JPS62275926A - System for controlling magnetically levitating slider - Google Patents

System for controlling magnetically levitating slider

Info

Publication number
JPS62275926A
JPS62275926A JP11974886A JP11974886A JPS62275926A JP S62275926 A JPS62275926 A JP S62275926A JP 11974886 A JP11974886 A JP 11974886A JP 11974886 A JP11974886 A JP 11974886A JP S62275926 A JPS62275926 A JP S62275926A
Authority
JP
Japan
Prior art keywords
gap
permanent magnet
rail
magnet
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11974886A
Other languages
Japanese (ja)
Inventor
Tsuguto Nakaseki
嗣人 中関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP11974886A priority Critical patent/JPS62275926A/en
Publication of JPS62275926A publication Critical patent/JPS62275926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)

Abstract

PURPOSE:To ensure a necessary gap by overlapping magnetic fluxes of an electromagnet and a permanent magnet when a magnetically levitating system of zero power one needs a static load by which the gap between the permanent magnet and a rail is mode smaller than a limited one. CONSTITUTION:A leg block 30 of a guide rail 20 is fixed on a base 10 and a stator 23 of an induction type linear motor is disposed on the central portion of the guide rail 20. On the other hand, a slider 40 has vertical plates 41, 42 on both sides of guide rail 20 and horizontal plates 43, 44 and 45, 46 extending inward from the upper and lower portions of said vertical plates. The horizontal plates 45, 46 are provided with a permanent magnet 63 constituting magnets 60, 60 for a magnetic bearing, cores 61, 62 and coils 65, 64. The magnet 60 for magnetic bearing is provided with a position sensor 1 to detect a gap between the upper surface 66 of an electromagnet and a guide surface 67 at the underside of guide rail 20. When a static load is needed which narrows the gap by a predetermined value or more, current is supplied to the coils 65, 64 to produce magnetic fluxes laid on those of the magnet 63. Thus, a necessary gap is held to prevent the magnet from contact with the rail.

Description

【発明の詳細な説明】 3、発明の詳細な説明 企業土−塵程叩分野 この発明は磁気浮上スライダの制御方式に関する。[Detailed description of the invention] 3. Detailed description of the invention Corporate soil - dust and dirt field The present invention relates to a control method for a magnetically levitated slider.

従来1月支附 制御式磁気軸受の電力消費を減らずため、電磁石と永久
磁石とを併用し、永久磁石に静ft荷を受け持たせ、ダ
イナミック負荷あるいは磁気軸受としての系の安定化を
電磁力の制御によって行い、静負荷の変動は永久磁石の
レールとの隙間が小さくなるにつれ、吸引力が大きくな
ることを利用し、隙間を変化さセて吸引力と釣り合わせ
るいわゆるゼロパワー方式の磁気軸受が宇宙機器用のス
ピンドル等に用いられている。
In order to maintain the power consumption of the conventional control type magnetic bearing, an electromagnet and a permanent magnet are used together, and the permanent magnet takes charge of the static load. This is done by force control, and static load fluctuations are achieved using the so-called zero-power magnetic method, which takes advantage of the fact that the attraction force increases as the gap between the permanent magnet and the rail becomes smaller, and balances the attraction force by changing the gap. Bearings are used in spindles for space equipment, etc.

発刊J鴨1しようとする間1点 前記方式を磁気浮上スライダに適用することは容易であ
る。しかし、この方式では、例えば大きな静負荷を作用
させた場合、磁石とレールとの隙間が小さくなりすぎ、
走行時にレールの加工精度の悪さ等により磁石がレール
に接触することが生じるおそれがある。
It is easy to apply the above method to a magnetically levitated slider. However, with this method, for example, when a large static load is applied, the gap between the magnet and the rail becomes too small.
When traveling, there is a risk that the magnet may come into contact with the rail due to poor machining accuracy of the rail.

また、磁石の隙間pと吸引力Fとの関係は、F=に/β
 で変化する。基4S隙間をpとすると隙間Δρ変化す
るごとによる吸引力の変化量Δpは次式で表される。
Also, the relationship between the gap p between the magnets and the attractive force F is F=/β
It changes with When the base 4S gap is p, the amount of change Δp in the suction force due to each change in the gap Δρ is expressed by the following equation.

Δρに対して、pが充分大きい場合、には0式の第2項
が無視できるが、pが小さくなると、第2項の影響が大
きくなり、少しの隙間変化で吸引力が大きく変化するた
め、制御系が不安定になりやすくなるという欠点がある
If p is large enough for Δρ, the second term in equation 0 can be ignored, but as p becomes smaller, the influence of the second term increases, and a small change in the gap will cause a large change in the suction force. , the disadvantage is that the control system tends to become unstable.

腿阻怠奎邂−決オ擾犬〃p一手段 本発明の磁気浮上スライダの制御方式は、位置センサー
と電磁石と永久磁石とからなり、静負荷を永久磁石の吸
引力で受け持たせ、グイナミソク負荷を電磁石の電磁力
を制御して荷重を保持するゼロパワー方式の磁気浮上を
利用した磁気浮上スライダの制御方式において、前記静
負荷に釣り合う吸引力を発生ずる永久磁石とレールとの
隙間の変化範囲を制限し、この隙間範囲を越える吸引力
が必要な静負荷に対しては、電磁石の磁束を永久磁石の
磁束に加え合ね−けることにより吸引力を制御し、静負
荷の増加にり1し、ある一定隙間以上永久磁石がレール
に接近しない構成になっている。
The control system for the magnetically levitated slider of the present invention consists of a position sensor, an electromagnet, and a permanent magnet, and the static load is borne by the attractive force of the permanent magnet. In a control method for a magnetically levitated slider using zero-power magnetic levitation, which holds the load by controlling the electromagnetic force of an electromagnet, changes in the gap between the permanent magnet and the rail generate an attractive force that balances the static load. For static loads that require a limited range and an attractive force that exceeds this gap range, the magnetic flux of the electromagnet is added to the magnetic flux of the permanent magnet to control the attractive force, and the static load increases. 1.The structure is such that the permanent magnet does not approach the rail beyond a certain gap.

1乍別− リミクーでもって積分要素の出力の十限、FIiIQを
制限しているので、一定隙間以」−永久磁石がレールに
接近しない。
1. Since Rimiku limits the output of the integral element, FIiIQ, the permanent magnet does not approach the rail beyond a certain gap.

則り 第1図には、本発明の一実施例であるブロック線図、第
2図には磁気#−1−スライダの進行方向断面図、第3
図にはリミタ−と積分要素とからなる本発明のゼロパワ
ー方式の回路図をそれぞれ示す。
Accordingly, FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a sectional view in the direction of movement of the magnetic #-1 slider, and FIG.
Each figure shows a circuit diagram of the zero power system of the present invention, which includes a limiter and an integral element.

第1図において、Aは加算器であり、この加算器Aには
位置設定電圧が与えられる。Bは位相補償回路でこのフ
ィードバック系を安定化し、必要な周波数特性を得るた
めに前記加算器Aの出力を補償する。位相補償回路Bの
出力は次段の電圧電流および電力増幅量1i4%cで電
力増幅され、81分要素Eとリミタ−4■を介して前記
加算器Aにポジティブフィードバソクされるとともに、
電磁石で構成される電力・力変換器りに入力する。電力
・力変換器りにより力に変換された出力は制御対称Gに
作用し、変位をη:しるようになっている。前記リミク
ーJは例えば第3図に示すように、具体的には互いに逆
相に並列接続したツェナーダイオードA、Bから構成さ
れている。ツェナーダイオードはレールと磁石とが接近
する場合の積分要素出力の極性によりA、あるいはBの
どちらか一方でリミタ−としての役割を果たすがA、B
両方を備えていれば極性をm「認する必要がない。電磁
石は隙間が小さくなるにつれ、吸引力力母曽加し、これ
は制御系を不安定化する要素として作用する。これをブ
ロック線図であられずと第1図における変位出力からの
加算点Fヘポジティブフィードバソクされる磁石の隙間
特性Hのループとなる。
In FIG. 1, A is an adder, and a position setting voltage is applied to this adder A. A phase compensation circuit B stabilizes this feedback system and compensates the output of the adder A to obtain the necessary frequency characteristics. The output of the phase compensation circuit B is power amplified by the voltage and current of the next stage and the power amplification amount 1i4%c, and is positive-feedbacked to the adder A via the 81-minute element E and the limiter 4.
It is input to a power/force converter consisting of an electromagnet. The output converted into force by the power/force converter acts on the control object G, so that the displacement is expressed as η. As shown in FIG. 3, the Rimiku J is specifically composed of Zener diodes A and B connected in parallel with each other in opposite phases. The Zener diode serves as a limiter for either A or B depending on the polarity of the integral element output when the rail and magnet are close to each other.
If both are provided, there is no need to recognize the polarity.As the gap becomes smaller, an electromagnet will add an attractive force, which acts as an element that destabilizes the control system. This is a loop of the gap characteristic H of the magnet that is positively fed back to the addition point F from the displacement output in FIG.

変位出力は変位電圧変換器Iを介して、前記加算器Aに
ネガティブフィードバックされる。
The displacement output is negatively fed back to the adder A via the displacement voltage converter I.

第2図において、ヘース10−11には案内レール20
の脚ブロック30が固定され、案内レール20の中央に
は誘導型リニアモータのステータ23が配置されている
In FIG. 2, a guide rail 20
A leg block 30 is fixed, and a stator 23 of an induction linear motor is arranged at the center of the guide rail 20.

一方、スライダ40は案内レール20の両側に配置され
た縦板41.42と、この縦板41.42の上下から案
内レール20に延出した上部横板43.44および下部
横板45.46とを備えている。そして、ステータ23
に対向してこのステータ23とで前記リニアモータを構
成する二次導体47により、上部横板43.44が互い
に連結されている。二次導体47の上面部は空隙48を
保ってバレット49に覆われ、その空隙48には複数枚
の電気回路基板50が配置されている。
On the other hand, the slider 40 includes vertical plates 41.42 arranged on both sides of the guide rail 20, an upper horizontal plate 43.44 and a lower horizontal plate 45.46 extending from above and below the vertical plate 41.42 to the guide rail 20. It is equipped with And stator 23
The upper horizontal plates 43, 44 are connected to each other by a secondary conductor 47 which faces the stator 23 and constitutes the linear motor. The upper surface of the secondary conductor 47 is covered with a bullet 49 while maintaining a gap 48, and a plurality of electric circuit boards 50 are arranged in the gap 48.

スライダ40の下部横板45.46の」二面には磁気軸
受用磁石60.60が設けられている。この磁気軸受用
磁石60は永久磁石63と、永久磁石63を挟む軟磁性
月料でできたコア61.62と、コア61.62を巻回
する1を線65と64とから構成されている。そして前
記磁気軸受用磁石60.60には図示するように前記位
置センサー[1が設けられてあり、この位置センサー■
、■は電磁石の上面66と案内レール20の下面、即ち
、ガイド面67間の隙間を検出するものである。
Magnetic bearing magnets 60 and 60 are provided on both sides of the lower horizontal plate 45 and 46 of the slider 40. This magnetic bearing magnet 60 is composed of a permanent magnet 63, a core 61.62 made of soft magnetic material sandwiching the permanent magnet 63, and wires 65 and 64 that wind the core 61.62. . As shown in the figure, the magnetic bearing magnets 60 and 60 are provided with the position sensor [1].
, ■ detects the gap between the upper surface 66 of the electromagnet and the lower surface of the guide rail 20, that is, the guide surface 67.

発朋勿力課− 本発明の磁気浮」−スライダの制御方式は、位置センサ
ーと電磁石と永久磁石とからなり、静負荷を永久磁石の
吸引力で受け持た・U、ダイナミック負荷を電磁石の電
磁力を制御して荷重を保持するVロパワ一方式の磁気浮
」二を利用した磁気浮上スライダの制御方式において、
前記静負荷に釣り合う吸引力を発生ずる永久磁石とレー
ルとの隙間の変化範囲を制限し、この隙間範囲を越える
吸引力がルイ・要な静負荷に対しては、電磁石の磁束を
永久硝石の磁束に加え合ね干ることにより吸引力を制御
し、静負荷の増加にりJし、ある一定隙間以上永久磁石
がレールに接近しない構成になっている。
The control system of the slider consists of a position sensor, an electromagnet, and a permanent magnet, and the static load is handled by the attractive force of the permanent magnet.The dynamic load is handled by the electromagnetic force of the electromagnet. In the control method of a magnetically levitated slider that uses a V-ropower one-way magnetic levitation system that controls force and holds the load,
The range of change in the gap between the permanent magnet and the rail that generates an attractive force that balances the static load is limited, and the attractive force that exceeds this gap range is limited. The magnetic flux is added to the magnetic flux to control the attractive force, and the static load is increased so that the permanent magnet does not approach the rail beyond a certain gap.

従って、例えば大きな静負荷を作用さゼた場合において
も必要な隙間が確保され走行時の振動やシステム構成上
の加工精度等により、磁石がレールに接触することが生
しるおそれがなく、極めて安定した制御系とすることが
できる。
Therefore, even when a large static load is applied, for example, the necessary clearance is ensured, and there is no risk of the magnet coming into contact with the rail due to vibrations during running or machining accuracy in the system configuration, etc. A stable control system can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図には、本発明の一実施例であるブロック線図、第
2図には磁気浮上スライダの進行方向断面図、第3図に
は本発明の要部回路図をそれぞれ示す。 A・・・加算器、B・・・位相補償回路、C・・・電圧
電流および電力増幅回路、D・・・電力・力変換器、E
・・・積分要素、F・・ 加算点、G・・・制御対称、
11・・・隙間特性、■・・・変位電圧変換器(位置セ
ンサー)、J・・・リミタ−0 特許出願人 エヌ・チー・ニス東洋ヘアリング株式会社
FIG. 1 shows a block diagram of an embodiment of the present invention, FIG. 2 shows a sectional view in the direction of movement of a magnetically levitated slider, and FIG. 3 shows a circuit diagram of the main parts of the invention. A... Adder, B... Phase compensation circuit, C... Voltage current and power amplifier circuit, D... Power/force converter, E
... Integral element, F... Addition point, G... Control symmetry,
11...Gap characteristics, ■...Displacement voltage converter (position sensor), J...Limiter-0 Patent applicant NCH Nis Toyo Hairing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)位置センサーと電磁石と永久磁石とからなり、静
負荷を永久磁石の吸引力で受け持たせ、ダイナミック負
荷を電磁石の電磁力を制御して荷重を保持するゼロパワ
ー方式の磁気浮上を利用した磁気浮上スライダの制御方
式において、前記静負荷に釣り合う吸引力を発生する永
久磁石とレールとの隙間の変化範囲を制限し、この隙間
範囲を越える吸引力が必要な静負荷に対しては、電磁石
の磁束を永久磁石の磁束に加え合わせることにより吸引
力を制御し、静負荷の増加に対し、ある一定隙間以上永
久磁石がレールに接近しない機構を具備したことを特徴
とする磁気浮上スライダの制御方式。
(1) Utilizes zero-power magnetic levitation, which consists of a position sensor, an electromagnet, and a permanent magnet, and uses the static load by the attraction force of the permanent magnet, and the dynamic load by controlling the electromagnetic force of the electromagnet to hold the load. In the control method of the magnetically levitated slider, the range of change in the gap between the permanent magnet and the rail that generates an attractive force that balances the static load is limited, and for static loads that require an attractive force that exceeds this gap range, A magnetically levitated slider characterized by being equipped with a mechanism that controls the attractive force by adding the magnetic flux of the electromagnet to the magnetic flux of the permanent magnet, and prevents the permanent magnet from approaching the rail beyond a certain gap in response to an increase in static load. control method.
JP11974886A 1986-05-23 1986-05-23 System for controlling magnetically levitating slider Pending JPS62275926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11974886A JPS62275926A (en) 1986-05-23 1986-05-23 System for controlling magnetically levitating slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11974886A JPS62275926A (en) 1986-05-23 1986-05-23 System for controlling magnetically levitating slider

Publications (1)

Publication Number Publication Date
JPS62275926A true JPS62275926A (en) 1987-11-30

Family

ID=14769171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11974886A Pending JPS62275926A (en) 1986-05-23 1986-05-23 System for controlling magnetically levitating slider

Country Status (1)

Country Link
JP (1) JPS62275926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510822U (en) * 1991-07-23 1993-02-12 日本フエローフルイデイクス株式会社 Magnetic bearing control device
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device
KR20150145082A (en) * 2014-06-18 2015-12-29 (주)한화 Transfer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510822U (en) * 1991-07-23 1993-02-12 日本フエローフルイデイクス株式会社 Magnetic bearing control device
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device
KR20150145082A (en) * 2014-06-18 2015-12-29 (주)한화 Transfer device

Similar Documents

Publication Publication Date Title
US5732636A (en) Magnetic levitation system
US4879500A (en) Controller for magnetic bearing system
US6408987B2 (en) Elevator guidance device
US9209663B2 (en) Apparatus and methods for passive magnetic reduction of thrust force in rotating machines
JPH09105414A (en) Magnetic bearing pivotally supporting rotor
US4268095A (en) Magnetic bearing
JPS62275926A (en) System for controlling magnetically levitating slider
US5528210A (en) W-shaped superconducting electromagnetic system for magnetic levitation vehicles
JPH02503621A (en) Non-saturated magnetic amplification controller
JPH01136504A (en) Magnetic levitation carrier
JP2615666B2 (en) Control method at lift-off in magnetic levitation device
JPH0340566B2 (en)
Liu et al. Robust control of a 4-pole electromagnet in semi-zero-power levitation scheme with a disturbance observer
JP2808816B2 (en) Magnetic non-contact bearing device
KR102429302B1 (en) A linear active magnetic bearing
JP2778882B2 (en) Floating transfer device
KR0157969B1 (en) Magnetic bearing device
JPH0513365B2 (en)
CN109578435B (en) Axial magnetic bearing for precision tracking support
JP2546997B2 (en) Non-contact support method
JPH0783221B2 (en) Power amplifier for generating magnetic attraction
JPS61224807A (en) Levitating conveyor
JPH07123321B2 (en) Suction type magnetic levitation guide device
JP2713885B2 (en) Floating transfer device
JPH06280873A (en) Magnetic bearing device