JPS62277548A - Ethanol sensor - Google Patents

Ethanol sensor

Info

Publication number
JPS62277548A
JPS62277548A JP61121833A JP12183386A JPS62277548A JP S62277548 A JPS62277548 A JP S62277548A JP 61121833 A JP61121833 A JP 61121833A JP 12183386 A JP12183386 A JP 12183386A JP S62277548 A JPS62277548 A JP S62277548A
Authority
JP
Japan
Prior art keywords
ethanol
electrode
concn
value
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61121833A
Other languages
Japanese (ja)
Other versions
JPH0416743B2 (en
Inventor
Yasushi Kitagawa
泰 北川
Masao Karube
征夫 軽部
Koji Nakajima
中島 弘二
Minoru Ameyama
飴山 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP61121833A priority Critical patent/JPS62277548A/en
Publication of JPS62277548A publication Critical patent/JPS62277548A/en
Publication of JPH0416743B2 publication Critical patent/JPH0416743B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To selectively sense the ethanol in a soln. and to measure the concn. thereof by providing the cell membrane fraction of acetic acid bacteria as an immobilized film on an O2 electrode. CONSTITUTION:The sensor formed by mounting the immobilized film 2 of the cell membrane fraction of the acetic acid bacteria to the O2 electrode 1, enclosing the same further with a gas permeable membrane 3 and fixing the same with an O-ring is connected to a recorder 4. The electrode 1 is then inserted into a thermostatic vessel 5 and the inside of the vessel 5 is filled with water, etc. The water is stirred by a magnetic stirrer 6, etc. The output of the electrode 1 stabilizes as well when the dissolved oxygen of the liquid in the vessel 5 attains a specified state. The output current value of the electrode 1 in this stage is measured. The output current decreases when an ethanol soln. of a known concn. is added to the vessel 5. The current value when the output current attains the specified state is measured and the current decrease value is measured. The calibration curve indicating the relation between the ethanol concn. and the current decrease value is formed by repeating the similar operation. The current decrease value is thereafter determined by using a sample soln. of a known concn. and the concn. corresponding to the value obtd. is read from the previously formed calibration curve. The concn. of the sample liquid is thus known.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は溶液中のエタノールを選択的に感知してその濃
度を測定することができるエタノールセンサーに関する
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an ethanol sensor that can selectively sense ethanol in a solution and measure its concentration.

[従来の技術] 溶液中のエタノールを感知するセンサーとしては、古く
は溶液中に浸したガス透過性チューブにキャリヤーガス
を流し、チューブ内に透過したエタノールを外部の検出
器(ガスクロマトグラフィー、赤外線ガス検出器など)
で検知する装置が知られている。このものはオンライン
計測が可能であり、実際の発酵液に適用してエタノール
測定に使用された例もあるが、装置が複雑で大型である
ため、エタノール測定を簡便に行えない不都合があった
[Conventional technology] In the past, a sensor for sensing ethanol in a solution used a carrier gas flowed through a gas-permeable tube immersed in the solution, and the ethanol that permeated into the tube was detected using an external detector (gas chromatography, infrared rays, etc.). gas detector, etc.)
Devices that detect this are known. This device allows online measurement and has been used to measure ethanol in actual fermentation liquids, but the device is complex and large, making it difficult to measure ethanol easily.

これに対して、比較的小型のアルコールセンサーとして
は、酵素を用いたものが知られており、具体的には酵素
としてアルコールセンサ−ゼ(AOD)を使用したもの
と、アルコールデヒドロゲナーゼ(ADI()を補酵素
であるニコチンアミドアデニンジヌクレオチド(NAD
)と共に使用したものが開発されている。
On the other hand, relatively small alcohol sensors that use enzymes are known, specifically those that use alcohol sensorase (AOD) and alcohol dehydrogenase (ADI). nicotinamide adenine dinucleotide (NAD), which is a coenzyme.
) has been developed for use with

(AOD) R−CH20H+  O,□ R−CH○ + H2O2・・(1) (ADll) R−CH20H+  NAD”: R−CH○ +N A D H+ H’  ・・(2)
前者は式(1)によって生成したH2O2又は消費さ九
た02を、H2O,電極又は02電極で測定するセンサ
ーであって、構成が簡単で比較的容易に製作できること
から、ビール、ワイン等のエタノール分析に利用された
実例がある。
(AOD) R-CH20H+ O, □ R-CH○ + H2O2...(1) (ADll) R-CH20H+ NAD": R-CH○ +N A D H+ H'...(2)
The former is a sensor that measures H2O2 generated by formula (1) or consumed 02 with a H2O electrode or 02 electrode, and because it has a simple configuration and can be manufactured relatively easily, it is suitable for use with ethanol such as beer and wine. There are examples that have been used for analysis.

一方、後者のADHを用いるセンサーは、上式(2)に
よって生成したNADHを電極でNADに酸化し、この
時流れる電流を測定するものである。
On the other hand, the latter sensor using ADH oxidizes NADH generated by the above formula (2) to NAD using an electrode, and measures the current flowing at this time.

また、アルコール資化性酵母(Trichosporo
nbassicae)を02電極上に固定し、酵母が資
化して呼吸活性が上昇することによる酸素の減少を。
In addition, alcohol-assimilating yeast (Trichosporo
nbassicae) was immobilized on the 02 electrode, and the decrease in oxygen was caused by yeast assimilation and increased respiratory activity.

02電極で測定するアルコールセンサーも従来知られて
いる。
Alcohol sensors that measure using 02 electrodes are also conventionally known.

[発明が解決しようとする問題点] 従来知られている小型のアルコールセンサーのなかにあ
って、アルコールセンサ−ゼを使用したものは、現在使
用可能なアルコールオキシターゼ自体の選択性が低く、
メタノールにもエタノールと同様に感応するため、メタ
ノールが共存するエタノール溶液では、そのエタノール
濃度を正確に測定できない。一方、アルコールデヒドロ
ゲナーゼを使用するものは、選択性が高く、メタノール
には応答しない利点を備えているものの、電極の構成が
複雑であり、しかも高価なニコチンアミドアデニンジヌ
クレオチドを、補酵素として併用しなければならない不
利がある。
[Problems to be Solved by the Invention] Among the conventionally known small-sized alcohol sensors, those using alcohol sensorase have low selectivity compared to currently available alcohol oxidase itself.
Since it is sensitive to methanol in the same way as ethanol, it is not possible to accurately measure the ethanol concentration in an ethanol solution in which methanol coexists. On the other hand, those that use alcohol dehydrogenase have the advantage of having high selectivity and not responding to methanol, but they have a complicated electrode structure and use expensive nicotinamide adenine dinucleotide as a coenzyme. There are disadvantages that must be met.

また、アルコール資化性酵母を使用したセンサーは、構
成が簡単で比較的容易に製作できる利点を有しているが
、低pHでは酢酸等の有機酸にも、応答してしまう不都
合がある。
Further, a sensor using alcohol-assimilating yeast has the advantage of having a simple structure and being relatively easy to produce, but has the disadvantage that it responds to organic acids such as acetic acid at low pH.

[問題、慨を解決するための手段] 本発明者等は、補酵゛素を必要としないアルコールデヒ
ドロゲナーゼと電子伝達系酵素とが共役した複合酵素群
(アルコール酸化酵素系)が。
[Means for Solving the Problems and Problems] The present inventors have developed a complex enzyme group (alcohol oxidase system) in which alcohol dehydrogenase and electron transport enzyme are conjugated, which does not require co-fermenting elements.

酢酸菌の細胞膜に存在していることに着目し。We focused on its presence in the cell membrane of acetic acid bacteria.

この細胞膜を利用した新しいエタノールセンサーを開発
した。
We developed a new ethanol sensor using this cell membrane.

すなわち、本発明に係るエタノールセンサーは、o2電
極上に酢酸菌の細胞膜画分を固定化したことを特徴とし
、必要に応じて、前記細胞膜画分を固定化した。2電極
は、ガス透過性膜で覆うことができる。
That is, the ethanol sensor according to the present invention is characterized in that the cell membrane fraction of acetic acid bacteria is immobilized on the O2 electrode, and the cell membrane fraction is immobilized as necessary. The two electrodes can be covered with a gas permeable membrane.

本発明で使用する酢酸菌の細胞膜画分は、酢酸菌として
一般的なアセトバクター(Acetobactsr)属
、グルコノバクタ−(Gluconobacter)属
の菌株を1例えばフレンチプレス法、乳鉢による磨砕法
などの慣用の菌体破壊法で破砕し、この破砕物から超遠
心分離、限外濾過などの手段で得ることができる。また
、こうして取得された細胞膜画分を、o2電極に固定化
する手段としては、ニトロセルロース等の多孔質高分子
膜に吸着させる吸着固定化法が採用できる外、天然又は
合成の高分子化合物内に、細胞膜画分を包括固定化する
包括固定化法も採用可能である。
The cell membrane fraction of acetic acid bacteria used in the present invention can be prepared using a conventional method such as a French press method or a grinding method using a mortar. It can be crushed by the body destruction method and obtained from this crushed product by means such as ultracentrifugation and ultrafiltration. In addition, as a means of immobilizing the cell membrane fraction obtained in this way on the O2 electrode, adsorption and immobilization methods in which it is adsorbed on a porous polymer membrane such as nitrocellulose can be adopted, and in addition, in addition to the adsorption and immobilization method in which it is adsorbed on a porous polymer membrane such as nitrocellulose, Additionally, a comprehensive immobilization method in which cell membrane fractions are comprehensively immobilized can also be employed.

ガス透過性膜としては、多孔質テフロン膜等の疎水性多
孔質高分子膜が使用できる。
As the gas permeable membrane, a hydrophobic porous polymer membrane such as a porous Teflon membrane can be used.

[作   用コ 本発明のエタノールセンサーをエタノール含有液に浸漬
すると、液中のエタノールは上記した細胞膜画分の固定
化膜内に浸透し1次式の通りアルデヒドに酸化されて0
2を消費する。
[Function] When the ethanol sensor of the present invention is immersed in an ethanol-containing solution, the ethanol in the solution permeates into the immobilized membrane of the cell membrane fraction described above and is oxidized to aldehyde according to the linear equation.
Consumes 2.

(ADH) R−CH,○H−R−CH○+2H”+2 e−=(3
)全体としての反応は次のように示される。
(ADH) R-CH,○H-R-CH○+2H"+2 e-=(3
) The overall reaction is shown as:

従って、この時の酸素消費量を02電極で測定すること
により、液中のエタノール濃度を計測することができる
Therefore, by measuring the amount of oxygen consumed at this time using the 02 electrode, the ethanol concentration in the liquid can be measured.

電極がガス透過性膜で覆われている場合には、エタノー
ルはこのガス透過性膜内を拡散透過して細胞膜画分の固
定化膜に到達するが、ガス透過性膜を付設することによ
り、エタノールセンサーは、広いpH域で使用できるよ
うになり。
When the electrode is covered with a gas-permeable membrane, ethanol diffuses through the gas-permeable membrane and reaches the cell membrane fraction immobilization membrane, but by attaching the gas-permeable membrane, Ethanol sensors can now be used over a wide pH range.

また、測定試料液中に混在する夾雑物が、電極及び固定
化膜に及ぼす悪影響を排除することができる。
Further, it is possible to eliminate the adverse effects of contaminants mixed in the measurement sample liquid on the electrode and the immobilized membrane.

進んで、エタノール濃度の測定操作の一例を説明する。Next, an example of an operation for measuring ethanol concentration will be explained.

第1図に示す如く、02電極1に酢酸菌細胞膜画分の固
定化膜2を装着し、さらにこれをガス透過性膜3で囲繞
して0リング7で固定した本発明のエタノールセンサー
を、記録計4に接続する。次いで、例えばウオタージャ
ケント付きビーカーのような液温を一定温度に保持する
ことができる容器5に02ffi極1を挿入し、容器内
を水又はB新液で満たしてマグネティックスクーラー6
等で攪拌する。容器内の液の溶存酸素が一定状態になる
と、02電極の出力も安定する。この時の02電極の出
力電流値を測定する。次に、濃度既知のエタノール溶液
を容器に添加すると、出力電流が減少する。
As shown in FIG. 1, the ethanol sensor of the present invention has an 02 electrode 1 equipped with an immobilized membrane 2 of an acetic acid bacterium cell membrane fraction, which is further surrounded by a gas permeable membrane 3 and fixed with an 0 ring 7. Connect to recorder 4. Next, the 02ffi pole 1 is inserted into a container 5 that can maintain the liquid temperature at a constant temperature, such as a beaker with a water jacket, the container is filled with water or new liquid B, and the magnetic cooler 6 is inserted.
Stir with etc. When the dissolved oxygen in the liquid in the container becomes constant, the output of the 02 electrode also becomes stable. At this time, the output current value of the 02 electrode is measured. Next, when an ethanol solution of known concentration is added to the container, the output current decreases.

再び出力電流が一定になった時の電流値を測定して電流
減少値を計測する。種々の濃度のエタノール溶液を用い
て上と同様な操作を繰り返し、エタノール濃度と電流減
少値との関係を示す検量線をまず作成する。そのうえで
、濃度未知のエタノール含有試料液を用いて上と同様な
操作を行い、この時の電流減少値を求め、その値に対応
するエタノール濃度を先に作成した検量線で読み取るこ
とにより、試料液のエタノール濃度を知ることができる
Measure the current value when the output current becomes constant again and measure the current reduction value. The same operation as above is repeated using ethanol solutions of various concentrations to first create a calibration curve showing the relationship between ethanol concentration and current reduction value. Then, perform the same operation as above using a sample solution containing ethanol of unknown concentration, find the current reduction value at this time, and read the ethanol concentration corresponding to that value using the calibration curve created earlier. You can know the ethanol concentration of

以上は1回の電流値測定毎に容器内の液を交換する所謂
バッチ方式の測定操作を説明したが。
The so-called batch-type measurement operation in which the liquid in the container is replaced every time a current value is measured has been described above.

フローセルを用いた連続測定にも、本発明のエタノール
センサーが適用できることは勿論である。
Of course, the ethanol sensor of the present invention can also be applied to continuous measurement using a flow cell.

[実 施 例] (1)細胞膜画分の調製 培養した酢酸菌(Gluconobacter 5ub
oxydans丁F012528)の菌体を遠心分離(
5000X G、 10分)して集菌し、この菌体をフ
レンチプレスにより破砕した。この破砕物を超遠心分離
(68000X G、90分)した後、沈殿を凍結乾燥
して細胞膜画分を得た。
[Example] (1) Preparation of cell membrane fraction Cultured acetic acid bacteria (Gluconobacter 5ub)
The bacterial cells of P. oxydans F012528) were centrifuged (
5,000×G for 10 minutes) to collect the bacteria, and the cells were crushed using a French press. This crushed product was subjected to ultracentrifugation (68,000×G, 90 minutes), and then the precipitate was freeze-dried to obtain a cell membrane fraction.

(2)  エタノールセンサーの製作 上記の如くして得た細胞膜画分20mgを、0.1M酢
酸緩衝液(pt+5.5)1mlに溶解し、この溶液を
多孔質高分子膜に注いで吸引濾過することにより、細胞
膜画分を多孔質高分子膜に吸着固定した。
(2) Production of ethanol sensor 20 mg of the cell membrane fraction obtained as above was dissolved in 1 ml of 0.1M acetate buffer (pt+5.5), and this solution was poured onto a porous polymer membrane and filtered by suction. By this, the cell membrane fraction was adsorbed and fixed on the porous polymer membrane.

この場合の多孔質高分子膜には、東洋濾紙(株)製の多
孔質ニトロセルロースフィルター(7ypeNC。
In this case, the porous polymer membrane is a porous nitrocellulose filter (7ypeNC manufactured by Toyo Roshi Co., Ltd.).

直径25IIIII+、細孔径0.45μm)を使用し
た。
diameter 25III+, pore size 0.45 μm) was used.

次に、上記の固定化膜を石川製作所(株)製の02電極
(Type DG−5)上に装着した後、さらにその外
側をガス透過性膜で囲繞し、0リングで固定することに
より、本発明のエタノールセンサーを製作した。ガス透
過性膜として、本例ではミリボア社製の多孔質テフロン
膜(Type FH,細孔径0.5μIn)を使用した
Next, after mounting the above-mentioned immobilization membrane on the 02 electrode (Type DG-5) manufactured by Ishikawa Seisakusho Co., Ltd., the outside of the membrane was further surrounded by a gas permeable membrane and fixed with an 0 ring. An ethanol sensor of the present invention was manufactured. In this example, a porous Teflon membrane (Type FH, pore diameter 0.5 μIn) manufactured by Millibore was used as the gas permeable membrane.

(3)  エタノール濃度の測定 測定はエタノールセンサーを第1図に示す如く記録計4
に結線して行った。本例で使用した02電極はアンペロ
メトリックな測定原理を利用しているので、出力は電流
イ直の変化として出力される。従って、第1図に示す如
く、端子間に1にΩの抵抗を入れることにより、電流値
を電圧値に変換して記録した。
(3) Measurement of ethanol concentration The ethanol sensor is connected to the recorder 4 as shown in Figure 1.
I connected it to. Since the 02 electrode used in this example utilizes the amperometric measurement principle, the output is output as a change in the current I. Therefore, as shown in FIG. 1, by inserting a resistor of 1 to Ω between the terminals, the current value was converted into a voltage value and recorded.

10m1の水又は緩衝液を容器5に収めて恒温25℃に
保持し、液をマグネテイツクスターラーで攪拌すること
により、溶存酸素を飽和状71とした。これにエタノー
ルセンサーを挿入し、出力電流が安定した時の初期電流
Ioを得る。次に、濃度既知のエタノール溶液10μm
を注入すると、出力電流が変化し、約5分で定常状態に
なり、定常電流Isを得る。この時の電流減少値、すな
わちIo−IsをΔ丁とする。この操作を濃度既知のエ
タノール溶液について、エタノール濃度を変化させなが
ら繰り返すことにより、第2図に示すような検量線を作
成した。
10 ml of water or a buffer solution was placed in a container 5 and maintained at a constant temperature of 25° C., and the solution was stirred with a magnetic stirrer to bring the dissolved oxygen to a saturated state of 71°C. An ethanol sensor is inserted into this to obtain the initial current Io when the output current is stabilized. Next, 10 μm of an ethanol solution with a known concentration
When injected, the output current changes and reaches a steady state in about 5 minutes to obtain a steady current Is. The current reduction value at this time, that is, Io-Is, is assumed to be Δd. By repeating this operation for ethanol solutions of known concentrations while changing the ethanol concentration, a calibration curve as shown in FIG. 2 was created.

この検量線から明らかな通り、濃度O〜30m1の範囲
で、エタノール濃度と電流減少値Δ■との間には、認め
られるのでこの検量線と上記したエタノールセンサーを
使用して、S度未知のエタノール溶液について、エタノ
ールの走破を行うことができた。
As is clear from this calibration curve, there is a difference between the ethanol concentration and the current reduction value Δ■ in the concentration range from O to 30ml, so using this calibration curve and the above-mentioned ethanol sensor, For the ethanol solution, we were able to run ethanol.

[発明の効果] 本発明のエタノールセンサーは、アルコールデヒドロゲ
ナーゼを利用している関係で、メタノールに感応するこ
とがなく、エタノールに対してのみ選択的に感応する。
[Effects of the Invention] Since the ethanol sensor of the present invention utilizes alcohol dehydrogenase, it is not sensitive to methanol and is selectively sensitive only to ethanol.

また、本発明で使用される酢酸菌由来のアルコールデヒ
ドロゲナーゼは、補酵素を必要としないので、電極の構
造が簡酢になり、容易に製作できる。さらに、ガス透過
性膜を付設した本発明のエタノールセンサーは、広いp
H域での使用が可能であるばかりでなく、測定液中に種
々の妨害物質が溶存している場合にも、その影響を受け
ない利点がある。従って、本発明のエタノールセンサー
は、血液や発酵液等の様々な物質が混在している試料液
のエタノール濃度を測定する際に、極めて有用である。
Furthermore, since the alcohol dehydrogenase derived from acetic acid bacteria used in the present invention does not require a coenzyme, the electrode structure is simple and can be easily produced. Furthermore, the ethanol sensor of the present invention equipped with a gas permeable membrane has a wide p
Not only can it be used in the H range, but it also has the advantage of not being affected by various interfering substances dissolved in the measurement liquid. Therefore, the ethanol sensor of the present invention is extremely useful when measuring the ethanol concentration of a sample liquid containing various substances such as blood and fermentation liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエタノールセンサーの説明図、第2図
は本発明のエタノールセンサーを用いてエタノール濃度
を測定する場合の検量線の一例である。 に02電極     2:固定化膜 3:ガス透過性膜  4:記録計 5:恒温容器    6:マグネテイツク7:Oリング
     スターラー 特許出願人   朝日麦酒株式会社 1面 篤2図 エタノール Lmgムη
FIG. 1 is an explanatory diagram of the ethanol sensor of the present invention, and FIG. 2 is an example of a calibration curve when measuring ethanol concentration using the ethanol sensor of the present invention. 02 electrode 2: Immobilization membrane 3: Gas permeable membrane 4: Recorder 5: Constant temperature container 6: Magnetic 7: O-ring stirrer Patent applicant Asahi Beer Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、O_2電極上に、酢酸菌の細胞膜画分を固定化膜と
して設けたことを特徴とするエタノールセンサー。
1. An ethanol sensor characterized in that a cell membrane fraction of acetic acid bacteria is provided as an immobilized membrane on an O_2 electrode.
JP61121833A 1986-05-27 1986-05-27 Ethanol sensor Granted JPS62277548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121833A JPS62277548A (en) 1986-05-27 1986-05-27 Ethanol sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121833A JPS62277548A (en) 1986-05-27 1986-05-27 Ethanol sensor

Publications (2)

Publication Number Publication Date
JPS62277548A true JPS62277548A (en) 1987-12-02
JPH0416743B2 JPH0416743B2 (en) 1992-03-25

Family

ID=14821057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121833A Granted JPS62277548A (en) 1986-05-27 1986-05-27 Ethanol sensor

Country Status (1)

Country Link
JP (1) JPS62277548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209275A (en) * 1987-07-09 1993-05-11 Junkosha Co., Ltd. Liquid dispensing apparatus and method by sensing the type of liquid vapors in the receiver
US6740215B1 (en) 1999-11-16 2004-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209275A (en) * 1987-07-09 1993-05-11 Junkosha Co., Ltd. Liquid dispensing apparatus and method by sensing the type of liquid vapors in the receiver
US6740215B1 (en) 1999-11-16 2004-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor

Also Published As

Publication number Publication date
JPH0416743B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
Lowe Biosensors
US3857771A (en) Rate sensing batch analyzer
Durliat et al. Spectrophotometric and electrochemical determinations of L (+)-lactate in blood by use of lactate dehydrogenase from yeast.
JP2646848B2 (en) Glucose sensor measurement method
Coulet Polymeric membranes and coupled enzymes in the design of biosensors
Keedy et al. Determination of urate in undiluted whole blood by enzyme electrode
Mor et al. Assay of glucose using an electrochemical enzymatic sensor
Palleschi et al. Bioelectrochemical determination of lactic and malic acids in wine
Phillips “Novel” sensors for the monitoring of fermentation processes
Bertrand et al. Enzyme electrode with collagen-immobilized cholesterol oxidase for the microdetermination of free cholesterol
Kitagawa et al. Alcohol sensor based on membrane-bound alcohol dehydrogenase
US5306413A (en) Assay apparatus and assay method
Kitagawa et al. Amperometric alcohol sensor based on an immobilised bacteria cell membrane
Mascini et al. Comparison of microbial sensors based on amperometric and potentiometric electrodes
EP0327018A2 (en) Enzyme Electrode
JPS62277548A (en) Ethanol sensor
Roda et al. Coupled reactions for the determination of analytes and enzymes based on the use of luminescence
Karube et al. Application of microbiological sensors in fermentation processes
Lubrano et al. Amperometric alcohol electrode with extended linearity and reduced interferences
Scheller et al. Flow injection analysis of lactate and lactate dehydrogenase using an enzyme membrane in conjunction with a modified electrode
JPH0470558A (en) Ethanol sensor
JPH0422466B2 (en)
JPH0555816B2 (en)
JPS61265560A (en) Ethanol sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees