JPS62278439A - Water content monitoring apparatus - Google Patents

Water content monitoring apparatus

Info

Publication number
JPS62278439A
JPS62278439A JP12242486A JP12242486A JPS62278439A JP S62278439 A JPS62278439 A JP S62278439A JP 12242486 A JP12242486 A JP 12242486A JP 12242486 A JP12242486 A JP 12242486A JP S62278439 A JPS62278439 A JP S62278439A
Authority
JP
Japan
Prior art keywords
nuclear magnetic
magnetic resonance
moisture content
resonance absorption
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12242486A
Other languages
Japanese (ja)
Inventor
Naoto Uetake
直人 植竹
Hajime Iba
伊庭 甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12242486A priority Critical patent/JPS62278439A/en
Publication of JPS62278439A publication Critical patent/JPS62278439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable the monitoring of water content in a nondestructive manner being distinguished from hydrogen in an organic material by determining the area or a value of a peak with the half-value width less than 10Hz in a nuclear magnetic resonance absorption spectrum. CONSTITUTION:A magnetic field is applied to powdery material 3 to be measured being fluidized through a piping 2 from a magnet 1. When a radio wave within a nuclear magnetic resonance frequency of hydrogen nuclus is made incident on the powdery material 3 in a magnetic field from a transmitting coil 4, a resonance absorption takes place by the hydrogen nuclus to cause a change in the direction of the magnetization, which is detected with a receiving coil 5 and amplified with a receiver 7 to be sent to a data processor 8. Generally, the half-value width is less than 10Hz in the nuclear magnetic resonance absorption spectrum of the hydrogen nuclus of water and hence, water can be distinguished clearly from an organic solid, which is more than several tens of Hz. Therefore, the area or value of a peak with the half-value width less than 10Hz is determined with a processor 8 in a nuclear magnetic resonance absorption spectrum of the powdery material 3 as function of the frequency obtained from the output of the receiver 7 and multiplied by a fixed coefficient to calculate the water content of the powdery material 3.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は水分含有量のモニタリング装置に係り、特に有
機物を含む測定対象の水分含有量を非破壊でモニタリン
グするのに好適な装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a moisture content monitoring device, and particularly to a device for non-destructively monitoring the moisture content of a measurement target including organic matter. The present invention relates to a device suitable for.

〔従来の技術〕[Conventional technology]

従来、工業的に粉体等が含んでいる水分を非破壊でモニ
タリングするには中性子水分計(特公昭53−8630
0等)が用いられてきた。しかし、中性子水分計は実際
には水ではなく水素の存在量を検知しているため、水素
を主要構成元素の一つとして含む有機物を含有している
測定対称には用いることができなかった。しがし、放射
件廃棄物処理等の分野においてイオン交換樹脂等の有機
固体を含む対象について水分含有量をモニタリングする
必要がでてきている。
Conventionally, a neutron moisture meter (Special Publication No. 53-8630) was used to non-destructively monitor the moisture contained in powders, etc.
0, etc.) have been used. However, because neutron moisture meters actually detect the amount of hydrogen, not water, they cannot be used for measurements that contain organic substances that contain hydrogen as one of their main constituent elements. However, in fields such as radioactive waste treatment, it has become necessary to monitor the moisture content of objects containing organic solids such as ion exchange resins.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く、中性子水分計は水素の存在を検知するもの
であるため、水の構成元素である水素と有機物の構成元
素である水素との識別ができず、従って、水素を構成元
素として含む有機物を含有している測定対象の水分含有
量を測定できなかったO 本発明の目的は水を構成元素とする有機物を含む固形状
の粉体等の物質中の水分含有量を非破壊でモニタリング
する装置を提供することにある。
As mentioned above, since a neutron moisture meter detects the presence of hydrogen, it cannot distinguish between hydrogen, which is a constituent element of water, and hydrogen, which is a constituent element of organic matter. The purpose of the present invention is to non-destructively monitor the moisture content of a substance such as a solid powder containing an organic substance whose constituent element is water. The goal is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は測定対象に磁場をかけ、当該磁場中での水素原
子核のラジオ波の核磁気共鳴吸収スペクトルを周波数の
関数として得、該スペクトルのうちピークの半値幅が1
0Hzより小さいピークの面積またはピーク値を求め、
これに一定の係数を乗じて水分含有量を算出するもので
ある。
The present invention applies a magnetic field to the measurement target, obtains a nuclear magnetic resonance absorption spectrum of radio waves of hydrogen nuclei in the magnetic field as a function of frequency, and in the spectrum, the half-width of the peak is 1
Find the area or peak value of the peak smaller than 0Hz,
The water content is calculated by multiplying this by a certain coefficient.

〔作用〕[Effect]

核磁気共鳴吸収スペクトルのうち、水を構成している水
素のスペクトル@(10Hzよシ小さい)K比べて有機
物に含まれている水素のそれは著しく大きい。このこと
を利用して前者のピークの面積またはピーク値を求める
ことKよシ、後者と区別された水分の含有量を測定し得
る。
Among the nuclear magnetic resonance absorption spectra, the spectrum of hydrogen contained in organic matter is significantly larger than the spectrum of hydrogen constituting water (which is smaller than 10 Hz). Utilizing this fact, in addition to determining the area or peak value of the former peak, it is also possible to measure the water content as distinguished from the latter.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によシ説明する。本実
施例は配管を流れる粉体の水分含有量のモニタリングに
本発明を適用した場合のものでらる0 図示実施例において配管2内を流動する粉体3に磁石1
により磁場をかける。磁場中にスピンを持つ核が存在す
ると、該核は次式で表わされる周波数で歳差運動をする
〇 γ υo = −Ho ・旧・・−・・(1)2に υO;歳差運動の周波数 γ :磁気回転比 HO:磁場の強さ そこで上記周波数と同じ周波数の電磁波を歳差運動する
核に対して入射すると、該核はこれに共鳴してエネルギ
ーを吸収する。これを核磁気共鳴と称する。通常用いる
ことのできる磁場は1〜10T(テスラ)程度であり、
それに対する周波数はメガヘルツのラジオ波の領域にあ
る。
An embodiment of the present invention will be explained below with reference to FIG. This example shows a case where the present invention is applied to monitoring the water content of powder flowing through a pipe.
A magnetic field is applied. When a nucleus with spin exists in a magnetic field, the nucleus precesses at a frequency expressed by the following equation 〇γ υo = −Ho ・Old... (1) 2 in υO; Precession Frequency γ: Magnetic rotation ratio HO: Magnetic field strength When an electromagnetic wave of the same frequency as the above frequency is incident on a precessing nucleus, the nucleus resonates with it and absorbs energy. This is called nuclear magnetic resonance. The magnetic field that can usually be used is about 1 to 10 T (Tesla),
The frequencies for it are in the megahertz radio frequency range.

ところで水素核(1H)は非常に強い共鳴吸収を生じる
原子核であり、ラジオ波の発信コイル4から(11式で
求められる周波数のラジオ波を入射させると水素核によ
る共鳴吸収が生じ、磁化の向きが変化するのでそれを受
信フィル5で検出し、増幅する。全共鳴吸収量は水素核
の数に比例している。
By the way, hydrogen nuclei (1H) are atomic nuclei that cause very strong resonance absorption, and when a radio wave with a frequency determined by equation 11 is incident from the radio wave transmission coil 4, resonance absorption by the hydrogen nuclei occurs, and the direction of magnetization changes. changes, so it is detected and amplified by the reception filter 5.The total resonance absorption amount is proportional to the number of hydrogen nuclei.

しかし、共鳴周波数は水素核の周りの電子状態による電
子じゃへい効果の違いから化学状態によりわずかに異る
However, the resonance frequency differs slightly depending on the chemical state due to differences in the electron jamming effect depending on the electronic state around the hydrogen nucleus.

第2図(a)に水の水素核の核磁気共鳴の周波数スペク
トルを、また(b)に有機樹脂中の水素核の核磁気共鳴
の周波数スペクトルを示す。本図でわかるように水と樹
脂の場合では大きくそのスペクトルのIs@が異る。線
幅は磁場の強さ又は均−性等の条件によ)左右されるが
、一般に水では半値幅が10Hzよシ小さく、他方、有
機固体では数十Hz以上であシ、1フタ以上     
  −−メ異る。そこで、両方が混在しても第2図(c
)に示すようべその判別は容易である。そこで水素核の
全共鳴吸収量ではなく、周波数スペクトル上の線幅の細
い水の水素核だけの共鳴吸収量を求めれば予め水分含有
量のわかっている試料について校正曲線を作成しておく
ことにょシ、容易に水分含有量を求めることができる。
FIG. 2(a) shows the frequency spectrum of nuclear magnetic resonance of hydrogen nuclei in water, and FIG. 2(b) shows the frequency spectrum of nuclear magnetic resonance of hydrogen nuclei in organic resin. As can be seen from this figure, the Is@ of the spectra differs greatly between water and resin. The line width depends on conditions such as the strength or uniformity of the magnetic field, but in general, the half-width in water is as small as 10 Hz, while in organic solids it is several tens of Hz or more, and more than 1 lid.
--It's different. Therefore, even if both are mixed, Figure 2 (c
), it is easy to identify the base. Therefore, if we calculate the resonance absorption amount of only the hydrogen nuclei of water, which has a narrow linewidth on the frequency spectrum, rather than the total resonance absorption amount of hydrogen nuclei, it is possible to create a calibration curve for a sample whose water content is known in advance. Therefore, the water content can be easily determined.

スペクトル中から水の共鳴吸収分だけを分離する方法に
はいくつかあるが、周波数スペクトルの周波数範囲を狭
くとれば有機固体からの寄与はパックグラウンドとして
直線で近似して容易に除去できる。また、ピークサーチ
をした後、半@幅が10Hzより小さいピークだけを積
分してもよい。
There are several methods for separating only the resonance absorption component of water from the spectrum, but if the frequency range of the frequency spectrum is narrowed, the contribution from organic solids can be easily removed by approximating it with a straight line as a packing ground. Further, after performing a peak search, only peaks whose half width is smaller than 10 Hz may be integrated.

この他、線幅の狭いピークの頂点がスペクトル±で最も
高い値を示すと予想されるので、最も大きい値を含むピ
ークについてだけ積分してもよい。
In addition, since the apex of a peak with a narrow linewidth is expected to exhibit the highest value in the spectrum ±, integration may be performed only for the peak containing the largest value.

共鳴吸収量の求め方としてはピーク面積を用いるのが正
確であるが、校正曲線が予めできていればピーク高さで
代用してもよく、スペクトル上の最も高い値を用いる方
法が装置的には最も簡便である。而して、かかるデータ
処理はいずれもマイクロコンピュータ−またはミニコン
ピユータ−を用いれば容易に達成できる。
It is accurate to use the peak area to determine the amount of resonance absorption, but if a calibration curve has been prepared in advance, the peak height may be used as a substitute, and the method of using the highest value on the spectrum is easier on the equipment. is the simplest. All such data processing can be easily accomplished using a microcomputer or minicomputer.

周波数スペクトルを得る方法としては発信コイル4に与
える周波数源6で発生させる周波数を連続的に変化させ
、受信装置7で発信;イル5からの信号を受信する方法
が可能である。しかし、この場合には周波数の掃引に時
間が刀ムかり、検出下限が高くなる欠点がある。もう一
つの方法は、周波数源6でラジオ波パルスを発生させ、
ラジオ波パルス入射後の磁化の自由誘導減衰の時間変化
を受信装置7で記録し、その後データ処理装置8でフー
リエ変換をすることによって周波数スペクトルを得る方
法である。この方法は比較的大きな容量を持つデータ処
理装置を必要とするが、パルスでスペクトルを得るため
0.5秒程度で1回の測定ができ、連続的な測定が可能
である。また、多数回の測定結果を積算し、S/N比を
向上させて検出下限を下げることができる。
A possible method for obtaining the frequency spectrum is to continuously change the frequency generated by the frequency source 6 applied to the transmitting coil 4, and to receive the signal from the transmitting coil 5 using the receiving device 7. However, in this case, it takes time to sweep the frequency, and the detection lower limit becomes high. Another method is to generate radio frequency pulses with a frequency source 6,
This is a method of obtaining a frequency spectrum by recording the time change of free induction attenuation of magnetization after the incidence of a radio wave pulse in a receiving device 7, and then performing Fourier transformation in a data processing device 8. This method requires a data processing device with a relatively large capacity, but since the spectrum is obtained in pulses, one measurement can be performed in about 0.5 seconds, and continuous measurements are possible. Furthermore, by integrating the results of multiple measurements, it is possible to improve the S/N ratio and lower the lower limit of detection.

パルス入射径測定される自由減衰振動スペクトルは第3
図(IL)に示すようなもので、これは種々の周波数で
のデータを含んでおシ、フーリエ変換することKよりΦ
)K示すような通常の周波数スペクトルに変換される。
The free damping vibration spectrum measured by the pulse incident diameter is the third
As shown in Figure (IL), it contains data at various frequencies and can be Fourier transformed from K to Φ
) is converted into a normal frequency spectrum as shown by K.

このようにして得られたスペクトルから水の共鳴吸収分
のピーク面積を求めると第4図に示すような水分含有量
との間の比例関係があるので、この関係を利用して測定
対称の水分含有量をデータ処理装置8で求めることがで
き、この値を記鎌計9に打ち出すことKより、配管内の
粉体の水分含有量をモニタリングすることができる。た
だし、この場合、配管材料はラジオ波を通す材質である
ことが必要で、金属材料ではなくセラミックス等の材質
を選ぶ必要がある。本実施例によれば有機物を含む粉体
中の水分含有量を非接触暢非破壊でモニタリングするこ
とができる。
When the peak area of the resonance absorption component of water is determined from the spectrum obtained in this way, there is a proportional relationship between the water content and the water content as shown in Figure 4. The content can be determined by the data processing device 8, and by inputting this value into the recorder 9, the water content of the powder in the pipe can be monitored. However, in this case, the piping material must be made of a material that allows radio waves to pass through, and it is necessary to choose a material such as ceramics rather than metal material. According to this embodiment, the moisture content in powder containing organic matter can be monitored non-contactly and non-destructively.

次に本発明の具体的実施例として放射性廃棄物の粉末化
乾燥時の水分含有量のモニタリングに適用した場合につ
いて第5図を用いて説明する。イオン交換樹脂を含む放
射性廃液11が廃液貯槽12に貯蔵されている。この廃
液をポンプ13で乾燥粉末化装置l14に送給し、粉末
化し乾燥させる。
Next, as a specific example of the present invention, a case where the present invention is applied to monitoring the water content during powdering and drying of radioactive waste will be described using FIG. 5. A radioactive waste liquid 11 containing an ion exchange resin is stored in a waste liquid storage tank 12 . This waste liquid is fed by a pump 13 to a drying and powdering device l14, where it is powdered and dried.

生成し′た粉末は造粒機15でペレット24に成型され
、ドラム缶16内に貯蔵される。
The generated powder is formed into pellets 24 by a granulator 15 and stored in a drum 16.

この造粒時に粉体中の水分が一定の範囲内にないとうま
く造粒することができない。そこで本実施例では乾燥粉
末化装!!i14と造粒機15を継ぐ粉末移送管17に
水分含有量のモニタリング装置を設けて水分含有量のコ
ントロールをする。このため、粉末移送管17を取り囲
むように磁石18を配置し、その内側にラジオ波の発信
コイル19を置き、パルス周波数源20で発生させたラ
ジオ波パルスを照射する。粉末移送管17の周囲には受
信コイル21が取り付けられており、パルス照射から1
00μ秒後からの自由減衰振動スペクトルをパルス周波
数源20から送られてきたパルス発生の信号に基いて受
信装置22によシ受信し記録する。得られたデータはデ
ータ処理装置23においてデジタル信号に変換した後フ
ーリエ変換し、周波数スペクトルとする。この周波数ス
ペクトル中最も高い値を示すピークを検出し、パンクグ
ラウンドを差し引いてピーク面積を計算する。得られた
値にあらかじめ標準試料に基いて作ってあった校正係数
を乗じ、水分含有量の値を得る。パルス間隔は1秒とし
、10回の値をデータ処理装置23で積算した後フーリ
エ変換し、周波数スペクトルのS / N比の向上を図
る。必要によっては水分含有量に応じて積算回数を自動
的に調節して、安定したS/N比を得るようKすること
もできる。
At the time of granulation, unless the moisture content of the powder is within a certain range, granulation cannot be achieved successfully. Therefore, in this example, we use a dry powder system! ! A moisture content monitoring device is provided in the powder transfer pipe 17 connecting the i14 and the granulator 15 to control the moisture content. For this purpose, a magnet 18 is arranged to surround the powder transfer tube 17, a radio wave transmitting coil 19 is placed inside the magnet 18, and radio wave pulses generated by a pulse frequency source 20 are irradiated. A receiving coil 21 is attached around the powder transfer tube 17, and a receiving coil 21 is installed around the powder transfer tube 17.
The free damping vibration spectrum from 00 μsec later is received by the receiver 22 and recorded based on the pulse generation signal sent from the pulse frequency source 20. The obtained data is converted into a digital signal in the data processing device 23 and then subjected to Fourier transformation to obtain a frequency spectrum. The peak showing the highest value in this frequency spectrum is detected, and the peak area is calculated by subtracting the puncture ground. The obtained value is multiplied by a calibration coefficient created in advance based on the standard sample to obtain the water content value. The pulse interval is 1 second, and the data processing device 23 integrates the values of 10 times, and then performs Fourier transform to improve the S/N ratio of the frequency spectrum. If necessary, the number of integrations can be automatically adjusted depending on the moisture content to obtain a stable S/N ratio.

得られた水分含有量の値があらかじめインプットされた
造粒可能範囲内にあるとき、粉末は造粒機15で成型さ
れ、廃棄物ペレット24として貯蔵する。この範囲外の
ときは一時貯槽25に粉体の!ま送り貯蔵する。
When the obtained moisture content value is within the pre-input granulation possible range, the powder is molded in the granulator 15 and stored as waste pellets 24. When it is outside this range, there is no powder in the temporary storage tank 25! Transfer and store.

長時間運転すると粉末移送管17の内壁に粉末が付着し
、正しい水分含有量のモニタリングが困離となるので、
純水貯槽26から純水27を1日に1同根度送給し、洗
浄する。このとき廃液11の送給、粉末乾燥化装置14
は停止させる。洗浄液は一時貯槽25に送給し、再び放
射性廃液として廃液貯槽12に戻す。洗浄操作終了後、
加熱乾燥空気をプロア28から粉末移送管17に送給し
、乾燥させる。これらの間も水分含有量のモニタリング
は続け、乾燥により、モニタリングしている水分含有量
が一定値以下になったのを確認し、再び廃液の送給及び
粉末乾燥化装置14の運転を開始する。
If operated for a long time, powder will adhere to the inner wall of the powder transfer tube 17, making it difficult to monitor the moisture content correctly.
Pure water 27 is fed from the pure water storage tank 26 once a day for cleaning. At this time, the waste liquid 11 is fed, the powder drying device 14
shall be stopped. The cleaning liquid is sent to the temporary storage tank 25 and returned to the waste liquid storage tank 12 as radioactive waste liquid. After the cleaning operation is completed,
Heated drying air is sent from the prower 28 to the powder transfer tube 17 for drying. During this time, monitoring of the moisture content continues, and once it is confirmed that the monitored moisture content has fallen below a certain value due to drying, the feeding of waste liquid and the operation of the powder drying device 14 are started again. .

本実施例によればイオン交換樹脂を含む放射性廃液を粉
末乾燥化させた後、水分含有量をそニタリングして安定
に造粒できるようにすることができる。
According to this embodiment, after drying the radioactive waste liquid containing the ion exchange resin into powder, the water content can be monitored to enable stable granulation.

本発明の他の具体的実施例を第6図を用いて説明する。Another specific embodiment of the present invention will be described using FIG. 6.

本実施例は造粒されたペレット状またはれき状に成型し
た放射性廃棄物中の水分含有量をチェックするためのも
のである。放射性廃棄物を造粒した後一時貯蔵し、その
後最終的な固化処理をする場合において、貯蔵環境によ
っては放射性廃棄物が吸水しているために最終的な固化
処理に適しないことがある。本実施例はこれを防ぐため
の水分含有量のチェックに用いるものであり、非破壊、
非接触でイオン交換樹脂やろ過助剤を含んでいる廃棄物
についても水分含有量をチェックできる。第6図におい
て搬送機31で造粒放射性廃棄物32が配管33内を移
送されている。この配管33には磁石34が設置されて
いる。この部分の配管の内側には受信コイル35、発信
コイル36が設置されておシ、パルス周波数源37で発
生させたラジオ波パルスを発信コイル36から照射し、
その後の自由誘導減衰を受信コイル35で受信し、受信
装置38でデジタル信号に変換した後データ処理装置3
9でフーリエ変換して周波数スペクトルとし、線幅があ
らかじめ定められた10Hz以下の値のピークについて
撰分値を求め、校正係数を乗じて水分含有量の値とする
。このとき、測定対称がれき状であるため、水分含有量
の記録は第7図で実線で示すように大きく波打つ。これ
を防ぐため、第7図の下に水子ように一定時間オーバー
ラップさせた時間ごとに積算し、平均的な水分含有量と
してデータ処理装置39で処理してアウトプットする。
This example is for checking the water content in radioactive waste formed into granulated pellets or rubble. When radioactive waste is granulated, temporarily stored, and then subjected to final solidification treatment, depending on the storage environment, the radioactive waste may absorb water and may not be suitable for final solidification treatment. This example is used to check the moisture content to prevent this, and is a non-destructive,
The moisture content of waste containing ion exchange resins and filter aids can also be checked without contact. In FIG. 6, granulated radioactive waste 32 is being transported through a pipe 33 by a transporter 31. A magnet 34 is installed in this pipe 33. A receiving coil 35 and a transmitting coil 36 are installed inside the piping in this part, and the transmitting coil 36 irradiates radio wave pulses generated by a pulse frequency source 37.
The subsequent free induction attenuation is received by the receiving coil 35 and converted into a digital signal by the receiving device 38, and then the data processing device 3
9 to obtain a frequency spectrum, and obtain a partial value for a peak with a predetermined line width of 10 Hz or less, and multiply it by a calibration coefficient to obtain a water content value. At this time, since the object of measurement was in the form of rubble, the moisture content record was greatly wavy as shown by the solid line in FIG. In order to prevent this, the water content is integrated at intervals of a fixed period of time, as shown in the lower part of FIG.

本実施例によれば、造粒廃棄物の水分含有量をモニタリ
ングしてチェックすることができる。
According to this embodiment, the water content of the granulated waste can be monitored and checked.

なお、本発明において測定対象に照射するラジオ波に強
い指向性を持たせ集束させれば、全体の平均的な水分含
有量ではなく微小部分の局所的な水分含有量を検出モニ
タリングすることができる。
In addition, in the present invention, if the radio waves irradiated to the measurement target are given strong directivity and focused, it is possible to detect and monitor the local moisture content of minute parts instead of the overall average moisture content. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、有機固体を含む測定対象についても、
有機物中の水素とは区別された水分含有量を非破壊で容
易にモニタリングできる効果がある。
According to the present invention, also for measurement targets including organic solids,
This method has the effect of allowing easy, non-destructive monitoring of the water content, which is distinguished from hydrogen in organic matter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を粉体の水分含有量のモニタリングに用
いた場合の実施例の模式図、第2図(a)。 (b)、 ((りは水素核の核磁気共鳴スペクトルの典
壓例を示した図、第3図(a)、 (b)は自由誘導減
衰スペクトルとそれをフーリエ変換して得られる周波数
スペクトルの一例を示した図、第4図は水分含有量とピ
ーク面積の関係を示した図、第5図は本発明を放射性廃
棄物処理に適用した場合の実施例の模式図、第6図は本
発明を造粒放射性廃棄物のチェックに適用した場合の実
施例の模式図、第7図は水分含有量の出力データと積算
の効果を示した図である。 1・・・磁石       2・・・配管3・・・粉体
       4・・・発信コイル5・・・受信コイル
    6・・・周波a源7・・・受信装置     
8・・・データ処理装置11・・・放射性廃液   1
2・・・廃液貯槽13・・・ポンプ     14・・
・乾燥粉末化装置15・・・造粒機     16・・
・ドラム缶17・・・粉末移送管   18・・・磁石
19・・・受信コイル   20・・・パルス周波数源
21・・・受信コイル   22・・・受信装置23・
・・データ処理装置 24・・・造粒廃棄物25・・・
一時貯槽    26・・・純水貯槽27・・・純水 
     28・・・ブロア31・・・搬送機    
 32・・・造粒放射性廃棄物33・・・配管    
  34・・・磁石35・・・受信コイル   36・
・・発信コイル37・・・パルス周波数源 38・・・
受信装置39・・・データ処理装置。 谷 浩太部」 第3図 第4図 ピーク面椙 第6図 慣′I粕閤
FIG. 1 is a schematic diagram of an example in which the present invention is used for monitoring the moisture content of powder, and FIG. 2 (a). (b), ((This is a diagram showing a typical example of nuclear magnetic resonance spectrum of hydrogen nucleus, Figure 3 (a), (b) is the free induction decay spectrum and the frequency spectrum obtained by Fourier transform of it. Figure 4 is a diagram showing an example of the relationship between water content and peak area, Figure 5 is a schematic diagram of an example in which the present invention is applied to radioactive waste treatment, and Figure 6 is a diagram showing the relationship between water content and peak area. A schematic diagram of an example in which the present invention is applied to checking granulated radioactive waste, and FIG. 7 is a diagram showing the output data of moisture content and the effect of integration. 1... Magnet 2...・Piping 3... Powder 4... Transmitting coil 5... Receiving coil 6... Frequency a source 7... Receiving device
8...Data processing device 11...Radioactive waste liquid 1
2... Waste liquid storage tank 13... Pump 14...
・Dry powderization device 15... Granulator 16...
- Drum 17... Powder transfer tube 18... Magnet 19... Receiving coil 20... Pulse frequency source 21... Receiving coil 22... Receiving device 23.
...Data processing device 24...Pelletization waste 25...
Temporary storage tank 26...Pure water storage tank 27...Pure water
28... Blower 31... Conveyor
32... Granulated radioactive waste 33... Piping
34... Magnet 35... Receiving coil 36.
... Transmission coil 37 ... Pulse frequency source 38 ...
Receiving device 39...data processing device. Tani Kotabe" Figure 3 Figure 4 Peak Mensu Figure 6 Practice 'I Kasuko

Claims (1)

【特許請求の範囲】 1、測定対象物に磁場をかける磁場発生手段、該磁場中
で水素原子核の核磁気共鳴周波数領域のラジオ波を測定
対象物に照射する発信器、核磁気共鳴吸収による測定対
象物の磁化の変化を検出する受信器、該受信器の出力か
ら得た周波数の関数としての測定対象物の核磁気共鳴吸
収スペクトルのうちピークの半値幅が10Hzより小さ
いピークの面積またはピーク値を求めこれに一定の係数
を乗じて測定対象物の水分含有量を算出するデータ処理
手段を備えたことを特徴とする水分含有量モニタリング
装置。 2、前記発信器から照射するラジオ波の周波数を連続的
に変化させることにより、前記受信器の出力から前記核
磁気共鳴吸収スペクトルを得る特許請求の範囲第1項記
載の水分含有量モニタリング装置。 3、前記発信器から照射するラジオ波をパルス状とし、
前記受信器で検出された測定対象物の磁化の自由誘導減
衰の時間変化を記録し、これをフーリエ変換して前記の
核磁気共鳴吸収スペクトルを得る特許請求の範囲第1項
記載の水分含有量モニタリング装置。
[Claims] 1. A magnetic field generating means that applies a magnetic field to an object to be measured, a transmitter that irradiates the object to be measured with radio waves in the nuclear magnetic resonance frequency region of hydrogen nuclei in the magnetic field, and measurement by nuclear magnetic resonance absorption. A receiver for detecting changes in the magnetization of an object, and the area or peak value of a peak whose half width is smaller than 10 Hz in the nuclear magnetic resonance absorption spectrum of the object to be measured as a function of frequency obtained from the output of the receiver. What is claimed is: 1. A moisture content monitoring device comprising data processing means for determining the moisture content of a measurement target by calculating the moisture content of the object to be measured by calculating the moisture content of the object to be measured. 2. The moisture content monitoring device according to claim 1, wherein the nuclear magnetic resonance absorption spectrum is obtained from the output of the receiver by continuously changing the frequency of radio waves emitted from the transmitter. 3. The radio waves emitted from the transmitter are pulsed;
Moisture content according to claim 1, in which the temporal change in free induction attenuation of the magnetization of the measurement object detected by the receiver is recorded, and this is Fourier transformed to obtain the nuclear magnetic resonance absorption spectrum. Monitoring equipment.
JP12242486A 1986-05-28 1986-05-28 Water content monitoring apparatus Pending JPS62278439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12242486A JPS62278439A (en) 1986-05-28 1986-05-28 Water content monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12242486A JPS62278439A (en) 1986-05-28 1986-05-28 Water content monitoring apparatus

Publications (1)

Publication Number Publication Date
JPS62278439A true JPS62278439A (en) 1987-12-03

Family

ID=14835489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12242486A Pending JPS62278439A (en) 1986-05-28 1986-05-28 Water content monitoring apparatus

Country Status (1)

Country Link
JP (1) JPS62278439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240767A (en) * 2008-03-10 2009-10-22 Toshiba Corp Magnetic resonance imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240767A (en) * 2008-03-10 2009-10-22 Toshiba Corp Magnetic resonance imaging apparatus
JP2012106077A (en) * 2008-03-10 2012-06-07 Toshiba Corp Magnetic resonance imaging apparatus

Similar Documents

Publication Publication Date Title
US5789257A (en) Method and apparatus for measuring samples and for localizing a first substance within a surrounding second substance by means of nuclear magnetic resonance
US7659124B2 (en) Method for the detection and/or analysis of compounds simultaneously exhibiting nuclear quadrupolar resonance and nuclear magnetic resonance, or double nuclear quadrupolar resonance
CA2109827C (en) Detection of explosives by nuclear quadrupole resonance
Farley Precise measurement of the anomalous magnetic moment of the muon
US4499380A (en) Apparatus and method for determining the hydrogen content of a substance
US5539309A (en) Method and apparatus for sample monitoring
US5159617A (en) Explosive detection method and apparatus using selective gamma ray resonance absorption
JPH0240997B2 (en)
KR20060020631A (en) Nmr measuring system
GB2420619A (en) Apparatus and method for examination of liquid containing articles
US8773127B2 (en) Transmission line array for explosive detection using nuclear quadrupole resonance
WO2004049009A1 (en) Mine detector with nqr-squid
JPH08502824A (en) Plastic flow device by fixed frequency pulsed NMR
JP2007501411A (en) Magnetic resonance method
JP2004177131A (en) Non-contact type baggage detector
EP0074588A1 (en) Imaging apparatus using nuclear magnetic resonance
JPS62278439A (en) Water content monitoring apparatus
KR20110111399A (en) Method for the non-intrusive detection of a chemical element
Miller et al. Application of fast neutron spectroscopy/radiography to airport security
JP6630207B2 (en) Apparatus and method for measuring thermal neutron permeation amount of powder or granulated substance, and apparatus and method for quantitative analysis of element in powder or granulated substance
KR100306502B1 (en) Nitrogen Detector and Detection Method
Hormann et al. Characterization of Porous Materials by Magnetic Relaxometry in the Earth’s Field
RU2247361C1 (en) Nuclear quadrupole resonance (nqr)detector of explosives, narcotics and metals hidden under clothes of people
RU2594116C9 (en) Method of determining weight silicate deposits per unit length of channel
JP4077728B2 (en) Water content measurement of plutonium oxide canister