JPS62278253A - Manufacture of nb3al superconducting wire - Google Patents

Manufacture of nb3al superconducting wire

Info

Publication number
JPS62278253A
JPS62278253A JP61120427A JP12042786A JPS62278253A JP S62278253 A JPS62278253 A JP S62278253A JP 61120427 A JP61120427 A JP 61120427A JP 12042786 A JP12042786 A JP 12042786A JP S62278253 A JPS62278253 A JP S62278253A
Authority
JP
Japan
Prior art keywords
rod
solid solution
nb3al
tube
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61120427A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61120427A priority Critical patent/JPS62278253A/en
Publication of JPS62278253A publication Critical patent/JPS62278253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a long-size Nb3Al superconducting wire excellent in superconducting characteristics, by subjecting a rod of an Nb-Al alloy with a specific composition to heating to a high temp. to allow it to enter into solid solution, to rapid cooling, and then to heating again to a specific temp. so as to precipitate Nb3Al in the solid solution. CONSTITUTION:An alloy rod 20 which has a composition consisting of 7-8.8wt% Al and the balance Nb and in which Nb3Al layers 20a, NbAl2 layers 20b, and NbAl3 layers 20c are present as a mixture is prepared by an arc melting method, etc. This rod is subjected to heating at 1,700-1,980 deg.C for several - several tens minutes and then to very rapid cooling at >=10<5> deg.C/sec cooling rate to undergo solution heat treatment so as to be formed into an Nb solid solution structure 22. The rod with this solid solution structure is covered with a barrier tube 23 composed of Ta or Nb, whose outside is further covered with a stabilizing material 24 composed of Cu tube so as to be formed into a composite tube 25. This tube 25 is subjected to diameter reduction working by wiredrawing so as to be formed into a wire 26. Then, the plural pieces of the above wires 26 are assembled, which is covered with a casing tube 27 made of pure copper to undergo multilandifying. Subsequently, the resulting wire is subjected to diameter reduction until the final diameter is reached and then to heating up to 600-1,000 deg.C to precipitate Nb3Al, so that superconducting wire 28 having high critical temp. can be manufactured.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野」 本発明は臨界温度の高い超電導材として知られるN b
 3 A l系超電導線の製造方法に関するものである
[Detailed Description of the Invention] 3. Detailed Description of the Invention "Field of Industrial Application" The present invention uses Nb, which is known as a superconducting material with a high critical temperature.
The present invention relates to a method for manufacturing a 3A1-based superconducting wire.

「従来の技術」 従来、Nb3Al系超電導線を製造する方法として第2
図と第3図を基に以下に説明する2つの方法が知られて
いる。
"Conventional technology" Conventionally, the second method for manufacturing Nb3Al-based superconducting wires was
Two methods are known, which will be explained below with reference to FIG.

第2図に示す第1の従来方法は、まず、Nb粉末とAl
粉末からなる混合粉末lをTa等からなる補強管2の内
部に第2図(A)に示すように封入し、更に、加工性を
確保するためにCu等からなる金属管3を被覆して複合
ロッド4を作製する。次に、この複合ロッド4を第2図
(B)に示すように縮径するとともに、金属管3を硝酸
溶液等の溶解液で第2図(C)に示すように化学的に除
去した後に、1200℃以上の温度に数十分加熱する熱
処理を施してNb3Al相を生成させ、更に外周部にC
uメッキ層等の安定化材5を形成して第2図(D)に示
すNb5Al系超電導線6を製造する方法である。
The first conventional method shown in FIG. 2 is to first use Nb powder and Al
A mixed powder 1 made of powder is sealed inside a reinforcing tube 2 made of Ta or the like as shown in FIG. A composite rod 4 is produced. Next, the composite rod 4 is reduced in diameter as shown in FIG. 2(B), and the metal tube 3 is chemically removed with a solution such as nitric acid solution as shown in FIG. 2(C). , heat treatment is performed to a temperature of 1200°C or higher for several tens of minutes to generate a Nb3Al phase, and furthermore, carbon is added to the outer periphery.
This is a method of manufacturing a Nb5Al based superconducting wire 6 shown in FIG. 2(D) by forming a stabilizing material 5 such as a U plating layer.

また、第3図に示す第2の従来方法は、まず、Nbロッ
ド7にAl管8を被せて第3図(A)に示す複合ロッド
9を作製し、続いてこの複合ロッド9を縮径して複数本
集合し、Nb、Ta等の高融点材料からなる補強管10
の内部に第3図(B)に示すように挿入して多心複合ロ
ッド11を作製す名。
In addition, in the second conventional method shown in FIG. 3, first, a Nb rod 7 is covered with an Al pipe 8 to produce a composite rod 9 shown in FIG. 3(A), and then this composite rod 9 is reduced in diameter. A reinforcing tube 10 made of a high melting point material such as Nb and Ta is assembled into a plurality of reinforcing tubes 10
A multi-core composite rod 11 is produced by inserting the rod into the inside of the rod as shown in FIG. 3(B).

続いてこの多心複合ロッド11を縮径した後に1200
℃以上の温度に数分〜数十分間加熱する熱処理を施して
Nb3Al相を生成させ、Nb3Al系超電導線を製造
する方法である。
Subsequently, after reducing the diameter of this multi-core composite rod 11,
In this method, a Nb3Al-based superconducting wire is produced by performing heat treatment at a temperature of .degree. C. or higher for several minutes to several tens of minutes to generate a Nb3Al phase.

「発明が解決しようとする問題点」 前述した各方法にあっては、いずれらNbffAl生成
用の熱処理温度が高いために、生成したNb3Alの結
晶粒が粗大化する傾向にあり、得られた超電導線の超電
導特性が低い問題かあった。
"Problems to be Solved by the Invention" In each of the above-mentioned methods, because the heat treatment temperature for NbffAl production is high, the crystal grains of the produced Nb3Al tend to become coarse, and the resulting superconducting There may have been a problem with the wire's poor superconducting properties.

また、NbaAl系超電導線を用いて超電導マグネット
を製造しようとする場合、熱処理によってNb、Alを
生成させる前の線材を巻胴に巻き付け、この後に熱処理
を施してNb5Al相を生成させて超電導マグネットを
製造する方法がある。ところが、この方法を採用する場
合、線材と巻胴を一括して1200℃以上もの高温度に
加熱する必要があるために、巻胴を構成する構造材に特
殊な耐熱材料を用いなくてはならない間層があった。
In addition, when trying to manufacture a superconducting magnet using an NbaAl-based superconducting wire, the wire before being heat-treated to generate Nb and Al is wound around a winding drum, and then heat-treated to generate an Nb5Al phase to form a superconducting magnet. There is a way to manufacture it. However, when this method is adopted, it is necessary to heat the wire and the winding drum all at once to a high temperature of over 1,200°C, so a special heat-resistant material must be used for the structural material that makes up the winding drum. There was an interlayer.

一方、前記第1の従来方法において、長尺の超電導線を
製造するために長尺の補強管2を縮径した場合、補強管
2に部分的にくびれ等の変形を生じる問題があり、この
ため前記第1の従来方法は、長尺の超電導線を製造でき
ない欠点があった。
On the other hand, in the first conventional method, when the diameter of the long reinforcing tube 2 is reduced in order to manufacture a long superconducting wire, there is a problem in that the reinforcing tube 2 is partially deformed such as constriction. Therefore, the first conventional method has the disadvantage that it is not possible to manufacture long superconducting wires.

本発明は、前記問題に鑑みてなされたらので、超電導特
性に優れた長尺のNbjAl系超電導線を製造できると
ともに、超電導マグネットを製造しようとする場合に、
超電導マグネットの巻胴等の構造材料に与える制約も少
ないNbjAl系超電導線を製造する方法を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, so that it is possible to manufacture a long NbjAl-based superconducting wire with excellent superconducting properties, and when manufacturing a superconducting magnet,
It is an object of the present invention to provide a method for manufacturing an NbjAl-based superconducting wire that has fewer restrictions on structural materials such as the winding drum of a superconducting magnet.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、Al7〜8.
8重量%を含有し、残部Nbの組成を有するNb−Al
合金からなる合金ロンドを作製し、この合金ロッドを1
700〜1980℃の温度に加熱して固溶体化するとと
もに、105℃/秒以上の冷却速度で急冷して固溶体ロ
ッドを作製し、続いてこの固溶体ロットを600〜10
00℃の温度に加熱して固溶体ロットの内部にNb3A
lを析出さ、せろものである。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides Al7-8.
Nb-Al containing 8% by weight, with the balance being Nb
An alloy rod made of an alloy is made, and this alloy rod is
A solid solution rod is produced by heating to a temperature of 700 to 1980°C and rapidly cooling at a cooling rate of 105°C/second or more, and then this solid solution lot is heated to a temperature of 600 to 10
Nb3A inside the solid solution lot by heating to a temperature of 00°C.
1 is precipitated, and it is a cellulose.

「作用 」 固溶体化により各種の金属間化合物相を消失させたロッ
ドを急冷することにより固溶体単相状聾の固溶体ロッド
を作製し、この後に600〜1000℃に加熱すること
によってN b 3 A lが析出する。
"Function" A solid solution single-phase deaf solid solution rod is produced by rapidly cooling a rod in which various intermetallic compound phases have disappeared by solid solution formation, and then heated to 600 to 1000°C to form a N b 3 A l is precipitated.

「実施例」 第1図は、本発明の一実施例を工程順に説明するための
もので、Nb3Al系超電導線を製造するには、まず、
Al 7〜8.8重量%を含有し、残部Nbの組成を有
する合金ロッド20を公知のアーク溶解法や誘導加熱溶
解法を実施して作製する。
"Example" Figure 1 is for explaining an example of the present invention in the order of steps. In order to manufacture a Nb3Al based superconducting wire,
An alloy rod 20 having a composition of 7 to 8.8% by weight of Al and the balance being Nb is produced by performing a known arc melting method or an induction heating melting method.

このように作製された合金ロッド20にあっては、第1
図(A)に示すように、N b s A 1層20aと
NbAl2層20bとNbA13層20cとが内部に混
在した断面構造となっており、合金ロッド20自体、非
常に脆く、加工性の低い組織となっている。
In the alloy rod 20 produced in this way, the first
As shown in Figure (A), it has a cross-sectional structure in which the Nb s A 1 layer 20a, the NbAl 2 layer 20b, and the NbA 13 layer 20c are mixed inside, and the alloy rod 20 itself is very brittle and has low workability. It is organized.

次に、前記合金ロンド20に溶体化処理を徊す。Next, the alloy iron 20 is subjected to solution treatment.

この溶体化処理は、合金ロンド20を1700℃以上の
温度であって1980℃以下の温度に数分から数十分加
熱し、更に、105℃/秒以上の冷却速度で急冷処理す
ることによって行う。なお、前記急冷処理は、ぬれ性の
良好なPb5nのハンダ浴中に投入する等の方法を採用
する。
This solution treatment is performed by heating the alloy Rondo 20 to a temperature of 1700° C. or higher and 1980° C. or lower for several minutes to several tens of minutes, and then rapidly cooling it at a cooling rate of 105° C./second or higher. Note that the rapid cooling treatment is carried out by a method such as putting it into a Pb5n solder bath with good wettability.

前記加熱操作によって合金ロッド20の内部は第1図(
B)に示すようなNb固溶体組織となるとともに、前記
急冷操作によりこのNb固溶体組織が常温状態まで移行
して第1図(C)に示す組織を有するNb固溶体単相構
造の固溶体ロッド22を得ることができる。このように
作成された固溶体ロッド22においては、加工性に優れ
たNb固溶体単相?■織となっている関係から、優れた
加工性を有する。
As a result of the heating operation, the interior of the alloy rod 20 becomes as shown in FIG.
The Nb solid solution structure as shown in B) is obtained, and the Nb solid solution structure is transferred to a room temperature state by the quenching operation to obtain the solid solution rod 22 having the Nb solid solution single-phase structure having the structure shown in FIG. 1(C). be able to. In the solid solution rod 22 created in this way, a single phase of Nb solid solution with excellent workability is used. ■It has excellent workability due to its woven structure.

なお、前記合金ロッド20において、Al含有率の上限
を8.8重上%に限定したのは、NbAl2元系合金に
おいて、固溶体化の温度である1700〜19806C
においては、Nbに対するAlの固溶限が8.8重量%
であるためである。更に、Alの歯打率を前記値より大
きくすると、NbA13相の叶出量が増加するとともに
合金ロンドの融点が降下して固溶体化温度でロッドが溶
融する問題も生じる。一方、Al含有率の下限を7重量
%としたのは、これより低い含有率であるとNb5Al
の析出が不足するためである。
In addition, in the alloy rod 20, the upper limit of the Al content is limited to 8.8% by weight or above because the solid solution temperature is 1700 to 19806C in the NbAl binary alloy.
In this case, the solid solubility limit of Al in Nb is 8.8% by weight.
This is because. Furthermore, when the tooth striking rate of Al is made larger than the above value, the amount of NbA13 phase protruding increases and the melting point of the alloy rod decreases, causing the problem that the rod melts at the solid solution temperature. On the other hand, the reason why the lower limit of the Al content is set to 7% by weight is that if the content is lower than this, Nb5Al
This is due to insufficient precipitation.

また、冷却速度を10’℃/秒以上に限定したのは、冷
却速度を10”C/秒程度に設定すると、NbAL相が
析出して固溶体ロッドが脆くなる関係から、前記N b
A 1.相の叶出を阻止するためである。
In addition, the reason why the cooling rate was limited to 10'C/sec or more is because if the cooling rate is set to about 10'C/sec, the NbAL phase will precipitate and the solid solution rod will become brittle.
A1. This is to prevent the appearance of the phase.

前記のように作成された固溶体ロッド22に、第1図(
D)に示すように、Ta、またはNb等の金属からなる
拡散バリヤ用のバリヤW23を被せ、更に、その外方に
安定化材となる銅管24を被せて複合管25を作成する
The solid solution rod 22 prepared as described above is shown in FIG.
As shown in D), a barrier W23 for a diffusion barrier made of a metal such as Ta or Nb is covered, and a copper tube 24 serving as a stabilizing material is further placed on the outside thereof to create a composite tube 25.

次いで前記複合管25に押出や線引等の縮径加工を施し
て第1図(E)に示す素線26を作製し、この素線26
を複数本集合して純銅からなる外被管27を被せてマル
チストランド化し、更に最終的に得るべき超電導線の直
径と同じ直径まで縮径して基線28を作成する。
Next, the composite tube 25 is subjected to a diameter reduction process such as extrusion or wire drawing to produce a wire 26 shown in FIG. 1(E).
A plurality of superconducting wires are gathered together and covered with a jacket tube 27 made of pure copper to form a multi-strand, and the base wire 28 is created by reducing the diameter to the same diameter as the diameter of the superconducting wire to be finally obtained.

次にこの基線28を600℃以上であって1000℃以
下の温度に数時間から数十時間加熱する熱処理を施す。
Next, this base line 28 is subjected to heat treatment in which it is heated to a temperature of 600° C. or more and 1000° C. or less for several hours to several tens of hours.

この熱処理によって基線28の内部では、Nb固溶体中
からNbaA+超電導金属間化合物相が叶出し、基線2
8は超電導線となる。
Through this heat treatment, an NbaA+superconducting intermetallic compound phase emerges from the Nb solid solution inside the base line 28, and the base line 28
8 is a superconducting wire.

なお、前記熱処理においては、600〜1000℃に加
熱することによってNb5Al相を析出さ什ることがで
きるために、1200℃程度に加熱する必要のあった従
来方法に比較して熱処理温度を低くすることができる。
In addition, in the above heat treatment, since the Nb5Al phase can be precipitated by heating to 600 to 1000 °C, the heat treatment temperature is lower than that in the conventional method, which requires heating to about 1200 °C. be able to.

このためNb1A1結晶粒の粗大化を阻止することがで
き、微細な結晶組織を有し、良好な超電導特性を有する
超電導線を製造できる効果がある。また、前記基線28
の内部に配した固溶体ロッド22は加工性に優れるため
に、基線28の加工性も良好であり、このため長尺の超
電導線を製造することができる。
Therefore, coarsening of Nb1A1 crystal grains can be prevented, and a superconducting wire having a fine crystal structure and good superconducting properties can be manufactured. In addition, the baseline 28
Since the solid solution rod 22 arranged inside the wire has excellent workability, the workability of the base line 28 is also good, and therefore a long superconducting wire can be manufactured.

一方、Nb3Al超電導線を用いて超電導マグネットを
製造する場合には、前記熱処理を行う前の加工性の良好
な基線28を巻胴に巻き付け、巻胴ごと基線28に熱処
理を施してNb5A1超電導金属間化合物相を析出させ
て超電導マグネットを製造する。この場合、巻胴を60
0〜1000℃に加熱することによってNb3Al相を
析出させることができるために、巻胴を特別な耐熱材料
で構成する必要がなくなり、巻胴をステンレス鋼等で構
成できるようになる。
On the other hand, when manufacturing a superconducting magnet using Nb3Al superconducting wire, the base line 28 with good workability before the heat treatment is wound around the winding drum, and the base line 28 is heat-treated together with the winding drum to form a bond between the Nb5A1 superconducting metals. A superconducting magnet is manufactured by precipitating a compound phase. In this case, the winding drum is 60
Since the Nb3Al phase can be precipitated by heating to 0 to 1000°C, there is no need for the winding drum to be made of a special heat-resistant material, and the winding drum can be made of stainless steel or the like.

ところで前記実施例においては、素線26の集合と縮径
加工を1回のみ行う例について説明したが、素線26の
集合と縮径加工は複数回行っても良く、集合する本数も
任意に選定することができる。
Incidentally, in the above embodiment, an example was explained in which the gathering of the strands 26 and the diameter reduction process are performed only once, but the gathering of the strands 26 and the diameter reduction process may be performed multiple times, and the number of strands to be gathered can be set arbitrarily. can be selected.

「製造例」 高純度Al(純度99.99%以上)の小塊とNb(純
度、99.5%以上)の小塊を、A115重量%、残部
Nbの組成となるようにるつぼの内部に挿入し、真空中
で誘導加熱溶解し、鋳造して外径10mm合金ロッドを
作成した。(なお、ここでAlを15重奄%含有させる
理由は、るつぼの内部をNbの溶融温度に加熱して各小
塊を溶融させた場合に、Atの一部が蒸発して損なわれ
る関係から、製造する合金ロッドに規定量のAlを含有
させるためにAlの含有量を増加しである。)このよう
に製造された合金ロッドは、A18重量%を含有し、残
部Nbの組成を有するもので、X線回折分析の結果、N
b3Al相とNbAL相とN b A 13相の3つの
化合物相の存在を確認できた。
"Production Example" A small lump of high-purity Al (purity of 99.99% or more) and a small lump of Nb (purity of 99.5% or more) are placed inside a crucible such that the composition is 115% by weight of A and the balance is Nb. It was inserted, melted by induction heating in a vacuum, and cast to create an alloy rod with an outer diameter of 10 mm. (The reason why Al is contained at 15% by weight here is that when the inside of the crucible is heated to the melting temperature of Nb and each small lump is melted, a part of At will evaporate and be damaged. (In order to make the manufactured alloy rod contain a specified amount of Al, the Al content is increased.) The alloy rod thus manufactured contains 18% by weight of A, and the balance has a composition of Nb. As a result of X-ray diffraction analysis, N
The presence of three compound phases, b3Al phase, NbAL phase, and NbA13 phase, was confirmed.

次に縦型管状炉を用い、Arガス雰囲気中において、前
記合金ロッドを1800℃に10分間加熱して固溶体化
するとともに、その後直ちにPb−5nのハンダ浴中に
投入して急冷し、固溶体ロンドを作成した。この急冷処
理において冷却速度は約り05℃/秒であった。
Next, using a vertical tube furnace, in an Ar gas atmosphere, the alloy rod was heated to 1800°C for 10 minutes to turn it into a solid solution, and then immediately put into a Pb-5n solder bath to be rapidly cooled to form a solid solution. It was created. In this rapid cooling process, the cooling rate was approximately 05°C/sec.

前記急冷処理の後で前記ロッドの一部を切り出してX線
回折分析を行ったところ、Nb固溶体の回折パターンと
、微量のNb3Alの回折パターンを観察することがで
きた。
After the rapid cooling treatment, a part of the rod was cut out and subjected to X-ray diffraction analysis, and it was possible to observe a diffraction pattern of Nb solid solution and a trace amount of Nb3Al.

次いで前記固溶体ロンドの表面を切削加工して表面処理
を施し、外径8mmに仕上げた。次に、この固溶体ロッ
ドをAlの拡散障壁層となる外径l0mm、内径9mm
のNbパイプの中に挿入し、更に、外径15mm、内径
11’mmの安定化銅パイプを疲せ、縮径加工を施して
直径1mmの素線を作成した。この素線を19本集合し
て純Cuバイブに挿入し、更に′縮径加工を施して直径
1mmの基線を作成した。
Next, the surface of the solid solution rond was subjected to surface treatment by cutting, and finished to an outer diameter of 8 mm. Next, this solid solution rod was made into a material with an outer diameter of 10 mm and an inner diameter of 9 mm, which will become an Al diffusion barrier layer.
Further, a stabilized copper pipe with an outer diameter of 15 mm and an inner diameter of 11' mm was fatigued and subjected to diameter reduction processing to create a wire with a diameter of 1 mm. Nineteen of these strands were assembled and inserted into a pure Cu vibrator, and further diameter-reduced to create a base line with a diameter of 1 mm.

次に、前記基線を750℃に10時間加熱することによ
ってNb固溶体中からf’Jb3A+を析出させ、Nb
5A+超電導線を製造した。
Next, by heating the baseline to 750°C for 10 hours, f'Jb3A+ is precipitated from the Nb solid solution, and Nb
A 5A+ superconducting wire was manufactured.

「発明の効果」 以上説明したように本発明は、AlとNbを含有する合
金ロッドを固溶体化した後に急冷し、Nb固溶体単相の
固溶体ロッドを作成し、この固溶体ロッドを600〜t
ooo℃に加熱する熱処理を施し、Nb3Alを析出さ
せてNbzAl系超電導線を製造するものであり、12
00℃程度に加熱していた従来方法に比較して加熱温度
を低く設定できるために、Nb3Al結晶粒の粗大化を
阻止することができ、優れた超電導特性を有する超電導
線を製造できる効果がある。
"Effects of the Invention" As explained above, the present invention makes an alloy rod containing Al and Nb into a solid solution and then rapidly cools it to create a solid solution rod with a single phase of Nb solid solution.
NbzAl-based superconducting wire is manufactured by applying heat treatment to ooo°C to precipitate Nb3Al, and 12
Since the heating temperature can be set lower than in the conventional method, which heated to around 00°C, it is possible to prevent coarsening of Nb3Al crystal grains, which has the effect of producing a superconducting wire with excellent superconducting properties. .

また、合金ロッドを1700〜1980℃に加熱して固
溶体化処理するために、合金ロッドを確実に固溶体化す
ることができるとともに、この合金ロッドを105℃/
秒以上の冷却速度で冷却するために、前記のように生成
させた固溶体相を常温まで移行させてNb固溶体単相組
織を有する固溶体ロッドを確実に得ることができ、この
固溶体ロッドを用いてNb3Al系超電導線を製造する
ことができる。
In addition, since the alloy rod is heated to 1700 to 1980°C to undergo solid solution treatment, it is possible to reliably turn the alloy rod into a solid solution, and the alloy rod can be heated to 105°C/
In order to cool at a cooling rate of seconds or more, the solid solution phase generated as described above can be transferred to room temperature to reliably obtain a solid solution rod having a Nb solid solution single phase structure. system superconducting wire can be manufactured.

更に、Nb固溶体単相組織を有する固溶体ロッドは加工
性に富むために、ロッドの加工性が向上して縮径加工が
容易になる。従って、長尺の固溶体ロッドの加工が可能
になり、長尺のNb5Al系超電導線を製造できる効果
がある。
Furthermore, since the solid solution rod having the Nb solid solution single-phase structure is highly workable, the workability of the rod is improved and diameter reduction processing becomes easy. Therefore, it becomes possible to process a long solid solution rod, and there is an effect that a long Nb5Al-based superconducting wire can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(G)は、本発明の一実施例を工程順に
説明するためのもので、第1図(A)は合金ロッドの断
面図、第1図(B)は固溶体化したロッドの断面図、第
1図(C)は冷却後のロッドの断面図、第1図(D)は
複合線の断面図、第1図(E)は複合線の集合状態を示
す断面図、第1図(F)は多心複合線の横断面図、第1
図(G)は基線の横断面図、第2図(A)〜(D)は従
来方法の第1の例を示゛すもので、第2図(A)は複合
ロッドの横2断面図、第2図(B)は縮径後の複合ロッ
ドを示す横断面図、第2図(C)は金属管を除去した状
態を示す横断面図、第2図(D)は超電導線の横断面図
、第3図は従来方法の第2の例を示すもので、第3図(
A)は複合ロッドの横断面図、第3図(B)は多心複合
ロッドの横断面図である。 20・・・・・・合金ロッド、   21・・・・・・
化合物層、22・・・・・・固溶体ロッド、  23・
・・・・・バリヤ管、24・・・・・・銅管、    
  25・・・・・・複合管、26・・・・・・素線、
      27・・・・・・外被管、28・・・・・
・基線。
FIGS. 1(A) to (G) are for explaining one embodiment of the present invention in the order of steps. FIG. 1(A) is a cross-sectional view of an alloy rod, and FIG. 1(B) is a solid solution treatment. Figure 1 (C) is a cross-sectional view of the rod after cooling, Figure 1 (D) is a cross-sectional view of the composite wire, and Figure 1 (E) is a cross-sectional view showing the assembled state of the composite wire. , Figure 1 (F) is a cross-sectional view of the multi-core composite wire, 1st
Figure (G) is a cross-sectional view of the base line, Figures 2 (A) to (D) show the first example of the conventional method, and Figure 2 (A) is a horizontal cross-sectional view of the composite rod. , Figure 2(B) is a cross-sectional view showing the composite rod after diameter reduction, Figure 2(C) is a cross-sectional view showing the state with the metal tube removed, and Figure 2(D) is a cross-sectional view of the superconducting wire. The top view and Figure 3 show the second example of the conventional method, and Figure 3 (
A) is a cross-sectional view of the composite rod, and FIG. 3(B) is a cross-sectional view of the multicore composite rod. 20... Alloy rod, 21...
Compound layer, 22...Solid solution rod, 23.
...Barrier pipe, 24...Copper pipe,
25...Composite pipe, 26...Element wire,
27...Sheath tube, 28...
・Baseline.

Claims (1)

【特許請求の範囲】[Claims] Al7〜8.8重量%を含有し、残部Nbの組成を有す
るNb−Al合金からなる合金ロッドを作製し、この合
金ロッドを1700〜1980℃の温度に加熱してNb
固溶体化するとともに、10^5℃/秒以上の冷却速度
で急冷して固溶体ロッドを作製し、続いてこの固溶体ロ
ッドを600〜1000℃の温度に加熱して固溶体ロッ
ドの内部にNb_3Alを析出させることを特徴とする
Nb_3Al系超電導線の製造方法。
An alloy rod made of a Nb-Al alloy containing 7 to 8.8% by weight of Al and the balance being Nb was prepared, and this alloy rod was heated to a temperature of 1700 to 1980°C to produce Nb.
At the same time as turning into a solid solution, a solid solution rod is created by rapidly cooling at a cooling rate of 10^5°C/second or more, and then this solid solution rod is heated to a temperature of 600 to 1000°C to precipitate Nb_3Al inside the solid solution rod. A method for manufacturing a Nb_3Al-based superconducting wire, characterized by the following.
JP61120427A 1986-05-26 1986-05-26 Manufacture of nb3al superconducting wire Pending JPS62278253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120427A JPS62278253A (en) 1986-05-26 1986-05-26 Manufacture of nb3al superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120427A JPS62278253A (en) 1986-05-26 1986-05-26 Manufacture of nb3al superconducting wire

Publications (1)

Publication Number Publication Date
JPS62278253A true JPS62278253A (en) 1987-12-03

Family

ID=14785953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120427A Pending JPS62278253A (en) 1986-05-26 1986-05-26 Manufacture of nb3al superconducting wire

Country Status (1)

Country Link
JP (1) JPS62278253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059666A1 (en) * 2002-12-25 2004-07-15 National Institute For Materials Science PROCESS FOR PRODUCING Nb3Al SUPERCONDUCTIVE WIRE ROD AND Nb3Al SUPERCONDUCTIVE WIRE ROD PRODUCED BY THE PROCESS
JP2005145012A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Manufacturing method for metallic member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059666A1 (en) * 2002-12-25 2004-07-15 National Institute For Materials Science PROCESS FOR PRODUCING Nb3Al SUPERCONDUCTIVE WIRE ROD AND Nb3Al SUPERCONDUCTIVE WIRE ROD PRODUCED BY THE PROCESS
US7134181B2 (en) 2002-12-25 2006-11-14 National Institute For Materials Science Method for producing Nb3Al superconductive wire
JP2005145012A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Manufacturing method for metallic member

Similar Documents

Publication Publication Date Title
KR20180087874A (en) Improving strand critical current density in nb3sn superconducting strands via a novel heat treatment
EP0234071B1 (en) Method of fabricating superconductive electrical conductor
JPS6117325B2 (en)
JPS62278253A (en) Manufacture of nb3al superconducting wire
JP4556343B2 (en) Manufacturing method of long composite
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
WO2006129861A1 (en) Nb3Sn SUPERCONDUCTING WIRE, PROCESS FOR PRODUCING THE SAME, AND SINGLE-CORE COMPOSITE WIRE USED IN PRODUCTION OF Nb3Sn SUPERCONDUCTING WIRE
JPS62267050A (en) Production of in-situ rod for fiber dispersion type superconducting wire
JPS5827605B2 (en) 100% of the population
JPS6021212B2 (en) Method for manufacturing superconducting materials
JP4386306B2 (en) Method for producing Nb3Al compound-based superconducting wire
JPH03283322A (en) Manufacture of nb3al superconductor
JPS60130010A (en) Method of producing compound superconductive wire
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPS637353A (en) Production of fiber dispersion type superconductive wire
RU94040892A (en) Methods for producing solid and stranded superconducting wires
JPS62240750A (en) Manufacture of nb3sn superconducting wire
JPS58221243A (en) Method for refining copper alloy
JPH0419920A (en) Manufacture of nb3sn superconductor wire
JPS6357750A (en) Manufacture of nb3sn superconducting wire
JPH0419919A (en) Manufacture of nb3sn superconductor wire
JPH0745135A (en) A3 b type compound superconducting wire and manufacture thereof
JPH03281759A (en) Manufacture of nb-ti series alloy for superconducting wire
JPS63241828A (en) Manufacture of superconducting wire
JPS6214631B2 (en)