8, and the normal operation of the air-fuel ratio measuring device is started. Note that the internal resistance between the electrodes 5d and 5C at the operating temperature is usually about 100Ω.

次に、空燃比測定装置の使用中すなわち該測定装置に電
源が投入されている状態において、検出器1を交換する
際の動作について述べる。
Next, a description will be given of the operation when replacing the detector 1 while the air-fuel ratio measuring device is in use, that is, while the measuring device is powered on.

検出器1が交換等の為に第1図の回路から切断されると
、駆動増幅器7の(−)入力端子側は抵抗R2により接
地電位となる為に、(+)入力端子側の基準電圧Erよ
りも低くなる。
When the detector 1 is disconnected from the circuit shown in Figure 1 for replacement, etc., the (-) input terminal side of the drive amplifier 7 becomes ground potential due to the resistor R2, so the reference voltage on the (+) input terminal side It becomes lower than Er.

この結果、電圧比較器14に加わる電圧は上限電圧■p
よりも高くなり、タイマ12は計数清明状態とされ、切
り換えスイッチ11が図示の状態となる。電源13の電
圧EOは、前記したように上限電圧Vpよりも十分高く
設定されているので、この状態は保持される。
As a result, the voltage applied to the voltage comparator 14 is the upper limit voltage ■p
, the timer 12 enters the counting clear state, and the changeover switch 11 enters the state shown. Since the voltage EO of the power supply 13 is set sufficiently higher than the upper limit voltage Vp as described above, this state is maintained.

そして、交換された新たな検出器1が接続されると、空
燃比測定装置は前記した(2)、(3)の動作を経て正
規の動作を開始するようになる。
Then, when the replaced new detector 1 is connected, the air-fuel ratio measuring device starts normal operation through the operations (2) and (3) described above.

なお、抵抗R2は、空燃比測定装置の正規の動作時の電
極5a、5b間の内部抵抗よりも十分大きく設定されて
いるので、該測定装置の正規の動作時における動作には
何らの影響も与えない。
Note that since the resistance R2 is set to be sufficiently larger than the internal resistance between the electrodes 5a and 5b during normal operation of the air-fuel ratio measuring device, it has no effect on the operation of the measuring device during normal operation. I won't give it.

次に、被測定ガスにより検出器1が過度に冷却された場
合の動作について説明する。
Next, the operation when the detector 1 is excessively cooled by the gas to be measured will be described.

前述したように、被測定ガスにより検出器1が過度に冷
却されると、検出器1の温度の下降に従って電極5d、
50間の内部抵抗は増大する。
As described above, when the detector 1 is excessively cooled by the gas to be measured, as the temperature of the detector 1 decreases, the electrodes 5d,
50, the internal resistance increases.

この時、駆動増幅器7から出力されるボンピンク電流が
変化しないとすると、この内部抵抗の増大に伴なって電
極5d、5C間の電圧は上昇し、電圧比較器14の上下
限の電圧■p、■mを越えるようになると、タイマ12
は計数清明状態とされ、切り換えスイッチ11が図示の
状態になる。
At this time, assuming that the bombing current output from the drive amplifier 7 does not change, the voltage between the electrodes 5d and 5C increases with this increase in internal resistance, and the upper and lower limit voltages of the voltage comparator 14 p, ■When it exceeds m, timer 12
is in the counting clear state, and the changeover switch 11 is in the state shown.

すなわち、空燃比測定装置の正規の動作状態は中断され
る。
That is, the normal operating state of the air-fuel ratio measuring device is interrupted.

この状態から、第2のジルコニア3の温度が上昇して電
極5d、5C間の電圧が電圧比較器14の上下限の電圧
■p1mの範囲内になると、タイマ12はただちに計数
動作状態に移行する。その後、予定時間が経過してタイ
マ12からカウントアツプ信号が出力され、可動接点1
1aが固定接点11bの側へ切り換わると空燃比測定装
置は正規の動作状態となる。
From this state, when the temperature of the second zirconia 3 rises and the voltage between the electrodes 5d and 5C falls within the range of the upper and lower limit voltage p1m of the voltage comparator 14, the timer 12 immediately shifts to the counting operation state. . After that, when the scheduled time elapses, a count-up signal is output from the timer 12, and the movable contact 1
1a switches to the fixed contact 11b side, the air-fuel ratio measuring device enters a normal operating state.

この時、検出器1の温度が空燃比測定装置の正規の動作
状態を維持できるまでに復帰していない場合は、タイマ
12の計数待明状態→可動接点11aの固定接点11C
側への切り換え→タイマ12の計算動作開始→タイマ1
2からのカウントアツプ信号出力→可動接点11aの固
定接点11b側への切り換え→タイマ12の計数待機状
態という循環動作を繰り返えすことになる。
At this time, if the temperature of the detector 1 has not returned to a level at which the air-fuel ratio measuring device can maintain the normal operating state, the timer 12 is in the counting waiting state → the fixed contact 11C of the movable contact 11a
Switching to side → Start of calculation operation of timer 12 → Timer 1
The cyclic operation of outputting a count-up signal from 2→switching the movable contact 11a to the fixed contact 11b→counting standby state of the timer 12 is repeated.

なお、被測定ガスにより検出器1が過冷却の状態にあり
、かつ被測定ガスの酸素濃度または水素、−酸化炭素濃
度が過濃な状態にあっては、それ以外の過冷却の場合に
比べて、検出器1の温度降下による電極5d、50間の
内部抵抗の増大が小さくても、電115d、5C間の電
圧は、上限電圧vpまたは下限電圧mを越えることとな
るので、タイマ12はより一層早く計数清明状態となる
ことは容易に理解できるでおろう。
Note that if the detector 1 is supercooled by the gas to be measured and the oxygen concentration or hydrogen or carbon oxide concentration of the gas to be measured is too high, the temperature will be lower than in other cases of supercooling. Therefore, even if the increase in internal resistance between the electrodes 5d and 50 due to the temperature drop of the detector 1 is small, the voltage between the electrodes 115d and 5C will exceed the upper limit voltage vp or the lower limit voltage m, so the timer 12 It is easy to understand that the counting state becomes clear even more quickly.

次に1.検出器1を加熱するヒータが断線した場合の動
作について説明する。
Next 1. The operation when the heater that heats the detector 1 is disconnected will be explained.

ヒータが断線すると、検出器1の温度が下降し、これに
応じて電極5d、5C間の内部抵抗は増大する。この内
部抵抗の増大に伴って電極5d、50間の電圧が上昇し
、電圧比較器14の上限電圧vpまたは下限電圧vmを
越えるようになると、タイマ12は計数清明状態にされ
、切り換えスイッチ11が図示の状態となる。
When the heater is disconnected, the temperature of the detector 1 decreases, and the internal resistance between the electrodes 5d and 5C increases accordingly. When the voltage between the electrodes 5d and 50 increases with this increase in internal resistance and exceeds the upper limit voltage vp or lower limit voltage vm of the voltage comparator 14, the timer 12 is brought into a counting clear state and the changeover switch 11 is turned on. The state shown in the figure will be reached.

ヒータが断線の場合には、前記内部抵抗が減少すること
はないので、その後もこの状態を継続する。なお、空燃
比測定装置の電源投入の際に、ヒータが断線しているよ
うな場合にあっては、電源投入と同時にタイマ12が計
数待機状態にされ、この状態のまま継続するようになる
If the heater is disconnected, the internal resistance does not decrease, so this state continues thereafter. If the heater is disconnected when the air-fuel ratio measuring device is powered on, the timer 12 is put into a counting standby state at the same time as the power is turned on, and continues in this state.

以上の説明では、駆動増幅器7の(−)入力端子側を、
抵抗R2を通して接地するようにしたが、該抵抗R2は
必ずしも必要ではない。
In the above explanation, the (-) input terminal side of the drive amplifier 7 is
Although the resistor R2 is connected to the ground through the resistor R2, the resistor R2 is not necessarily required.

すなわち、抵抗R2かなくても検出器1を切断した状態
では、駆動増幅器7から電圧比較器14へ印加される電
圧は、上限電圧Vpを越えるかまたは下限電圧Vmより
も小ざい値であるのが通常でおり、したがって前記検出
器の交換時の動作は正常に行なわれるからである。
That is, even if the resistor R2 is not present, when the detector 1 is disconnected, the voltage applied from the drive amplifier 7 to the voltage comparator 14 will exceed the upper limit voltage Vp or be smaller than the lower limit voltage Vm. This is because this is normal, and therefore the operation at the time of replacing the detector is performed normally.

ただし、抵抗R2を設けた場合には、駆動増幅器7の(
−)入力端子側が浮動状態とならないので、検出器の交
換時における駆動増幅器7の動作は安定するようになる
However, if the resistor R2 is provided, the drive amplifier 7 (
-) Since the input terminal side is not in a floating state, the operation of the drive amplifier 7 becomes stable when replacing the detector.

また、電圧比較器14によってタイマ12が強制的に計
数待機状態にされる時には、その旨を示す表示器を設け
るようにすれば、検出器1の無接続状態か、またはヒー
タの断線かを容易に判別できると共に、比較的短い時間
内に、例えば表示器であるランプが点灯および消灯を繰
り返えT ’R合には、被測定ガスの温度が低すぎる状
態でおることを容易に検知できる。
Furthermore, when the timer 12 is forced into a counting standby state by the voltage comparator 14, if an indicator is provided to indicate this, it will be easy to determine whether the detector 1 is disconnected or the heater is disconnected. In addition, if a lamp serving as an indicator repeatedly turns on and off within a relatively short period of time, it can be easily detected that the temperature of the gas to be measured is too low. .

(発明の効果) 以上の説明から明らかなように、本発明によれば、つぎ
のような効果が達成される。
(Effects of the Invention) As is clear from the above description, according to the present invention, the following effects are achieved.

(1)空燃比測定装置の使用中に新たな検出器を交換接
続した場合、検出器を加熱するヒータが断線した場合、
または被測定ガスにより検出器が過度に冷却された場合
においてもポンピング電流供給電極に過大な電力が供給
されない為に、検出器の完全な保護が図れる。
(1) If a new detector is replaced or connected while the air-fuel ratio measuring device is in use, or if the heater that heats the detector is disconnected,
Alternatively, even if the detector is excessively cooled by the gas to be measured, excessive power is not supplied to the pumping current supply electrode, so the detector can be completely protected.

(2)また、電圧比較器によってタイマが強制的にリセ
ットされる時には、その旨を示す表示器を設けるように
すれば、検出器の無接続状態およびヒータの断線のいず
れか一方であることを容易に判別できると共に、被測定
ガスの温度が低すぎる状態であることも容易に検知でき
る。
(2) Also, when the timer is forcibly reset by the voltage comparator, an indicator to that effect can be provided to indicate that either the detector is disconnected or the heater is disconnected. It can be easily distinguished, and it can also be easily detected that the temperature of the gas to be measured is too low.

(3)また、本発明では検出器が正常な動作状態でない
時には空燃比測定を行なわないようになるので、本発明
を実際の車に搭載した場合にも誤った計数値に基づく制
御動作がなされることなく、該車の信頼性の向上が図れ
る。
(3) Furthermore, since the present invention does not measure the air-fuel ratio when the detector is not in a normal operating state, control operations based on erroneous counts will not occur even when the present invention is installed in an actual vehicle. The reliability of the vehicle can be improved without causing any damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図でおる。第2図は従
来の空燃比測定装置の一例を示す回路図である。第3図
は従来の空燃比測定装置の他の例を示す回路図である。 1・・・検出器、2・・・第1のジルコニア、3・・・
第2のジルコニア、4・・・中空室、
FIG. 1 is a circuit diagram of one embodiment of the present invention. FIG. 2 is a circuit diagram showing an example of a conventional air-fuel ratio measuring device. FIG. 3 is a circuit diagram showing another example of a conventional air-fuel ratio measuring device. 1...Detector, 2...First zirconia, 3...
Second zirconia, 4... hollow chamber,

Claims (4)

【特許請求の範囲】[Claims] (1)酸素濃度検出用ジルコニア板、ポンピング用ジル
コニア板、前記酸素濃度検出用ジルコニア板の両主面に
形成された酸素濃度検出電極、前記ポンピング用ジルコ
ニア板の両主面に形成されたポンピング電流供給電極、
前記両ジルコニア板の対向面間に形成されている中空室
、前記ポンピング用ジルコニア板の外方主面側の被測定
ガスを前記中空室内に導入させる為に前記ポンピング用
ジルコニア板に形成された被測定ガス導入手段からなる
空燃比検出器と、一入力端子が酸素温度検出電極の一方
に接続され、他入力端子か基準電圧に接続されており、
酸素濃度検出電極間の電圧と基準電圧との差に応じた正
負のポンピング電流を前記ポンピング用ジルコニア板に
出力する駆動手段とを有する空燃比測定装置において、 前記駆動手段の出力側とポンピング電流供給電極の一方
との間に設けられ、ポンピング電流供給電極の一方を駆
動手段の出力側および定電流回路の一方に選択的に接続
する切り換え手段と、前記切り換え手段を計数待機状態
および時間計数状態では前記定電流回路に、カウントア
ップ後は駆動手段の出力側に切り換え制御を行なうタイ
マと、前記切り換え手段の出力側と前記タイマとの間に
設けられ、前記タイマを計数待期状態または時間計数状
態にする電圧比較器とを具備し、前記電圧比較器は、ポ
ンピング電流供給電極間の電圧が予定の上限電圧および
下限電圧の範囲外にある時は前記タイマを計数待機状態
にし、前記上限電圧および下限電圧の範囲内にある時は
前記タイマを時間計数状態にし、また前記タイマは空燃
比測定装置の電源投入と同時に計数侍期状態になること
を特徴とする空燃比測定装置。
(1) A zirconia plate for oxygen concentration detection, a zirconia plate for pumping, an oxygen concentration detection electrode formed on both main surfaces of the zirconia plate for oxygen concentration detection, and a pumping current formed on both main surfaces of the zirconia plate for pumping. supply electrode,
A hollow chamber is formed between the opposing surfaces of both the zirconia plates, and a cover is formed on the pumping zirconia plate in order to introduce the gas to be measured on the outer main surface side of the pumping zirconia plate into the hollow chamber. An air-fuel ratio detector consisting of a measuring gas introduction means, one input terminal connected to one of the oxygen temperature detection electrodes, and the other input terminal connected to a reference voltage,
An air-fuel ratio measuring device comprising a drive means for outputting positive and negative pumping current to the pumping zirconia plate according to the difference between the voltage between the oxygen concentration detection electrodes and a reference voltage, the output side of the drive means and the pumping current supply. a switching means provided between one of the electrodes and selectively connecting one of the pumping current supply electrodes to the output side of the driving means and one of the constant current circuit; The constant current circuit is provided with a timer that performs switching control to the output side of the driving means after counting up, and a timer that is provided between the output side of the switching means and the timer, and the timer is in a counting standby state or a time counting state. and a voltage comparator that sets the timer to a counting standby state when the voltage between the pumping current supply electrodes is outside the range of the predetermined upper limit voltage and lower limit voltage. An air-fuel ratio measuring device characterized in that the timer is placed in a time counting state when the voltage is within a lower limit voltage range, and the timer is placed in a counting waiting state at the same time as the power of the air-fuel ratio measuring device is turned on.
(2)前記駆動手段の正負のポンピング電流の絶対値が
、予定値よりも大となった時には、これを予定値に制限
するポンピング電流制限手段を設けたことを特徴とする
前記特許請求の範囲第1項記載の空燃比測定装置。
(2) The above-mentioned claim is characterized in that, when the absolute value of the positive and negative pumping currents of the drive means becomes larger than a predetermined value, pumping current limiting means is provided for limiting the absolute value to the predetermined value. The air-fuel ratio measuring device according to item 1.
(3)前記駆動手段の一入力端子側を抵抗を介して接地
すると共に、該抵抗の値を室温時における酸素濃度検出
電極間の内部抵抗の値よりも小さく、かつ加熱時の前記
内部抵抗の値よりも大きく設定したことを特徴とする前
記特許請求の範囲第1項または第2項記載の空燃比測定
装置。
(3) One input terminal side of the driving means is grounded via a resistor, and the value of the resistor is set to be smaller than the internal resistance value between the oxygen concentration detection electrodes at room temperature and the internal resistance during heating. The air-fuel ratio measuring device according to claim 1 or 2, wherein the air-fuel ratio measuring device is set larger than the above value.
(4)前記タイマが電圧比較器によって強制的に計数待
期状態にされた旨を表示する表示手段を設けたことを特
徴とする前記特許請求の範囲第1項、第2項または第3
項記載の空燃比測定装置。
(4) Claims 1, 2, or 3 further include display means for displaying that the timer is forced into a counting standby state by a voltage comparator.
The air-fuel ratio measuring device described in .
JP61122822A 1986-05-28 1986-05-28 Air/fuel ratio measuring apparatus Granted JPS62278443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122822A JPS62278443A (en) 1986-05-28 1986-05-28 Air/fuel ratio measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122822A JPS62278443A (en) 1986-05-28 1986-05-28 Air/fuel ratio measuring apparatus

Publications (2)

Publication Number Publication Date
JPS62278443A true JPS62278443A (en) 1987-12-03
JPH0545183B2 JPH0545183B2 (en) 1993-07-08

Family

ID=14845492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122822A Granted JPS62278443A (en) 1986-05-28 1986-05-28 Air/fuel ratio measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62278443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295855U (en) * 1988-11-09 1990-07-31
JPH04313056A (en) * 1991-04-02 1992-11-05 Mitsubishi Electric Corp Activation judging device for air-fuel-ratio sensor
JPH04313055A (en) * 1991-04-02 1992-11-05 Mitsubishi Electric Corp Activation judging device for air-fuel-ratio sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295855U (en) * 1988-11-09 1990-07-31
JPH04313056A (en) * 1991-04-02 1992-11-05 Mitsubishi Electric Corp Activation judging device for air-fuel-ratio sensor
JPH04313055A (en) * 1991-04-02 1992-11-05 Mitsubishi Electric Corp Activation judging device for air-fuel-ratio sensor

Also Published As

Publication number Publication date
JPH0545183B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
JP2004069547A (en) Control device of air/fuel ratio sensor
JPS57192856A (en) Oxygen concentration detector
US4226692A (en) Solid state combustion sensor
JP2009507225A (en) Nitrogen oxide gas sensor and method
JPH1172478A (en) Oxide gas concentration detecting device and recording medium used therefor
EP0740150A1 (en) Method and apparatus for controlling to energize a heater in an oxygen sensor
JPH08506666A (en) Limiting current sensor for detecting lambda value in gas mixture
JP4572735B2 (en) Gas concentration detector
JPS62278443A (en) Air/fuel ratio measuring apparatus
JPH116815A (en) Controller for gas concentration sensor
JPH03272452A (en) Diagnosis of abnormality of air/fuel ratio sensor
US4485369A (en) Sensor for measuring air-fuel ratio
JP4016964B2 (en) Gas concentration detector
JPH1164276A (en) Apparatus for detecting concentration of oxide gas
JPH0638075B2 (en) A rapid method for detecting changes in the atmosphere of combustion exhaust gas.
JPH06242060A (en) Hydrocarbon sensor
JP4224011B2 (en) Gas sensor and gas concentration measuring method
JPH03165254A (en) Oxygen sensor
KR100402417B1 (en) Electric Ion Pumping type YSZ Oxygen Sensor
JPH03246461A (en) Air-fuel ratio sensor controller
JP2004233315A (en) Gas sensor
JP3012960B2 (en) Combustion equipment
JPH0921782A (en) Oxygen concentration sensor
JPH0783428A (en) Oxygen sensor controller
JP2002257783A (en) Gas sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term