JPS62275446A - Discharge stone crushing apparatus - Google Patents

Discharge stone crushing apparatus

Info

Publication number
JPS62275446A
JPS62275446A JP61114783A JP11478386A JPS62275446A JP S62275446 A JPS62275446 A JP S62275446A JP 61114783 A JP61114783 A JP 61114783A JP 11478386 A JP11478386 A JP 11478386A JP S62275446 A JPS62275446 A JP S62275446A
Authority
JP
Japan
Prior art keywords
balloon
tip
tube
stone
calculus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61114783A
Other languages
Japanese (ja)
Inventor
直樹 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP61114783A priority Critical patent/JPS62275446A/en
Publication of JPS62275446A publication Critical patent/JPS62275446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] この発明は腎臓や尿管などの体腔内に生じた結石を放電
による衝撃波で破砕するための結石破砕装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a stone crushing device for crushing stones formed in body cavities such as kidneys and ureters using shock waves generated by electrical discharge.

[従来の技術] 腎臓や尿管などの体腔内に生じた結石を破砕する装置と
しては従来から種々のものが開発されている。その1つ
として管体の先端部に電極を設け、この電極によって発
生する放電スパークの衝!@波で結石を破砕するものが
知られている。しかしながら、狭い体腔内で放電を発生
させると、そのスパークが直接人体組織に当り、その組
織を傷付けるという危険性がある。
[Prior Art] Various devices have been developed for crushing stones formed in body cavities such as kidneys and ureters. One of them is to install an electrode at the tip of the tube, and the impact of the discharge spark generated by this electrode! @It is known that the waves can crush stones. However, when electric discharge is generated within a narrow body cavity, there is a risk that the spark will directly hit human tissue and cause damage to that tissue.

このような放電スパークによる危険を除去するようにし
た従来技術は見当たらないか、それに近いものとしてた
とえば特公昭5g−130033号公報に示されるもの
が堤案されている。この従来技術は爆薬の爆発力によっ
て結石を破砕するもので、第5図には爆薬管の先端部を
膨張体で覆うとともに、この爆薬管の先端に上記膨張体
を離れないように接着している。そして、上記爆薬管の
先端に設けられた爆薬を爆発させることにより、膨張体
を介して結石を破砕するようにしている。
No prior art has been found that eliminates the danger caused by such discharge sparks, or a similar technique has been proposed, for example, as disclosed in Japanese Patent Publication No. 5G-130033. This conventional technique uses the explosive force of explosives to crush stones, and as shown in Figure 5, the tip of an explosive tube is covered with an expanding body, and the expanding body is glued to the tip of the explosive tube so that it does not come off. There is. By detonating the explosive provided at the tip of the explosive tube, the calculus is crushed through the expanding body.

このような構造によれば、膨張体によって爆薬の爆発力
が拡がるのが規制されるから、人体組織を傷付けること
なく結石を破砕することができる。
According to such a structure, the expansion of the explosive force of the explosive is restricted by the expandable body, so that the stone can be crushed without damaging human tissue.

しかしながら、このような構造によると、爆薬管の先端
に膨張体が接着されているため、この膨張体によって爆
薬管の先端と結石との間隔を調節することが困難である
。したがって、結石の大きさや硬さなどに応じて上記間
隔を調節して結石に伝わる破壊力を最適な状態に変える
ということができないという欠点が生じる。
However, with such a structure, since the expandable body is bonded to the tip of the explosive tube, it is difficult to adjust the distance between the tip of the explosive tube and the stone using the expandable body. Therefore, there is a drawback that it is not possible to adjust the interval according to the size and hardness of the stone to optimize the destructive force transmitted to the stone.

この発明は、放電スパークによって結石を破砕する場合
に、その放電スパークを直接人体組織に当てることなく
行なえるようにするとともに、結石に作用する放電スパ
ークによる衝撃波の強さを容易に変えることができるよ
うにした結石破砕装置を提供することを目的とする。
This invention makes it possible to crush a calculus using an electric discharge spark without directly applying the electric discharge spark to human tissue, and also to easily change the strength of the shock wave caused by the electric discharge spark that acts on the calculus. It is an object of the present invention to provide a stone crushing device.

[問題点を解決するための手段及び作用コこの発明は、
管体1と、この管体1の先端部に設けられた先端チップ
2と、この先端チップ2に設けられた高電圧放電スパー
クを発生させるための電極3と、上記管体1の先端部を
覆う状態で設けられた膨張可能なバルーン7と、このバ
ルーン7の内部に連通して設けられた流体の流路6とを
具備する。そして、上記バルーン7によって放電スパー
クが直接人体組織に当たるのを阻止するとともに、上記
バルーン7の膨張度合を調節して電極3と結石との間隔
を変えることができるようにしたものである。
[Means and effects for solving the problem] The present invention has the following features:
A tube 1, a tip 2 provided at the tip of the tube 1, an electrode 3 provided on the tip 2 for generating a high-voltage discharge spark, and the tip of the tube 1. It includes an inflatable balloon 7 provided in a covering manner and a fluid flow path 6 provided in communication with the inside of the balloon 7. The balloon 7 prevents discharge sparks from directly hitting human tissue, and the distance between the electrode 3 and the stone can be changed by adjusting the degree of expansion of the balloon 7.

[実施例コ 以下、この発明の一実施例を第1図乃至第4図を参照し
て説明する。第1図に示す結石破砕装置は管体1を備え
ている。この管体1は合成樹脂などの可撓性の材料によ
って形成されていて、その先端部には円柱状の先端チッ
プ2が嵌入固定されている。この先端チップ2にはその
先端面に露出する状態で一対の電極3が埋設されている
。これら電極3には上記管体1に挿通された一対の電極
コード4が電気的に接続されている。また、上記先端チ
ップ2にはこの先端面に開放した収納部5が形成され、
この収納部5には流路を形成するチューブ6の一端が接
続されている。このチューブ6の他端は流体の供給ポン
プと吸引ポンプ(ともに図示せず)とに選択的に連通さ
せることができるようになっている。
[Embodiment 1] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. The stone crushing device shown in FIG. 1 includes a tube body 1. The stone crushing device shown in FIG. This tubular body 1 is made of a flexible material such as synthetic resin, and a cylindrical distal tip 2 is fitted and fixed at its distal end. A pair of electrodes 3 are embedded in this distal tip 2 so as to be exposed on the distal end surface thereof. A pair of electrode cords 4 inserted through the tubular body 1 are electrically connected to these electrodes 3. Further, the distal tip 2 is formed with an open storage section 5 on the distal end surface thereof,
One end of a tube 6 forming a flow path is connected to this storage portion 5. The other end of the tube 6 can be selectively connected to a fluid supply pump and a suction pump (both not shown).

上記管体1の先端部は液密で非伸縮性のシートによって
形成された袋状のバルーン7によって覆われている。こ
のバルーン7の開口端部は上記管体lの先端部外周に着
脱自在に設けられた止めリング8によって気密な状態で
固定されている。したがって、上記チューブ6からバル
ーン7へ流体を供給すれば、これを膨張させることがで
き、逆にバルーン7に供給された流体を吸引すれば、こ
れを縮小させることができるようになっている。
The tip of the tubular body 1 is covered with a bag-shaped balloon 7 formed of a liquid-tight, non-stretchable sheet. The open end of the balloon 7 is airtightly fixed by a retaining ring 8 detachably provided on the outer periphery of the tip of the tube 1. Therefore, if fluid is supplied from the tube 6 to the balloon 7, it can be expanded, and conversely, if the fluid supplied to the balloon 7 is sucked, it can be contracted.

そして、縮小した状態において上記バルーン7は弛むこ
とがないよう上記チューブ6が連通した収納部5に第2
図に示すように収納できるようになっている。また、バ
ルーン7は破損したときなどは止めリング8によって外
して新しいものに交換することができる。
In order to prevent the balloon 7 from loosening in the contracted state, the balloon 7 is placed in a second storage section 5 with which the tube 6 communicates.
It can be stored as shown in the figure. Further, when the balloon 7 is damaged, it can be removed by a retaining ring 8 and replaced with a new one.

つぎに、上記構造の結石破砕装置によって尿管Nに生じ
た結石Sを破砕する場合について第3図(a)〜(d)
を参照して説明する。まず、第3図(a)に示すように
尿管Nに管体1を経内視鏡的に挿入し、その先端を尿管
Nにつまった結石Sに対向させる。このとき、バルーン
7は先端チップ2の収納部5に収納されているから、こ
のバルーン7が管体1の尿管Nへの挿入を邪魔するよう
なことがない。つぎに、第3図(b)に示すようにバル
ーン7に流体を供給してこれを十分に膨張させることに
よって尿管Nを拡張し、この尿管Nにつまった結石Sを
上記バルーン7上に落下させる。
Next, FIGS. 3(a) to (d) show the case of crushing a stone S formed in the ureter N using the stone crushing device having the above structure.
Explain with reference to. First, as shown in FIG. 3(a), the tube body 1 is endoscopically inserted into the ureter N, and its tip is opposed to the stone S stuck in the ureter N. At this time, since the balloon 7 is stored in the housing portion 5 of the distal tip 2, the balloon 7 does not interfere with the insertion of the tubular body 1 into the ureter N. Next, as shown in FIG. 3(b), the ureter N is expanded by supplying fluid to the balloon 7 and inflating it sufficiently, and the stone S stuck in the ureter N is lifted onto the balloon 7. let it fall.

バルーン7上に結石Sが落下したならば、このバルーン
7から流体を徐々に排出してバルーン7を縮小させる。
When the stone S falls onto the balloon 7, fluid is gradually discharged from the balloon 7 to shrink the balloon 7.

バルーン7を縮小させれば、この上に落下した結石Sと
管体1の先端の先端チップ2に設けられた電極3との間
隔が第3図(C)に示すように次第に小さくなる。そし
て、上記結石Sの大きさや硬さなど結石Sの破壊のしや
すさに応じて結石Sと電極3との間隔が最適な状態にな
るようバルーン7を縮小させる。このように、結石Sと
電極3との間隔を設定したならば、一対の電極3に高電
圧を供給し、これらの間に放電スパークを発生させる。
When the balloon 7 is contracted, the distance between the stone S that has fallen onto it and the electrode 3 provided on the distal tip 2 at the distal end of the tube body 1 gradually becomes smaller as shown in FIG. 3(C). Then, the balloon 7 is shrunk so that the distance between the calculus S and the electrode 3 is optimal depending on the ease of breaking the calculus S, such as the size and hardness of the calculus S. Once the distance between the calculus S and the electrode 3 is set in this manner, a high voltage is supplied to the pair of electrodes 3 to generate a discharge spark between them.

すると、その放電スパークによる衝撃がバルーン7内の
流体を媒体として結石Sに伝わるから、第3図(d)に
示すように上記結石Sが破砕されることになる。
Then, the impact caused by the discharge spark is transmitted to the calculus S using the fluid in the balloon 7 as a medium, so that the calculus S is crushed as shown in FIG. 3(d).

このような結石破砕装置によれば、一対の電極3による
放電スパークがバルーン7内で発生するため、その放電
スパークが人体組織に直接当たるという危険がない。ま
た、結石Sと電極3との間隔をバルーン7の膨張度合に
よって調節することができるから、その間隔を結石Sの
大きさや硬さなどに応じて変えることにより、上記結石
Sを良好に破砕することができる。すなわち、結石Sが
硬くて大きく破砕されずらい場合には、間隔を小さくし
て放電スパークによる衝撃が上記結石Sに十分伝わるよ
うにすることができ、また結石Sが破砕しやすい場合に
は間隔を大きくすることにより、破砕された結石Sが勢
いよく飛散して人体組合、第4図に示すように結石Sを
バルーン7によって人体組織に押付けて破砕するように
すれば、破砕された結石Sが周囲に飛散しずらいから、
その回収が容易に行なえる。
According to such a calculus crushing device, since discharge sparks generated by the pair of electrodes 3 are generated within the balloon 7, there is no danger that the discharge sparks will directly hit human tissue. In addition, since the distance between the calculus S and the electrode 3 can be adjusted by the degree of expansion of the balloon 7, by changing the distance depending on the size and hardness of the calculus S, the calculus S can be broken up well. be able to. That is, when the stone S is hard and difficult to break into large pieces, the interval can be made small so that the impact caused by the discharge spark can be sufficiently transmitted to the stone S, and when the stone S is easy to break, the interval can be made small. As shown in FIG. Because it is difficult to scatter around,
It can be easily recovered.

第5図と第6図はこの発明の他の実施例を示し、これは
バルーン7をゴムなどの伸縮性の材料で作るようにした
。このようにすれば、縮小時に上記バルーン7は管体1
の先端部外面にほぼ密着した状態にあるので、先端チッ
プ2に上記一実施例のように収納部5を形成しなくてす
み、また流体を供給することによって第6図に示すよう
に膨張させることができる。
Figures 5 and 6 show another embodiment of the invention, in which the balloon 7 is made of a stretchable material such as rubber. In this way, when the balloon 7 is contracted, the tube body 1
Since it is in almost intimate contact with the outer surface of the distal end of the distal tip 2, it is not necessary to form the housing part 5 on the distal tip 2 as in the above embodiment, and the distal tip 2 can be expanded as shown in FIG. 6 by supplying fluid. be able to.

第7図はこの発明のさらに他の実施例を示し、これはバ
ルーン7を放電砕石装置の管体1とは別のプローブ11
の先端部に止めリング12によって取付け、このプロー
ブ11の内部空間を利用して流体を供給あるいは吸引す
ることにより、上記バルーン7を膨張させたり、縮小さ
せることができるようにした。そして、このプローブ1
1に上記管体1を挿通させ、結石Sを破砕するようにし
た。このような構造によれば、バルー7とは別に管体1
を自由に動かすことができるから、操作性の向上か計れ
るなどの利点を有する。
FIG. 7 shows yet another embodiment of the invention, in which the balloon 7 is separated from the probe 11 in the tube body 1 of the electric discharge lithotripter.
The balloon 7 is attached to the tip of the probe 11 with a retaining ring 12, and the balloon 7 can be inflated or contracted by supplying or suctioning fluid using the internal space of the probe 11. And this probe 1
The tube body 1 was inserted through the tube 1 to crush the stone S. According to such a structure, the tube body 1 is provided separately from the balloon 7.
Since it can be moved freely, it has the advantage of improving operability.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、管体の先端部に電
極を有する先端チップを設けるとともに、この管体の先
端部を覆う状態で膨張可能なバルーンを設け、さらにこ
のバルーンの内部に流体の流路を連通させた。したかっ
て、結石を破砕するときの放電スパークがバルーンの内
部で発生し、人体組織に直接当たることがないから、安
全性を向上させることができる。また、電極と結石との
間隔をバルーンの膨張度合を変えることによって上記結
石を破砕するに最適な状態に容易に調節することができ
、しかもその間隔を調節することによって結石の破砕を
確実に行なうことができるなどの利点を有する。
As described above, according to the present invention, a distal tip having an electrode is provided at the distal end of the tubular body, an inflatable balloon is provided covering the distal end of the tubular body, and a fluid is provided inside the balloon. The flow channels were made to communicate with each other. Therefore, the discharge sparks generated when crushing stones are generated inside the balloon and do not directly hit human tissue, thereby improving safety. In addition, the distance between the electrode and the stone can be easily adjusted to the optimum condition for crushing the stone by changing the degree of inflation of the balloon, and furthermore, by adjusting the distance, the stone can be reliably crushed. It has the following advantages:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すバルーンを膨張させ
た状態の管体先端部の断面図、第2図は同じくバルーン
を縮小させた状態の断面図、第3図(a)〜(d)は尿
管の結石を破砕する手順を順次示した説明図、第4図は
結石を人体組織に押付けて破砕する場合の説明図、第5
図と第6図はこの発明の他の実施例を示す管体先端部の
側面図、第7図はこの発明のさらに他の実施例を示すバ
ルーンの取付は構造の断面図である。 1・・・管体、2・・・先端チップ、3・・電極、7・
・バルーン。 出願人代理人 弁理士 評注 淳 7バルーン 第 1 図 (a)      (b)      忙)(d)第3
図 第6図 第7図 手続補正書 1、事件の表示 特願昭61−114783号 2、発明の名称 放電砕石装置 3、補正をする者 事件との関係  特許出願人 (037)  オリンパス光学工業株式会社4、代理人 東京都千代田区霞が関3丁目7番2号 UBEビル〒1
00  電話 03 (502)3181 (大代表)
−m−ゝ  ・  −71 (lli881)  弁理士  坪  井     a
l、15、自発補正            ゛・□・
−2二・j7、補正の内容 明細誓第94−ジ5行目に「バルー7」とあるのを「バ
ルーン7」と補正する。
FIG. 1 is a cross-sectional view of the tip of the tube body when the balloon is inflated, showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the same balloon when it is deflated, and FIGS. d) is an explanatory diagram sequentially showing the procedure for crushing a stone in the ureter; FIG. 4 is an explanatory diagram of crushing a stone by pressing it against human tissue; and FIG.
6 and 6 are side views of the distal end of the tube body showing another embodiment of the present invention, and FIG. 7 is a sectional view of the balloon attachment structure showing still another embodiment of the present invention. 1... Tube body, 2... Tip tip, 3... Electrode, 7...
·balloon. Applicant's agent Patent attorney Review notes Jun 7 balloon No. 1 (a) (b) busy) (d) No. 3
Figure 6 Figure 7 Procedural amendment 1, Indication of the case Patent application No. 114783/1983 2, Name of the invention Electric discharge stone crushing device 3, Person making the amendment Relationship with the case Patent applicant (037) Olympus Optical Industry Co., Ltd. Company 4, Agent UBE Building 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo
00 Telephone 03 (502) 3181 (main representative)
-m-ゝ・-71 (lli881) Patent attorney Tsuboi a
l, 15, spontaneous correction ゛・□・
-22.j7, Amendment No. 94-J, 5th line of the detailed statement of amendment, "Balloon 7" is corrected to "Balloon 7."

Claims (3)

【特許請求の範囲】[Claims] (1)管体と、この管体の先端部に設けられた先端チッ
プと、この先端チップに設けられた高電圧放電スパーク
を発生させるための電極と、上記管体の先端部を覆う状
態で設けられた膨張可能なバルーンと、このバルーンの
内部に連通して設けられた流体の流路とを具備したこと
を特徴とする放電砕石装置。
(1) A tube body, a tip provided at the tip of the tube, an electrode provided on the tip for generating a high-voltage discharge spark, and a state that covers the tip of the tube. 1. An electric discharge lithotripter comprising: an inflatable balloon; and a fluid passage communicating with the inside of the balloon.
(2)上記管体の先端部には縮小状態にあるバルーンを
収納する収納部が形成されていることを特徴とする特許
請求の範囲第1項記載の結石破砕装置。
(2) The stone crushing device according to claim 1, wherein a storage section is formed at the distal end of the tubular body to store the balloon in a contracted state.
(3)上記バルーンは伸縮自在な材料で作られているこ
とを特徴とする特許請求の範囲第1項記載の結石破砕装
置。
(3) The stone crushing device according to claim 1, wherein the balloon is made of a stretchable material.
JP61114783A 1986-05-21 1986-05-21 Discharge stone crushing apparatus Pending JPS62275446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61114783A JPS62275446A (en) 1986-05-21 1986-05-21 Discharge stone crushing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61114783A JPS62275446A (en) 1986-05-21 1986-05-21 Discharge stone crushing apparatus

Publications (1)

Publication Number Publication Date
JPS62275446A true JPS62275446A (en) 1987-11-30

Family

ID=14646569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61114783A Pending JPS62275446A (en) 1986-05-21 1986-05-21 Discharge stone crushing apparatus

Country Status (1)

Country Link
JP (1) JPS62275446A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709075B2 (en) 2011-11-08 2014-04-29 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US8728091B2 (en) 2012-09-13 2014-05-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US8747416B2 (en) 2012-08-06 2014-06-10 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
JP2014208305A (en) * 2008-06-13 2014-11-06 ディージェイティー、 エルエルシー Shockwave balloon catheter device
US9011463B2 (en) 2012-06-27 2015-04-21 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9044619B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9220521B2 (en) 2012-08-06 2015-12-29 Shockwave Medical, Inc. Shockwave catheter
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9579114B2 (en) 2008-05-07 2017-02-28 Northgate Technologies Inc. Radially-firing electrohydraulic lithotripsy probe
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US10555744B2 (en) 2015-11-18 2020-02-11 Shockware Medical, Inc. Shock wave electrodes
US10603058B2 (en) 2013-03-11 2020-03-31 Northgate Technologies, Inc. Unfocused electrohydraulic lithotripter
US10646240B2 (en) 2016-10-06 2020-05-12 Shockwave Medical, Inc. Aortic leaflet repair using shock wave applicators
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
JP2020524032A (en) * 2017-06-19 2020-08-13 ショックウェーブ メディカル, インコーポレイテッド Device and method for generating forward-directed shock waves
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
US11478261B2 (en) 2019-09-24 2022-10-25 Shockwave Medical, Inc. System for treating thrombus in body lumens
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11596423B2 (en) 2018-06-21 2023-03-07 Shockwave Medical, Inc. System for treating occlusions in body lumens
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11801066B2 (en) 2021-08-05 2023-10-31 Nextern Innovation, Llc Systems, devices and methods for selection of arc location within a lithoplasty balloon spark gap
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
US11877761B2 (en) 2021-08-05 2024-01-23 Nextern Innovation, Llc Systems, devices and methods for monitoring voltage and current and controlling voltage of voltage pulse generators
US11896248B2 (en) 2021-08-05 2024-02-13 Nextern Innovation, Llc Systems, devices and methods for generating subsonic pressure waves in intravascular lithotripsy
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11911056B2 (en) 2021-02-26 2024-02-27 Fastwave Medical Inc. Intravascular lithotripsy
US11918285B2 (en) 2022-06-01 2024-03-05 Fast Wave Medical Inc. Intravascular lithotripsy
US11944331B2 (en) 2021-02-26 2024-04-02 Fastwave Medical Inc. Intravascular lithotripsy
US11957369B2 (en) 2021-08-05 2024-04-16 Nextern Innovation, Llc Intravascular lithotripsy systems and methods

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11559318B2 (en) 2008-05-07 2023-01-24 Northgate Technologies Inc. Radially-firing electrohydraulic lithotripsy probe
US9579114B2 (en) 2008-05-07 2017-02-28 Northgate Technologies Inc. Radially-firing electrohydraulic lithotripsy probe
US8956374B2 (en) 2008-06-13 2015-02-17 Shockwave Medical, Inc. Shockwave balloon catheter system
JP2014208305A (en) * 2008-06-13 2014-11-06 ディージェイティー、 エルエルシー Shockwave balloon catheter device
JP2018015649A (en) * 2008-06-13 2018-02-01 ショックウェーブ メディカル, インコーポレイテッド Shockwave balloon catheter system
US8956371B2 (en) 2008-06-13 2015-02-17 Shockwave Medical, Inc. Shockwave balloon catheter system
US10959743B2 (en) 2008-06-13 2021-03-30 Shockwave Medical, Inc. Shockwave balloon catheter system
US10039561B2 (en) 2008-06-13 2018-08-07 Shockwave Medical, Inc. Shockwave balloon catheter system
US11771449B2 (en) 2008-06-13 2023-10-03 Shockwave Medical, Inc. Shockwave balloon catheter system
US9011462B2 (en) 2008-06-13 2015-04-21 Shockwave Medical, Inc. Shockwave balloon catheter system
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US11000299B2 (en) 2008-11-05 2021-05-11 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9044619B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
JP2015128635A (en) * 2008-11-05 2015-07-16 ディージェイティー、 エルエルシー Shockwave valvuloplasty catheter system
US9421025B2 (en) 2008-11-05 2016-08-23 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US10149690B2 (en) 2008-11-05 2018-12-11 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9814476B2 (en) 2011-11-08 2017-11-14 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US9289224B2 (en) 2011-11-08 2016-03-22 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US10478202B2 (en) 2011-11-08 2019-11-19 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US8709075B2 (en) 2011-11-08 2014-04-29 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US10682178B2 (en) 2012-06-27 2020-06-16 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9993292B2 (en) 2012-06-27 2018-06-12 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9011463B2 (en) 2012-06-27 2015-04-21 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US11696799B2 (en) 2012-06-27 2023-07-11 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
US9433428B2 (en) 2012-08-06 2016-09-06 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US9220521B2 (en) 2012-08-06 2015-12-29 Shockwave Medical, Inc. Shockwave catheter
US11076874B2 (en) 2012-08-06 2021-08-03 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US8888788B2 (en) 2012-08-06 2014-11-18 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US10206698B2 (en) 2012-08-06 2019-02-19 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US8747416B2 (en) 2012-08-06 2014-06-10 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
JP2015528327A (en) * 2012-08-06 2015-09-28 ショックウェーブ メディカル, インコーポレイテッド Thin electrodes for shock wave catheters for angioplasty
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US8728091B2 (en) 2012-09-13 2014-05-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US10159505B2 (en) 2012-09-13 2018-12-25 Shockwave Medical, Inc. Shockwave catheter system with energy control
US10517620B2 (en) 2012-09-13 2019-12-31 Shockwave Medical, Inc. Shock wave catheter system with energy control
US10517621B1 (en) 2012-09-13 2019-12-31 Shockwave Medical, Inc. Method of managing energy delivered by a shockwave through dwell time compensation
US9005216B2 (en) 2012-09-13 2015-04-14 Shockwave Medical, Inc. Shockwave catheter system with energy control
US10973538B2 (en) 2012-09-13 2021-04-13 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US11596424B2 (en) 2012-09-13 2023-03-07 Shockwave Medical, Inc. Shockwave catheter system with energy control
US11432834B2 (en) 2012-09-13 2022-09-06 Shockwave Medical, Inc. Shock wave catheter system with energy control
US11559319B2 (en) 2013-03-11 2023-01-24 Northgate Technologies Inc. Unfocused electrohydraulic lithotripter
US10603058B2 (en) 2013-03-11 2020-03-31 Northgate Technologies, Inc. Unfocused electrohydraulic lithotripter
US10420569B2 (en) 2014-05-08 2019-09-24 Shockwave Medical, Inc. Shock wave guide wire
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
US10555744B2 (en) 2015-11-18 2020-02-11 Shockware Medical, Inc. Shock wave electrodes
US11337713B2 (en) 2015-11-18 2022-05-24 Shockwave Medical, Inc. Shock wave electrodes
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
US11026707B2 (en) 2016-04-25 2021-06-08 Shockwave Medical, Inc. Shock wave device with polarity switching
US10646240B2 (en) 2016-10-06 2020-05-12 Shockwave Medical, Inc. Aortic leaflet repair using shock wave applicators
US11517337B2 (en) 2016-10-06 2022-12-06 Shockwave Medical, Inc. Aortic leaflet repair using shock wave applicators
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US11517338B2 (en) 2017-04-19 2022-12-06 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
JP2020524032A (en) * 2017-06-19 2020-08-13 ショックウェーブ メディカル, インコーポレイテッド Device and method for generating forward-directed shock waves
US11950793B2 (en) 2017-06-19 2024-04-09 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US11602363B2 (en) 2017-06-19 2023-03-14 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
US11622780B2 (en) 2017-11-17 2023-04-11 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
JP2021503344A (en) * 2017-11-17 2021-02-12 ショックウェーブ メディカル, インコーポレイテッド Thin electrodes for shock wave catheters
US11596423B2 (en) 2018-06-21 2023-03-07 Shockwave Medical, Inc. System for treating occlusions in body lumens
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11819229B2 (en) 2019-06-19 2023-11-21 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11911574B2 (en) 2019-06-26 2024-02-27 Boston Scientific Scimed, Inc. Fortified balloon inflation fluid for plasma system to disrupt vascular lesions
US11478261B2 (en) 2019-09-24 2022-10-25 Shockwave Medical, Inc. System for treating thrombus in body lumens
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US11903642B2 (en) 2020-03-18 2024-02-20 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11911056B2 (en) 2021-02-26 2024-02-27 Fastwave Medical Inc. Intravascular lithotripsy
US11944331B2 (en) 2021-02-26 2024-04-02 Fastwave Medical Inc. Intravascular lithotripsy
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11877761B2 (en) 2021-08-05 2024-01-23 Nextern Innovation, Llc Systems, devices and methods for monitoring voltage and current and controlling voltage of voltage pulse generators
US11896248B2 (en) 2021-08-05 2024-02-13 Nextern Innovation, Llc Systems, devices and methods for generating subsonic pressure waves in intravascular lithotripsy
US11801066B2 (en) 2021-08-05 2023-10-31 Nextern Innovation, Llc Systems, devices and methods for selection of arc location within a lithoplasty balloon spark gap
US11957369B2 (en) 2021-08-05 2024-04-16 Nextern Innovation, Llc Intravascular lithotripsy systems and methods
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
US11918285B2 (en) 2022-06-01 2024-03-05 Fast Wave Medical Inc. Intravascular lithotripsy

Similar Documents

Publication Publication Date Title
JPS62275446A (en) Discharge stone crushing apparatus
JPH06210007A (en) Cardiac defibrillator
ES2208495T3 (en) DEVICE FOR ELIMINATING CALCULATIONS WITH AN INTRACORPORE LITOTRIPTOR.
CA2650215A1 (en) Laryngeal mask airway device
NL1000670C2 (en) Cardiac tissue ablation device - uses intracavity filling member e.g balloon in contact with tissue interior and shaped to enable cavity filling member e.g foam rubber surrounding intracavity member to conform to cavity being treated
US4517984A (en) Esophageal probe
WO2023071427A1 (en) Intravascular calcified plaque impact fracture device
EP1199171A3 (en) Ink-jet recording head and ink-jet recording apparatus
WO2005009527A3 (en) Inflatable apparatus for accessing a body cavity and methods of making
JP2533732Y2 (en) Endoscope mounting balloon
JPS63302842A (en) Ultrasonic treatment apparatus
JPS62114545A (en) Ultrasonic stone crushing probe
JPS61135648A (en) Discharge stone crushing probe
CN113116457A (en) Guiding urethral calculus extractor
JPS61146251A (en) Probe for discharge stone crushing
KR20200009497A (en) Shock wave transmission prevention tube which can be provided in the oral cavity
JPS5832756A (en) Stone breaking apparatus
JPH02246960A (en) Discharge stone crusher
CN209200323U (en) Attachment device
JPH0122655Y2 (en)
CN213430397U (en) Medical percutaneous nephroscope
JPS6214843A (en) Stone attracting forcept
JPS62213747A (en) Ultrasonic incision apparatus for living body tissue
JPS61259654A (en) Ultrasonic stone crushing probe
JPS6122970B2 (en)