JPS62277123A - Production of membrane for separating gas - Google Patents

Production of membrane for separating gas

Info

Publication number
JPS62277123A
JPS62277123A JP12005686A JP12005686A JPS62277123A JP S62277123 A JPS62277123 A JP S62277123A JP 12005686 A JP12005686 A JP 12005686A JP 12005686 A JP12005686 A JP 12005686A JP S62277123 A JPS62277123 A JP S62277123A
Authority
JP
Japan
Prior art keywords
membrane
modified
epoxy
gas
separating gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12005686A
Other languages
Japanese (ja)
Inventor
Toshihide Imamura
今村 敏英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP12005686A priority Critical patent/JPS62277123A/en
Publication of JPS62277123A publication Critical patent/JPS62277123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain a membrane for separating gas which is speedy in permeation velocity and has high selectively by sticking both-terminal epoxy-modified dimethylpolysiloxane on a porous supporting membrane and allowing both- terminal amino-modified polysiloxane to react therewith. CONSTITUTION:Both-terminal epoxy-modified dimethylpolysiloxane shown in a formula is stuck on a porous supporting membrane. Then both-terminal amino- modified polysiloxane obtained by allowing NH3 to react is allowed to rereacted with the both-terminal epoxy-modified polysiloxane. If necessary, one reaction selected from these reactions or every reactions are repeated. The number of silicon atom of both-terminal epoxy-modified polysiloxane preferably is 2-30 pieces. This membrane is speedy in permeation velocity in comparison with the conventional membrane and is the membrane for separating gas which has characteristics provided with comparatively high selectivity together therewith.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は王にシロキサン構造による高分子と!VB、と
の化合物で大きな気体透過速度と良好な選択性をもった
気体分離用膜の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is primarily a polymer with a siloxane structure! The present invention relates to a method for producing a gas separation membrane having a high gas permeation rate and good selectivity using a compound of VB.

従来の技術 従来、主として用いられているガス分離、濃縮の方法は
Q)深冷分離方法、■吸着による方法が挙げられる。
BACKGROUND OF THE INVENTION Conventionally, methods of gas separation and concentration that have been mainly used include Q) Cryogenic separation method, and (2) Adsorption method.

深冷分離方法は混合χ体を冷却してその各々の沸点差を
利用して蒸留する方法であり、現在大型プラントによっ
て大量に処理されている。
The cryogenic separation method is a method of cooling the mixed x-form and distilling it using the difference in their boiling points, and is currently being processed in large quantities in large-scale plants.

深冷分離は分離に賛するエネルギー効率が低いことが欠
点であり、小型化非常に困難である。
Cryogenic separation has the disadvantage of low energy efficiency for separation, and is extremely difficult to miniaturize.

吸着による方法は主にゼオライトの各ガスに対する吸着
力の差を利用したものであり、吸着という特性上どうし
てもパッチシステムにならざるを得す、そのため目的分
離ガスが経時時間に対して圧力や濃度が変化したり水蒸
気ガス等が吸着力へ影響を及ぼす等の欠点があった、膜
による分離の方法は原理的に連続方式であリ、分離、濃
縮に要するエネルギーも少くて済むO 発明が解決しようとする問題点 気体系の分離、濃縮についての実用化のレベルは液体系
に較べて低い。その理由は気体の透過速度が遅く、選択
比も低いので装置が大型化するためにエネルギー損失も
多くなるためであった。
The adsorption method mainly utilizes the difference in the adsorption power of zeolite for each gas, and due to the characteristics of adsorption, it is inevitable to use a patch system. Separation methods using membranes have shortcomings such as changes in adsorption capacity and water vapor gas, etc., which affect the adsorption power.In principle, the separation method using membranes is a continuous method, and requires less energy for separation and concentration.The invention will solve this problem. The practical level of separation and concentration of gas systems is lower than that of liquid systems. The reason for this is that the gas permeation rate is slow and the selectivity is low, which increases the size of the device and increases energy loss.

しだがって、膜によるガスの分離濃縮にとって最も望ま
れていることは、通過速度を速く、選択性を高くするこ
とである。
Therefore, what is most desired for gas separation and concentration using a membrane is to increase the passage rate and increase the selectivity.

現在実用化されたもので、両者を満足させる分離濃縮膜
はない。
Currently, there is no separation/concentration membrane in practical use that satisfies both requirements.

発明の目的 本発明は上記の事情に鑑みなされたもので、従来の透過
速度より速く且つ比較的高い選択性を合わせもった特性
のある気体分離用膜を製造することができる気体分離用
膜の製造方法を提供することを目的とする。
Purpose of the Invention The present invention has been made in view of the above-mentioned circumstances, and provides a gas separation membrane capable of producing a gas separation membrane having characteristics of higher permeation rate than conventional membranes and relatively high selectivity. The purpose is to provide a manufacturing method.

問題点を解決するための手段及び作用 上記の目的を達成するたbに本発明は多孔質支持膜上に
付着させた両末端エポキシ変−成ジメチルポリシロキサ
ン (ルー2〜30  、  R−CHs  、)と)WE
、を反応させて両末端アミノ変成ポリシロキサンとした
ものを再度両末端エポキシ変成ポリシロキサンを反応さ
せ必要に応じて上記の反応のうち1つまたは全てを繰り
返して行うように17だ。
Means and Effects for Solving the Problems In order to achieve the above objects, the present invention provides a double-end epoxy-modified dimethylpolysiloxane (R-2-30, R-CHs, R-CHs, ) and) WE
, to form a polysiloxane modified with amino at both ends, and then reacted again with a polysiloxane modified with epoxy at both ends, and one or all of the above reactions are repeated as necessary.

実施例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.

気体分離用透過膜材料としてジメチルポリシロキサン類
は気体透過係数が高いので主として用いられている。
Dimethylpolysiloxanes are mainly used as permeable membrane materials for gas separation because they have a high gas permeability coefficient.

ジメチルポリシロキサンの気体透過係数が高い理由は硅
素原子の直径および原子間結合距離が大きく、さらに分
子同志の絡みつきの原因となる水素結合の傾向が少ない
ので分子間の空間が犬きぐなるためと考えられる。
The reason for the high gas permeability coefficient of dimethylpolysiloxane is thought to be that the diameter of the silicon atom and the bond distance between atoms are large, and the space between molecules is narrow because there is less tendency for hydrogen bonds to cause entanglement between molecules. It will be done.

L7かしポリシロキサン類は一般に物理的強度が弱いの
でその改善のために他の樹脂との共重合が行われたが強
度の上昇のためには透過係数がどうしても犠牲になって
いた。
Since L7 polysiloxanes generally have low physical strength, copolymerization with other resins has been carried out to improve this, but the increase in strength inevitably comes at the expense of permeability coefficient.

本発明に係る気体分離膜の製造方法は、両末端エポキシ
変成ポリシロキサンをアンモニヤやアミン等でアミン化
したものを支持膜上で合成したものに再度両末端エポキ
シ変成ポリシロキサンを支持膜上で反応させて分離膜と
したので必要に応じての反応を繰り返すことを骨子とす
る。
In the method for producing a gas separation membrane according to the present invention, polysiloxane modified with epoxy at both ends is aminated with ammonia or amine, synthesized on a support membrane, and then polysiloxane modified with epoxy at both ends is reacted again on the support membrane. Since the separation membrane has been made by using this method, the main point is to repeat the reaction as necessary.

すなわち、本発明に係る気体分離用膜の製造方法は、多
孔質支持膜上に付着させた両末端エポキシ変成ジメチル
ポリシロキサン A          ll (ルー2〜30  、  R−CM、  )とNH,を
反応させて両末端アミン変成ポリシロキサンとしたもの
を再度両末端エポキシ変成ポリシロキサンを反応させ必
要に応じて上記の反応のうち1つまたは全てを繰り返し
て行うことを特徴とするものである。
That is, the method for producing a gas separation membrane according to the present invention involves reacting a double-end epoxy-modified dimethylpolysiloxane All (Rue 2-30, R-CM, ) deposited on a porous support membrane with NH. The polysiloxane modified with amine at both ends is reacted again with a polysiloxane modified with epoxy at both ends, and one or all of the above reactions are repeated as necessary.

上記の本発明の方法によりジメチルポリシロキサンの特
徴である分子空間をさらに増大させたところ透過係数は
非常に増加したにもかかわらず膜の物理的強度の低下は
針入度試験結果によるとほとんど見受けられなかった。
When the molecular space, which is a characteristic of dimethylpolysiloxane, was further increased by the above method of the present invention, the permeability coefficient was greatly increased, but the penetration test results show that there was almost no decrease in the physical strength of the membrane. I couldn't.

実験の結果、両末端エポキシ変成ポリシロキサンの硅素
原子の数は2〜30個が適していたが30個以上では物
理的強度は低下することが針入度試験結果から分った。
As a result of experiments, it was found that the suitable number of silicon atoms for the polysiloxane modified with epoxy at both ends was 2 to 30, but it was found from the penetration test results that when the number of silicon atoms exceeded 30, the physical strength decreased.

実施例1 両末端エポキシ変成ジメチルポリシロキサンの20Ii
量%ベンゼン溶液中ば平均孔径0.2μの弗素樹脂多孔
質膜を浸析する8引き上げた後に室温で10分間重直に
して室内放置することによって表面の余乗分を除去する
。その後アンモニャガスと1時間100℃、l a t
m/ ctdの条件で接触させてアミン化した物を室内
に1時間室温で放置して未反応のアンモニヤを拡散除去
する8表面にアミン化物を付着させた弗素樹脂製多孔質
膜を再度同じ両末端エポキシ変成ジメチルポリシロキサ
ンの20嘩でベンゼン溶液中に浸析する。
Example 1 20Ii of dimethylpolysiloxane modified with epoxy at both ends
A fluororesin porous membrane having an average pore diameter of 0.2 .mu.% is soaked in a % benzene solution.After being pulled up for 8 minutes, the membrane is left in an upright position indoors for 10 minutes at room temperature to remove the surface copolymers. After that, add ammonia gas and heat at 100℃ for 1 hour.
The aminated material was brought into contact under m/ctd conditions and left indoors at room temperature for 1 hour to diffuse and remove unreacted ammonia. Twenty tons of epoxy-terminated dimethylpolysiloxane are immersed in a benzene solution.

その後引き上げて室温で前回向機に1o分間重直にし7
て室内放置して表面の余剰分がなくなツタら100℃、
1時間エアオーブン中に放tし7てエポキシ基とアミノ
基を反応させて高分子化を行ってから取出1て室温まで
放冷の後、ベンゼン中に浸し1.て表面の未反応物を除
去する。
After that, lift it up and place it on a rotating machine for 10 minutes at room temperature.
I left it indoors and there was no excess on the surface and the ivy reached 100℃.
The sample was placed in an air oven for 1 hour to react with the epoxy group and amino group to form a polymer, then taken out, left to cool to room temperature, and immersed in benzene. to remove unreacted substances on the surface.

室温でベンゼンをW表面から追い出し7た後に重量測定
法により分離用膜の膜厚を求める。表1は両末端エポキ
シ変成ジメチルポリシロキサンの主鎖の長さが変化jた
ものを用いて上記した本発明の方法に従って分離用膜を
各々作成また後各棹ガスに対する透過試験を行った結果
である。
After benzene is expelled from the W surface at room temperature, the thickness of the separation membrane is determined by gravimetry. Table 1 shows the results of creating separation membranes according to the method of the present invention described above using dimethylpolysiloxane modified with epoxy at both ends and varying the main chain length, and then conducting a permeation test for each rod gas. be.

比較のためにシリコンゴムのベンゼン10%溶液中に同
じ多孔質膜を浸析させたのちに引き上げ溶剤を除去させ
てから100℃”2気浴中で10分間加硫(加硫剤、ビ
ス2−4ジクロールベンゾパーオキサイド)1.たもの
も試料として用いた。
For comparison, the same porous membrane was soaked in a 10% benzene solution of silicone rubber, pulled up to remove the solvent, and then vulcanized for 10 minutes in a 100°C gas bath (vulcanizing agent, bis 2 -4 dichlorobenzoperoxide) 1. was also used as a sample.

又試料の物理的強度も針入度試験によって実験を行った
The physical strength of the sample was also tested using a penetration test.

(以下余白) 表1の結果から、本発明方法によって得らセた膜のN、
 、 0. 、 Cへ、C,H,各ガスに対する透過係
数はポリシロキサン骨格の主鎖の長さが2以上の場合シ
リコンゴム製の分離用膜よりいずれのガスにおいても高
い値を示した。
(Left below) From the results in Table 1, it can be seen that the N of the film obtained by the method of the present invention,
, 0. , C, C, and H, the permeability coefficients for each gas showed higher values for all gases than for silicone rubber separation membranes when the main chain length of the polysiloxane skeleton was 2 or more.

オリシロキサンの骨格主鎖の硅素数が大きくなるに従っ
て各気体の透過係数は上昇するが、30個以上の場合、
膜強度が低下(2て膜破壊が生じた。また針入度試験の
結果からもそれを確認することができた。
The permeability coefficient of each gas increases as the number of silicon atoms in the main chain of the orisiloxane skeleton increases, but when it is 30 or more,
The membrane strength decreased (2) and membrane destruction occurred. This was also confirmed from the results of the penetration test.

そのために硅素数は30個以下、2個以上が望ましい。For this purpose, the number of silicon primes is preferably 30 or less, and preferably 2 or more.

一般に透過係数が上昇すハば” /7v、の選択比は低
下するがシリコンゴム製の分離用膜に比べて主項の硅素
数が2個〜30個の範囲では選択比も透過係数も上昇し
ていることがわかる、発明の効果 以上詳述したように、本発明に係る気体分離用膜の製造
方法は、多孔質支持膜上に付着させた両末端エポキシ変
成ジメチルボリシロキサンHE           
 I   H(rL−2〜30  、  R−CHs 
 、 )とIVH,、を反応させて両末端アミン変成ポ
リシロキサンとしたものを再度両末端エポキシ変成ポリ
シロキサンを反応させ必要に応じて上記の反応のうち1
つまたは全てを繰り返して行うことを特徴とするもので
ある。
In general, the permeability coefficient increases and the selectivity decreases when the permeability coefficient increases, but compared to silicone rubber separation membranes, the selectivity and permeability coefficient increase when the number of silicon atoms in the main term ranges from 2 to 30. Effects of the Invention As described in detail above, the method for producing a gas separation membrane according to the present invention is characterized in that the method for producing a gas separation membrane according to the present invention is characterized in that a double-end epoxy-modified dimethylborosiloxane HE adhered to a porous support membrane is
IH(rL-2~30, R-CHs
, ) and IVH, , to form a polysiloxane modified with amine at both terminals, the polysiloxane modified with epoxy at both terminals is reacted again, and one of the above reactions is carried out as necessary.
It is characterized by repeating one or all of the steps.

また上記の気体分離用膜の製造方法により、従来の透過
速度より速く且つ比較的高い選択性を合わせもった特性
のある気体分離用膜を製造することができる。
Further, by the above-described method for producing a gas separation membrane, it is possible to produce a gas separation membrane having characteristics that have a higher permeation rate than conventional membranes and a relatively high selectivity.

Claims (1)

【特許請求の範囲】 多孔質支持膜上に付着させた両末端エポキシ変成ジメチ
ルポリシロキサン ▲数式、化学式、表等があります▼ (n=2〜30、R=CH_3、) とNH_3を反応させて両末端アミノ変成ポリシロキサ
ンとしたものを再度両末端エポキシ変成ポリシロキサン
を反応させ必要に応じて上記の反応のうち1つまたは全
てを繰り返して行うことを特徴とする気体分離用膜の製
造方法。
[Claims] A double-terminated epoxy-modified dimethylpolysiloxane adhered on a porous support membrane (numerical formulas, chemical formulas, tables, etc.) (n = 2 to 30, R = CH_3,) and NH_3 are reacted. A method for producing a gas separation membrane, which comprises reacting a polysiloxane modified with amino at both ends and a polysiloxane modified with epoxy at both ends, and repeating one or all of the above reactions as necessary.
JP12005686A 1986-05-27 1986-05-27 Production of membrane for separating gas Pending JPS62277123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12005686A JPS62277123A (en) 1986-05-27 1986-05-27 Production of membrane for separating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12005686A JPS62277123A (en) 1986-05-27 1986-05-27 Production of membrane for separating gas

Publications (1)

Publication Number Publication Date
JPS62277123A true JPS62277123A (en) 1987-12-02

Family

ID=14776797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12005686A Pending JPS62277123A (en) 1986-05-27 1986-05-27 Production of membrane for separating gas

Country Status (1)

Country Link
JP (1) JPS62277123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138755A1 (en) * 2011-04-08 2012-10-11 Dongchan Ahn Method of preparing gas selective membrane using epoxy-functional siloxanes
CN110461450A (en) * 2017-03-29 2019-11-15 环球油品有限责任公司 For isolated rubber-like polymer film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138755A1 (en) * 2011-04-08 2012-10-11 Dongchan Ahn Method of preparing gas selective membrane using epoxy-functional siloxanes
CN103534012A (en) * 2011-04-08 2014-01-22 道康宁公司 Method of preparing gas selective membrane using epoxy-functional siloxanes
US20140060324A1 (en) * 2011-04-08 2014-03-06 Dow Corning Corporation Method of preparing gas selective membrane using epoxy-functional siloxanes
JP2014523334A (en) * 2011-04-08 2014-09-11 アン ドンチャン Method for preparing gas selective membranes using epoxy functional siloxanes
CN110461450A (en) * 2017-03-29 2019-11-15 环球油品有限责任公司 For isolated rubber-like polymer film
CN110461450B (en) * 2017-03-29 2022-04-08 环球油品有限责任公司 Rubbery polymer membrane for separation

Similar Documents

Publication Publication Date Title
Pixton et al. Gas transport properties of adamantane-based polysulfones
CA1195653A (en) Selectively gas-permeable composite membrane and process for production thereof
US4551156A (en) Permselective membrane compositions for gas separations and process for the separation of gases therewith
EP0094050A2 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
JPH0665372B2 (en) Separation Method of Semi-permeable Membrane Made of Polyimide Resin and One-component Separation from Gas Mixture
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS59209610A (en) Permselective membrane
JPS59209608A (en) Permselective membrane
JPS61238319A (en) Selective gas permeable membrane
JPS6274406A (en) Separating membrane
JPS62277123A (en) Production of membrane for separating gas
US4746334A (en) Poly(disubstituted acetylene)/polyorganosiloxane graftcopolymer and membrane for gas separation
JPS62183837A (en) Gas permeable membrane
RU2725580C1 (en) Polyimide mixtures, methods for production and use thereof
JPS6064601A (en) Permselective membrane for gas
JPH01119324A (en) Preparation of gas separation membrane
CN112691552A (en) Method for preparing high-performance organic gas separation membrane
US5171794A (en) Modified poly(2,6-dimethyl-p-oxyphenylene), a process for its preparation and its use in gas mixture separation membranes
Kang et al. Preparation and gas permeability of polymer blend membranes of polystyrene and poly [1, 1, 1‐tris (trimethylsiloxy) methacrylate propylsilane]
JPS5840127A (en) Gas-permeable membrane
JPH0224577B2 (en)
US4755561A (en) Poly(disubstituted acetylene)/polyorganosiloxane graft copolymer and membrane for gas separation
JP2018144022A (en) Polymer membrane and method for producing the same, and method for separating carbon dioxide
JP2001009249A (en) Oxygen enriching membrane
JPS61146320A (en) Gas permeable membrane